
Computer Science 773

Robotics and Real-time Control

PFL

(NOTE : this text is taken, with some amendments, from
my Working Note AC49 on PFL, and describes work in

progress, not a completed system.)

PFL (Process Formulation Language) is still in the excruciatingly slow throes of
development. A student's work on an early version1 produced a compiler; more to the
point, the exercise taught us a lot about what we were doing wrong, and here we describe
a new version of the language, as yet unimplemented.

Even the unimplemented language can be useful. By writing programmes using the
language, one achieves a disciplined and structured programming style which is hard to
attain in a less structured environment. The programmes can later be translated by hand
into some other language. This approach was found to be very successful in a trial by a
class of engineering students, using the first version of PFL; programmes were written
more easily, and worked correctly sooner, than similar programmes written directly in
assembly languages3.

The language is very much a procedural language with an imperative style. It is,
after all, central to the idea of control that side effects should occur and that a sequence of
operations should be precisely defined; alternative models such as the functional (Lisp)
or assertive (Prolog) patterns are simply not appropriate. On the other hand, our system
could be pushed fairly easily into the object-oriented (Smalltalk) class : we have not
deliberately designed it that way, but our language has developed of its own accord
features rather like those of Simula.

FEATURES OF THE LANGUAGE.

The language includes the common components of "scientific" languages : real, integer,
logical, char, and string data types, and Pascal-like data and programme structures. The
syntax and vocabulary are not always conventional, as we have emphasised ease and
naturalness of use over ease of compiling : we have not felt constrained to produce a one-
pass compiler. We shall not deal with these features here. Instead, we shall concentrate on
the programme and data structures which PFL provides, and which we believe to be
specially significant to control programming. The extensions provided for control
purposes can conveniently be reviewed under four headings : processes, machines,
timing, and interfaces.

Processes.

A process is an autonomous activity; everything that happens in a PFL programme must
happen in a process. Each process is thought of as handling some identifiable task, which
may be an independent task, or a task associated with a machine. The number of
processes associated with a programme is determined by the PFL compiler, and is fixed :
processes cannot be created or destroyed once the programme has started, though they
need not all be active. A process which has not yet begun to execute, or which has
finished, is said to sleep. A sleeping process consumes no system resources, except for
one entry in the process table and enough memory to store its code. Any sleeping process
may in principle be woken; a newly woken process always begins execution at the
beginning. A sleeping process is quite distinct from a suspended process; a process may
be suspended for one of a number of reasons while it is in execution, but when resumed it
continues execution from the point at which it was suspended. This aspect of PFL's

773 PFL : page 2.

design reflects its target field, which is the control of some predefined arrangement of
plant or machinery. That is not to say that the configuration of the plant cannot change;
but it is to say that any mode of change must be foreseen and catered for in the
programme. We insist on this rule, because we want to ensure that every programme
which runs must at least come, in its entirety, under the scrutiny of the compiler before it
is executed, so that it can be checked. We do not believe that it is possible reliably to test a
control system if the plant it controls is subject to unplanned changes.

Processes can communicate with each other by sending messages; processes which
belong to the same machine may also share memory. Processes may suspend themselves
for any specified time interval, or until some event occurs.

The language provides no explicit process declaration : a process is identified by
the way it is executed, not by the static structure of the programme. Any statement may be
used as the body of a process : it is executed as a process if it appears in one of the
instructions when, whenever, or run. Consider this example of a procedure
declaration :

vesselcontrol means
begin

… statements1 …
turnoff; % A procedure invocation.
… statements2 …

. . .

turnon means % A procedure declaration.
begin
if vessel's alliswell
then switch on vessel's heater;
when vessel's temp > maximum

turnoff;
end;

turnoff means % A procedure declaration.
begin
switch off vessel's heater;

when vessel's temp < minimum
if not vessel's finished
then turnon;

end;

end of vesselcontrol;

This procedure illustrates a natural way to encode a thermostat controller. It could be
executed as a procedure by invoking its name, just as in Algol; or it could be executed as a
process with the instruction

run vesselcontrol

If run as a procedure, the procedure body is executed , then the procedure's activation
record is discarded; when run as a process, the run instruction wakes up a process
predefined by the compiler, and schedules it for execution. In either case, two auxiliary

773 PFL : page 3.

processes are implied, one for each of the when instructions; these will be discussed
further in what follows.

