
Computer Science 773

Robotics and Real-time Control

SCHEDULING TASKS

Scheduling computing tasks in real-time systems is difficult but necessary. It has always
been recognised as a problem, but the effort to find solutions is complicated by
constraints of safety : if the solution is not perfectly safe, the consequences might be
much more serious than in conventional computing.

A primary difficulty is in knowing how much resource the processes to be
scheduled will require, and, in particular, how long they will take. This is perhaps the
only respect in which scheduling for real-time systems is easier than it is for operating
systems, because it is usually possible to assume that the set of processes which must be
used is completely known, and that the processing requirements of each process can be
determined beforehand. This is not so in a general computing system.

LEINBAUGH'S METHOD : WORST-CASE ANALYSIS.

This additional knowledge is used in very early method of scheduling described by
Leinbaugh. It's very much a brute force method which works by attempting to enumerate
all cases, but is still a step ahead of the "try-it-and-see" approach more commonly used. It
is notable for the attention given to all the processes' requirements, and the attempt to deal
with the worst-case. That argument is that a schedule which is known to handle the worst
case will certainly handle anything else, so is guaranteed to satisfy any feasible
constraints.

The type of reasoning used by Leinbaugh is illustrated in this simple example.
Suppose that we have a system in which six processes must be executed every second.
The processes themselves cannot be interrupted once started, and only one process can
run at any moment. Five of the processes, S1 to S5, take 0.1 seconds each to run and
must be run in order, while the other, T, takes 0.4 seconds to run, but must await an
interrupt (guaranteed to arrive in the first half-second) before it can start. Given these
conditions, we cannot state just when within the one-second period any one of the
processes will be executed, but we nevertheless can guarantee that all processes will be
completed within the period.

Leinbaugh extends that idea to cover all possible cases which might arise in process
control. He gives an exhaustive analysis of all the factors which might cause a process to
run or not run, and requires a lot of information about the processes themselves. I don't
know of any study of the mathematical complexity of his method, but it looks like a
combinatorial nightmare. Nevertheless, work continues; Leinbaugh extended his original
work to the case of distributed systems, and more recently (1997) further work on
finding more efficient algorithms has been reported.

LESS PRECISE METHODS.

Leinbaugh's method is precise, but expensive; we can develop alternative methods which
are less expensive at the cost of lower precision. Given the basic timing information, it is
possible in principle to compute schedules of various sorts for given time constraints (or
to demonstrate that no such schedule exists).What sort of solution do we want ? Here
are some possibilities :

• Optimal scheduling : The information is sufficient to compute the best possible
schedule for the constraints. Unfortunately, to do so is time-consuming; the

773 Scheduling tasks : page 2.

problem is known to be NP-complete, and to determine an optimal schedule for a
large system is prohibitively expensive in time.

• Feasible scheduling : Provided that it can be done at all, it is usually much
easier to find some schedule which satisfies a set of constraints. The difficulty in
this case is to make sure that the schedule will still work if the actual times of events
vary a bit; if just one event happens slightly late, you can get what amounts to a
delay amplification behaviour, which might ruin the overall process.

• Guaranteed scheduling : What we really want is a schedule which we know
will do the job. It doesn't have to be optimal, provided that we can afford to run it;
it does have to cope with predictable ranges of variation in timing and such
parameters. To get such a schedule, we might have to make conservative
assumptions, but it is generally thought to be worth it.

In practice, all the useful methods rely on some sort of task classification, where it's
possible. If we can find different sorts of difference between tasks, we can construct
scheduling methods which use these differences as a way to improve scheduling
performance. Here is a selection.

TASKS OF DIFFERENT FREQUENCY.

The easiest way to guarantee that your computer will keep control of the plant is to make
sure that the plant can't mess up the activities of the computer. Essentially, that means
giving up interrupts from the plant, so all communication must be initiated by the
computer. To make sure that everything is dealt with sufficiently promptly, the computer
must therefore poll the plant for changes in its condition at "sufficiently frequent"
intervals. This gives rise to the cyclic executive scheduling method, where the controller
consists of a sequence of polling operations covering all the interesting plant variables,
and repeated cyclically in sequence for ever. Action is taken when the polled values
indicate that it's necessary.

In practice, not everything need be polled al the time. Some variables change much
more slowly than others, or need much less precise control. It is therefore sensible to sort
out the processes according to their frequency and operate several polling cycles at
different speeds. One speaks of major and minor polling cycles.

This works well, but is very expensive in processor time. If an event must be acted
upon within 0.01 seconds, then it must be polled at least 100 times per second – even if it
only occurs once every hour. The cyclic executive works, but there's a significant cost to
its reliability.

TASKS OF DIFFERENT URGENCY.

