
Computer Science 773

Robotics and Real-time Control

CONTROLLING ROBOTS

If there were nothing about controlling robots which didn't happen in other machines,
there wouldn't be much point treating them as a separate topic. A robot certainly is a
machine, so we'll expect that some of the methods we've met in ordinary control systems
will appear again. Also, though, we have seen that robots are rather special in that they
are general-purpose machines, so there might be control functions which operate at this
level.

LOW-LEVEL CONTROL.

At the lowest level of interest to us, a robot is a collection of motors, each of which must
be controlled so that its output position (shaft rotation or distance) and velocity follow
paths determined to produce the required motion in the end-effector.

At this level, control can be exercised by a simple controller with a variable set point
(the desired position or velocity). A closed-loop controller is usually used; open-loop
controllers are usually not useful, because the environment of most of the individual
motors changes from moment to moment as the configuration of the robot changes, so
there is no simple way to work out the control signal required for an open-loop signal.
Consider, for example, a simple two-joint robot, as shown in the diagram.

Joint A

Joint B

Gripper
Joint A

Joint B

Gripper

Although the local configuration of joint A is the same in both cases, significantly more
torque will be needed for the same acceleration in the left-hand configuration than in the
right-hand configuration, as the mass is concentrated closer to the centre of rotation in the
left-hand case. As an second example, suppose that it is required to move from the left-
hand to the right-hand configuration by keeping joint A fixed while rotating the gripper
link around joint B; clearly, the joint B motor must be used to rotate the gripper link – but
in doing so, it applies a torque to the A-B link, so the joint A motor must be activated in
the opposite sense to keep the link still.

There is one special case (perhaps there are others, but I don't know about them)
where open-loop control is possible : if the robot is built with stepper motors. The special
feature of a stepper motor is that you know what the motor is doing without requiring
feedback. That works for small robots with comparatively light loads, but for more
demanding tasks stepper motors are a very expensive way of getting the required torque,
and DC motors (or, for the largest machines, hydraulic actuators) are more common.

773 Controlling robots : page 2.

An additional potential hazard with a stepper motor is that if it happens to slip a step at
some point there is no way of finding out, so all actions after that event will be wrong.

HIGH-LEVEL CONTROL.

The most obvious requirement for control at a higher level follows from the preceding
discussion; if, as is usual, the end-effector is required to follow some defined trajectory in
space, the actions of the separate motors must be coordinated. At the simplest level, a
sequence of set points must be sent to all the motors from time to time, where the intervals
between set points are short enough to guarantee that the overall motion is satisfactorily
close to the desired trajectory.

In practice, this very simple-minded approach is only satisfactory for rather slow
imprecise operation, and is not very satisfactory for that. Repeatedly altering the set point
for a simple controller is likely to result in uneven motion with rapidly alternating periods
of acceleration and deceleration, which is wasteful of power and doesn't do the motors
any good at all. For better and smoother motion, and for accurate faster motion, it is better
to use more sophisticated control at the higher level, so that the complete motion of the
whole robot is planned beforehand, and required positions and velocities specified for all
actuators at intervals. This observation is the beginning of a battle with the physics and
geometry of robots which is developed in further detail in the sheet STEP BY STEP TO
ROBOT CONTROL.

Above this level, something has to produce a specification of the required robot
motion. This is where the notion of programming the robot fits in. In principle, one could
write the programme for a robot as a sequence of joint coordinates with associated time
intervals, but this would be intolerably tedious. At least two other ways of programming
robots have therefore been developed.

The simpler way for the operator is to teach the robot the required sequence of
movements; the operator moves the robot through a sequence of configurations and
instructs it to remember a certain set of these. Later, the same set can be "played back"
when instructed, so that the robot covers the same trajectory again, reliably and
repeatedly. This is a very effective way to provide a programme for a simple, invariant,
repetitive task – which is the sort of task which many robots perform. This is sometimes
described as on-line programming.

If you want your robot to behave in ways which are not simple, invariant, and
repetitive, teaching will not get you very far. To deal with a broader range of events (the
robot must pick up components which arrive in different orientations, mobile robots must
avoid obstacles, etc.) you have to give the robot instructions from which it can work out
its behaviour, not a rigid specification of the behaviour itself. There have been
experiments in teaching such higher-level notions, and research continues, but in practice
it is difficult so far to attain any degree of sophisticated interaction with the environment
without some form of off-line programming, which is programming in the sense it
usually carries with computers : some sort of programming language is used to encode
instructions which the robot follows. This topic is developed further in the sheet ROBOT
PROGRAMMING LANGUAGES.

SPACE.

773 Controlling robots : page 3.

One factor which differentiates robot programming from other sorts is its obsession with
moving about in space. Just as timing problems dominate the practice of real-time
programming, so spatial problems are overwhelmingly important in robot programming.

This shouldn't be a big surprise, because it follows fairly directly from the nature of
robots as general-purpose machines. Much of real-time control is concerned with moving
things about in space, but in other parts of the subject it is usually possible to simplify
space, and we usually do just that. A conveyor belt reduces space to one dimension, and
we can put special position sensors at points along the belt so that we don't even have to
worry about the single dimension that's left; in using machine tools, it is common to fit
parts for machining into a standard jig which removes any uncertainly about their
positions; moving parts of machines rarely move freely, but are constrained by axles or
guides or rails or linkages to stick to predetermined paths with (if it's absolutely
unavoidable) one degree of freedom.

You can't do that with a general-purpose machine, if it is to be suitable for general
purposes. Robots must therefore be able to cope with the six degrees of freedom (three
for position, three for orientation) of objects in ordinary space, and in programming
them one must be able to handle all the implied geometry. One reason for the comparative
simplicity of teaching methods is that you bypass the geometry, but any sort of off-line
programming must have provision for more or less elaborate geometrical and
trigonometrical calculations.

Alan Creak,
April, 1997.