Machines.

A machine is a structure within the programme which is intended to represent a single
item of plant. It typically contains declarations of local variables and structures, an image
declaration which describes the plant's interface, and one or more procedures to handle
various activities concerning the plant. A possible design would be to have a separate
procedure, run as a process, to handle each input from and output to the plant, with
communication by messages and variables local to the machine. The machine also
contains code to handle starting up and shutting down; the final version of PFL is likely
also to contain provision for describing emergency shutdown procedures, but we are not
yet ready to fix the details of this part of the operation.

A machine declaration resembles a Simula class : it defines an abstract type, and
several machines of the type may be declared. The name of a machine may appear in start
or stop statements, which cause the corresponding code within the machine declaration to
be executed. The variables within a machine are accessible outside the machine
declaration, where they must be qualified by the machine's name, following the pattern
"thismachine's internalvariable"; some examples appear in the procedure declaration
above.

It is worth emphasising this significant difference between a machine and a
procedure. When a procedure is not being executed, in PFL, as in Algol-like languages
generally, its internal variables do not exist. A procedure describes an algorithm, which
has no physical existence. The internal variables of a machine, on the other hand, do exist
irrespective of the state of the programme's execution, because the machine declaration
must reflect the properties of the real physical machine, which does not go away just
because our programme happens not to be observing it.

Here is an example of a machine declaration :

vessel is thermostat; % Declare the object.

thermostat is % Declare the "type".
machine

image : % The plant, seen from the
% programme.

temp is number in;
heater is switch;
red-light is switch;
mainswitch is indicator;
empty is indicator;
lid-open is indicator;
state-changeis indicator pulse;

end image;

% Some local variables.
finished is logical, initially false;
alliswell is logical, initially false;

773 PFL : page 4.

startup : % How to turn it on.
while lid-open

begin
send "The vessel's lid is open." to

displayconsole;
suspend;
end;

while not mainswitch
begin
send "The heater is not switched on." to

displayconsole;
suspend;
end;

alliswell := true;
vesselcontrol;

end startup;

shutdown : % How to turn it off.
alliswell := false;
finished := true;
switch off heater;
send "The heater is switched off." to

displayconsole;
wait until temp < safelimit;
send "Reaction vessel is now cool." to

displayconsole;
end shutdown;

whenever state-change % What to do.
begin
if empty % An emergency.
then begin

alliswell := false;
shutdown;
soundthealarm;
end

else
if lid-open
then switch on red-light
else switch off red-light;

end;

end machine;

Timing.

The importance of timing in control programming is seen in several features of PFL.

First, there are two data types which can be used for arithmetic with time : the
interval, which ranges over time periods, and the clocktime, which represents a time
of day (including the date). The language provides no constant of either of these types
as such; constants are always constructed by applying appropriate operators to numeric
variables. For the interval type, the operators are seconds, minutes, days, etc, which
are postfixed to their operands; examples of constant interval values are :

773 PFL : page 5.

6.67 weeks
15 days
6 minutes + 3.667 seconds

The "largest" such operator is weeks, as longer units in common usage are of varying
length. All these operators accept operands of real or integer type. For the clocktime
values, the 6-adic operator is : : :: : : ; an example of its use is :

1986:3:22::15:30:22.445

Only the last argument may be real; all others must be integers. Any argument of the
clocktime operator can be omitted, in which case the value of that argument at execution
time will be understood – so, for example, ::::20:0:0 means "8 pm today". Because
of this convention, the expression :::::: is a valid clocktime, meaning the current
time; for convenience (and comprehensibility !) , this can be replaced by the reserved
function name now.