A different approach is to rank processes in terms of their priorities, and to take the
priorities into account when scheduling. This is a common scheduling technique in
operating systems, and it has been used in some real-time controllers. It has one serious
deficiency : using a system based on priority alone, it is very difficult to guarantee that
the required level of service can be met, because another task of higher priority might
intervene at a critical time in the performance of a task of lower priority.

One can argue that the idea of priority doesn't really fit real-time systems. The
existence of deadlines means that you can't really define a fixed priority, because that
doesn't take the deadline into account. In operating systems, a common device is to
increase the priority of a queued process according the length of time for which it has

773 Scheduling tasks : page 3.

been queued; without a lot of not-entirely-trivial calculation, that just isn't good enough
for real-time use. (In an operating system all we need is a guarantee that a process will
leave the queue at some time, but we're not much concerned just when it happens.) The
big difference is that in a real-time system you can't simply allocate a priority to a process
alone; its urgency depends on its own deadline, and on the deadlines of other processes.
Once again, the effect of the real-time constraints is to force an unwanted, but inevitable,
degree of interdependence on the processes.

In effect, by the time you've done enough calculation to work out something like a
priority which would work with a real-time system, you've done enough to complete the
scheduling by something like a worst-case analysis, so the priority figure itself isn't
particularly useful. Alternatively, you could regard the other scheduling methods a
devices to set and implement a sort of priority system.

There is an exception to this conclusion. The argument above applies to the problem
of working out a fixed task priority by considering the properties and resource
requirements of the task in the context of the system as a whole, and as part of a
scheduling exercise undertaken before the system is running. It does not take into account
the events which occur during the run, which a short-term scheduler might have to take
into account. For example, variations in conditions might in some cases delay the
initiation of a task to the extent that it has only just enough time to run before its deadline;
this is certainly a sort of urgency which a scheduler can take into account while the system
is running. Remember, though, that it is very important that a short-term scheduler
(otherwise called dispatcher) should not be overburdened with computation, so there is
a limit to how much testing and checking it can do. Comparing the current time with the
latest possible starting time for a process is sufficient to identify the urgency in the case
described, and quick enough to be acceptable, but more elaborate calculations might well
be too time-consuming.

TASKS OF DIFFERENT NECESSITY.

An interesting classification is based on whether or not you really need to execute the
processes to be scheduled. This has some variants; here's a list, taken largely from
examples in an issue of Operating Systems Review on real-time operating systems.

Inessential processes : Some tasks simply don't need to be done. If you haven't time
to display the outside temperature on the screen, it might not matter. Such tasks can
be dropped if time is short. This distinction is used in the Spring Kernel.

Not always essential processes : If you miss out polling a value once every couple
of hundred times, it might not be important. While it's better to maintain values up
to date when possible, many control systems work pretty well provided that their
data are about right. They'll work better with the right data, but missing one or two
points now and then won't destroy the system. A variant in which each task has a
mandatory and optional part has been investigated.

Alternative processes : Sometimes you can get an approximate, but adequate, value
faster than a precise value. For example, you might be able to estimate a reading
from internal data faster than you can read the real value from a sensor, or you can
provide a low-resolution display instead of a better high-resolution version. If
there's enough time, you do the slow and better routine, but if not take the short
cut. The Chaos and Spring Kernel systems use this distinction in their scheduling
algorithms.

773 Scheduling tasks : page 4.

Soft deadlines : Even in a hard real-time control system, not all deadlines are
necessarily hard. By distinguishing between tasks on this basis, a scheduler can
choose a task with a hard deadline in preference to a softer alternative in cases
where time is short. The Spring Kernel uses this approach too.

INFORMATION.

The common feature of all these methods is their reliance on having lots of information
about the tasks which are to be scheduled. You can do that with process control systems,
because the process is well defined, and – all being well – there are no surprises. in
contrast, an ordinary operating system must cope with any processes which happen to
turn up, whatever they are, and cannot be designed with detailed knowledge of what it
must handle.

REFERENCES.

Leinbaugh's scheduling : D.W. Leinbaugh : "Guaranteed response times in a hard real-
time environment", IEEE Transactions on Software Engineering 6 , 85-91
(1980), as reprinted in R.L. Glass : Real-time Software (Prentice-Hall,
1983)

Further work on worst-case methods (not very informative) : http://www-iiit.etec.uni-
karlsruhe.de/~bort/.

The Spring Kernel : J.A. Stankovich, K. Ramamritham : "The Spring Kernel : a new
paradigm for operating systems", Operating Systems Review 23#3, 54-71
(July, 1989).

Mandatory and optional parts : W.-K. Shih, J.W.S. Liu, J.-Y. Chung, D.W. Gillies :
"Scheduling tasks with ready times and deadlines to minimise average error",
Operating Systems Review 23#3, 14-28 (July, 1989).

Chaos : P. Gopinath, K. Schwan : "CHAOS : why one cannot have only an operating
system for real-time applications", Operating Systems Review 23#3, 106-
125 (July, 1989).

Alan Creak,
March, 1998.