Three statements in the language are explicitly concerned with timing matters :
wait, when, and whenever.

wait is used to suspend a process until a given condition is satisfied, or – as a special
case – until a specified time. The wait statement looks like this :

wait until temp < maximum;
wait until ::::20:0:0;
wait for delay seconds;

If the condition is already satisfied, or the time is already past, then the wait
statement has no effect; but if not the process is suspended until the condition is
satisfied, and is then allowed to proceed. The first of these instructions is compiled
as :

while temp >= maximum
suspend;

The other instructions lead to the process's transfer to the system's calendar queue.

when is used to establish a process's response to a condition, should that condition arise,
but the process itself does not wait. The form of the statement is

when condition statement;

In effect, "statement" is remembered as the process's response to the "condition",
and execution continues. As PFL is a traditionally scoped language permitting
nested blocks, there is clearly a question of how to ensure that the necessary context
still exists when the "condition" is satisfied and the "statement" is executed.
Activation records for contexts which still contain unsatisfied when statements
must not be discarded. This forces a "cactus-stack" structure onto the
implementation, which we shall discuss later.

The compiler must analyse the structure of a when statement with some care.
Consider the simple thermostat controller presented above as the procedure
vesselcontrol. When the procedure is executed, the thermostat is started by
executing the procedure invocation turnoff. The procedure is entered, and
whatever signal is needed to switch off the heater is sent to the vessel. The

773 PFL : page 6.

appropriate "when-process" is then activated : turnoff has now finished, and the
main process continues with "statements2". The when-process consists, in effect,
of the statement

repeat
if temp < maximum

begin
turnon;
sleep;
end;

suspend;
forever;

together with the minimum context needed to execute that statement. It is the
compiler's responsibility to identify the minimum context required; this will usually
consist of those scopes statically enclosing any procedures or variables cited in the
when statement, or used in the condition. Problems could possibly arise if such
procedures were permitted to have any but value parameters; we have not yet
worked through the implications of this question. Notice that, in conformity with
our principle that processes cannot be created or destroyed, the when-proceses must
be identified and set up by the compiler before the programme starts.

whenever, like when, activates a special process (the whenever-process). Unlike a
when-process, though, a whenever-process, once activated, remains active until it
is explicitly put to sleep, and is executed every time its condition is satisfied. It is
intended as an interrupt-handling device, so the condition is usually an interrupt;
other conditions are permitted for greater generality, but are interpreted as
"whenever there is a change in the logical expression" – otherwise a condition's
becoming true could precipitate continued execution of an associated whenever-
process. An alternative would be to permit a general logical expression as the
condition, but to insist that the programme should in some sense reset the condition
before returning; it is not clear, though, how the compiler could check whether this
requirement had been satisfied. An execution-time check is inappropriate : what
action should be taken if it is found that the condition remains unsatisfied at the end
of the statement ? It seemed better to define an interrupt-like interpretation of a
condition, and the convention we adopt seems likely to conform to most
requirements.

Interfaces.

High-level approaches to defining the connections between the control programme and the
plant which it controls seem to have received rather little attention, and we have
accordingly taken particular care with this part of our system. A very detailed analysis is
offered in Pearl2; the facilities in the PFL system correspond roughly to Pearl's system-
division. Our deliberations have been strongly guided by the principle that as far as
practicable the control programme should be independent of the computer hardware on
which it runs; it should rather be determined only by the control algorithms required and
the communications characteristics of the plant.

We have therefore split the specification of the plant interface into two parts : the
image, which describes the information and control lines between the plant and the
computer in terms of the data types of the information carried; and the connection block.
The connection block is not strictly regarded as a part of the PFL programme at all, but as
information provided for the system loader. It includes a description of the electrical
characteristics of the signals to and from the plant, and also defines the computer ports to

773 PFL : page 7.

which the signals will be connected. The idea of this separation is, of course, not new :
the principle appeared well over two decades ago in the post-processors used with
numerical control languages for NC machine tools, and in the "environment division" of
Cobol programmes.

The image is part of a machine declaration; it describes, at a logical level, how the
programme sees the plant, and associates symbolic names with each of the input or output
data items, and control and signal lines. As an example, consider the image declaration
which appears in the example of the code for a machine which appears earlier. Once
declared in the image, the identifiers which name the communications channels between
the programme and the plant can be used in the PFL programme in contexts appropriate to
their types : thus, temp may be used as a numeric quantity, heater, red-light,
mainswitch, empty and lid-open are effectively logical quantities, and state-
change is an interrupt. The "variables" are distinguished from ordinary variables
declared within the programme by the conditions under which they may be used : temp,
mainswitch, empty, and lid-open may be used as operands but cannot be
assigned values, while heater and red-light may only be assigned values. The
identifiers are accessible from outside the machine declaration, when they must be
qualified by the machine's name : thus, "vessel's temp" in an earlier example.

The image provides all the information about the plant which is needed to write
control programmes, but does not specify how the connections are to be made. The
compiler converts references to the identifiers declared within the image into supervisor
calls which take as one parameter an index which identifies the identifier in question; the
compiler's output file includes a table carrying details of all the programme's image
declarations. The linkage with actual input and output ports is made by the sytem loader –
which must, of course, have information specific to the hardware system to which it
pertains. In principle, a separate loader will be required for each computer type used, but
in many cases differences between machines can be condensed into entries in a form of
configuration table.

The loader generates linking code which forms part of the connection block; it is
directed by a programme written in an auxiliary language, the Connection Block
Language (CBL). Unlike PFL, CBL is purely descriptive; while its style is, for
obvious reasons of compatibility and convenience, in many respects similar to that of
PFL, it is best regarded as an assertive language.

The function of a CBL programme is to describe the disposition over the machine's
ports of signals described in the image. For example, here is a possible CBL connection
specification which corresponds to the image declaration seen above :

vessel's image :
temp is number in port A[1 .. 8];
heater is switch port A[9];
red-light is switch port A[10];
mainswitch is indicator port B[1];
empty is indicator port B[2];
lid-openis indicator port B[3];
state-changeis indicator pulse

port B[4];
end image;

The identifiers are the keys through which the PFL and CBL programmes match up their
declarations. The type specification is deliberately repeated; CBL checks that the type
declarations match, exploiting the redundancy to gain added security, but there is a more

773 PFL : page 8.

important reason. The PFL and CBL programmes give information to different people :
the PFL programme reflects the programmer's understanding of the control system, but
the CBL programme is likely to be used as documentation by engineering staff who are in
a position to exercise an independent check on the correctness of the information, and the
repitition makes this check possible.

IMPLEMENTATION.

Two of our aims are : to be able to compile the complete control programme for a system,
so that we reap the benefits of automatic consistency checking throughout, and for easier
testing; and to make our programming language independent of any specific machine's
hardware, even to the extent of distributing programmes over machines of different types.
If these aims are to be reconciled, then we must find a way to "factor out" the machine
dependencies. At the language level, we achieved this by moving all the machine-
dependent parts of the the problem specification out of PFL into CBL; at the
implementation level, we can achieve a similar result by making the target language of our
compiler a standard virtual machine code, and providing virtual machines as programmes
which interpret the generated code on each of the varieties of computer to be used. While
this approach certainly entails a considerable programming effort, it need be done only
once for each computer; and the effectiveness of the technique is demonstrated by the
success of UCSD Pascal, running on the virtual P-machine.

NOTE : The object which we call a virtual machine is
sometimes referred to as an abstract machine. We prefer to

use the term virtual machine, because we feel that
"abstract" is a curious adjective to apply to an object which

we expect to be very active indeed. We would prefer to
reserve the term abstract machine for objects such as those
discussed in automata theory, which really are intended as
abstractions of actual machines; machines such as ours,

which are at least potential candidates for implementation in
hardware, seem more properly termed "virtual".

An alternative approach, which would not incur the overhead associated with
interpretive execution, would be to replace the virtual machines by a retargetable code
generator, so that real machine code for each computer used could be generated. We see
this as a possible line of evolution (rather than revolution : notice that it can be
introduced machine by machine), but for the present at least have chosen to follow the
virtual machine path as a conceptually simpler way to start. We have made one concession
to efficiency : expecting that the target computers will almost always be microprocessors,
we have provided rather different virtual machines to run on 8-bit and 16-bit processors.
The PFL compiler therefore produces a form of assembly language rather than actual
virtual machine code; this is translated into the correct sort of virtual machine code when
the hardware type becomes known during the loading operations. (We hope to describe
the dual virtual machine system in a separate publication.)

The virtual machine has a stack architecture, with space for local variables assigned
in the stack for convenience. Several processes within a machine can be simultaneously
active, and, as conventional scope rules apply, they may all require access to the
machine's global variables. They may also need to share parts of their stacks in rather
more intimate ways, as was suggested during the earlier description of when-processes
and whenever-processes. At the moment of awakening of one of these types of process, it
must share all the memory space of the parent process, because all references to variables
are to the same variables, and a change to a variable made by the parent process must be
visible to the child. As execution of the parent continues, though, it may leave the

773 PFL : page 9.

procedures which supply the immediate scope of the child process. The child can still use
variables defined in such procedures; but they are no longer accessible to the parent. What
should happen now if the parent returns to one of the procedures which it has left in the
care of the child ? Should the previous, still surviving, activation be reentered – or
should a new activation be constructed ? It seems that the older activation should indeed
be reentered; otherwise, changes to variables made by the child-process would never
become accessible to the parent. Considerations of this sort lead us to an implementation
design in which activation records are linked together in flexible ways, and only
dismantled when their usage counters become zero.

It is also necessary to maske provision for processes which wait on any one of
several interrupts. Perhaps the simplest example of such a process is illustrated by the
code fragment :

when bellpush or :::::0:0
ringthebell;

The when-process containing ringthebell must wait on two quite separate events, the
bellpush signal and the turn of the hour, but, as the process can only "fire" once, its
association with each signal must be made conditional on the nonoccurrence of the other.
In effect, the process must be in two queues simultaneously. We have not yet resolved
this problem, though several solutions suggest themselves. For example, a solution
depending largely on software is possible, but requires that interrupts be suppressed
while it executes; alternatively, we can provide for such requirements in our
"virtualware", which would respond more quickly but extend the virtual machine with
code that may rarely be useful.

The compiler produces a code file for each machine or independent process in the
programme; the file includes the virtual machine "code", details of any image
declarations, and details of requirements for message transmission to other processes, and
for conventional input and output facilities. The loader accepts these intermediate files,
and a CBL programme describing of the connections to the plant, and specifying which
machines and processes are to be implemented on which actual computers. The loader
produces a memory load for each computer, including a multiprogrammed virtual
machine, incorporating essential operating system functions such as scheduling, the
virtual machine code for the processes to be run in that processor, code for the connection
block, and such input, output, and message-handling facilities as are required. The
machines assembled can be tailored to the requirements of the processes they will run, so
it is still possible to use quite modest processors, even though the maximum size of a
virtual machine may be very considerable.

REFERENCES.

1 : P.A. Sergent-Shadbolt : A new computer language for process control, Ph.D.
thesis, Auckland University (1986).

2 : Basic PEARL, DIN (Deutsches Institut für Normung) 66 253 Teil 1 (1981).
3 : See, for example, B.J. Cook, D.G. Jane, I.R. Sydenham, C.J. Thomsen, and C.I.

Wallace : Steering control for an automated guided vehicle ("Miniproject
report" to G.W. Blanchard, Department of Mechanical Engineering,
Auckland University, 1984)

Alan Creak,
April, 1998.

