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Robotics and Real-time Control

CONTROL THEORY

The name "control theory" usually denotes the mathematical treatment of closed-loop, continuous,
linear systems including computing elements intended for the exercise of control over the rest of
the system. This diagram shows the archetypal control system :
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The aim of control theory is to identify the function which must be computed by the controller in
order to make the system work as required. This involves something more or less equivalent to
solving the equations of motion of the whole system, which are usually differential equations.

The restriction to linear systems is imposed to make the calculations tractable. While the
equations of motion can be solved for some sorts of non-linearity in a single-loop system of the
sort shown in the diagram, such solutions become much harder to obtain with more complex, and
more typical, multiple-loop systems. The assumption of linearity was also convenient when
analogue computing devices were used to compute the control function. Effective linear analogue
devices - adders, constant multipliers, integrators, and differentiators - are comparatively easy to
construct; a few particular non-linear functions, which happen to describe convenient electrical
properties of some materials, can be computed, but a general non-linear function can only be
implemented as a piecewise linear approximation.

Unfortunately, the linearity which simplifies the mathematics isn't always realistic : many
physical devices and phenomena are not linear. Control theory can nevertheless be applied
effectively to many problems by linearising the systems. Provided that all functions which
describe the behaviour of the process are smooth and deviate only a little from linearity over the
working range of the system variables, it may be an adequate approximation to replace them by
linear approximations which satisfactorily reproduce the behaviour of the system in the working
region. The result is a control system which works when the process is in its normal running
state, but not necessarily under other conditions. It is typically necessary to start the process
without the control system, engaging the control system only when the process variables have
attained values in the normal working ranges.

It is convenient to carry out the calculations using the Laplace transforms of the equations of
motion, in which differentiation and integration are replaced by simple algebraic operations. Each
item in the process can be characterised by its transfer function, which describes the ratio of its
output to its input. The transfer function of a component of the controlled system can be
determined by open-loop testing, in which the response of the component to certain standard input
patterns is measured. Then, given the transfer functions of the plant components and knowing the
desired behaviour of the whole system, the function which must be implemented by the controller
can be calculated.
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As well as the control function, the analysis yields information on the stability of the
complete system. Instability can be a serious problem, particularly in complex systems for which
the behaviour is described by differential equations of high order, and in systems in which there
are time delays. It is exceedingly important to identify conditions under which a system is
unstable. With this knowledge, it may then be possible to eliminate the instability by making
changes to the system, or at least to ensure that the unstable conditions are well away from the
normal working regime.

DIGITAL CONTROL SYSTEMS.

Control theory was derived assuming that all variables were continuous, which was an
appropriate assumption for the analogue computing machinery with which it was first
implemented. The simple way to use a digital computer in a control system is to simulate as
closely as possible the analogue computing elements in the traditional controllers. With luck, no
further change will be needed : in particular, we will be able to keep the old control theory, at least
for the time being. In fact, though, moving to digital systems has introduced two sorts of
discontinuity, and these need investigation if we are to exploit the digital methods to the full.

Discontinuous number representation.

Instead of representing process measurements by continuously varying quantities like voltages,
we now use binary numbers. One value can no longer change smoothly to another; instead, we
must deal with a sequence of discretely different numbers. In practice, the number representation
itself is not normally a problem. As most physical processes are continuous in nature, analogue-
to-digital and digital-to-analogue converters are needed to link the control system to the process
being controlled, but converters for most routine applications are now cheap, precise, and
reliable. Once digitised, there is no problem with precision : indeed, the digital computations can
easily be made more precise than their analogue counterparts, and they are not subject to drift.

Discontinuous time.

A more significant change is the move from continuous computation by analogue devices to the
pattern of repeated sampling followed by computing characteristic of digital techniques. Even if a
processor is dedicated to a particular control function, it cannot pay attention to the process
variable at every instant, as the computation takes a small but non-zero time to complete. In
practice, we would prefer to sample each input measurement as infrequently as possible, so that
we don't need to dedicate a processor to each input line. How can we guarantee that we don't
miss anything significant ?

The Sampling Theorem helps. Any signal can be represented ( by Fourier analysis ) as
the sum of a spectrum of signals of different frequencies. If the highest frequency in the signal is
f, then the Sampling Theorem asserts that it is possible to reconstruct the whole signal from a
sequence of samples taken at a frequency of 2f ( or higher ). If we know, then, that the
characteristic times of a system are in the range 5 seconds and upwards, we might guess that
sampling every one or two seconds would give us enough information for control purposes.

Unfortunately, our guess might be wrong. If we have a nice quiet system and environment,
and there really are no awkward high-frequency resonances in the system, we would probably get
away with it; but the Sampling Theorem is based on the highest frequency component which is in
the signal, not the highest frequency in which we happen to be interested, so high-frequency
noise of significant amplitude could wreck the control system.
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To avoid such difficulties, we can use a low-pass filter to cut down the high frequency
component of the signal, but such a filter will also cut down any high-frequency components of
the real control signal. The result is to slow down the sudden changes, so sharp steps in the signal
are to some degree smoothed, and therefore necessarily delayed. In practice, it is commonly
possible to choose parameters so that a satisfactory compromise is achieved, but it's a lot better to
eliminate the noise at its source than to rely on filters.

Of course, the less frequently we sample the behaviour of the system, the further we move
away from the continuous model on which control theory is based. To remedy this defect, we
need something like traditional control theory but based on sampled systems. Methods have been
developed which parallel the Laplace transform techniques using instead the z-transform, which is
similar to the Laplace transform, but with integration replaced by summation. The result is a little
more clumsy, but works.

TIME LAGS AND FREQUENCY EFFECTS.

Here's a simple example which illustrates my earlier remark on the effect of time delays in a
system. Consider this simple but realistic apparatus for providing a stream of water at a controlled
temperature :
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Suppose that the system starts from cold. The sensor detects very cold water, so the controller
turns the heater full on. Assuming the simplest "ideal" case, and sensible system design, this will
in fact make the water too hot - but the temperature sensor will not find out until some time later,
when the flow of water through the system brings the overheated water to the sensor. The sensor
now detects very hot water, so the controller will turn off the heater, and cold water will again be
fed onwards towards the sensor. This cycle could continue for ever, and we'll never get a stable
system.

The reason is obvious : the sensor should be much closer to the heater - ideally, inside the
heater so that it can detect the high temperature as soon as possible. This is not always possible
for a number of reasons, such as physical access to the system, electrical interference between the
heater coils and the sensor, and so on. ( Even apart from that, it isn't a perfect answer unless the
water within the heater is constantly mixed so that the temperature is homogeneous - think about
it. ) In practice, things are not quite so bad, because the significant thermal capacity of the
stationary parts of the heater smooth out the switches between heating and cooling, in effect
turning the heating on and off slowly rather than instantaneously.

Ordinary control theory is not very good at handling time lags, particularly long ones, but
with a digital controller one can devise a programme which takes into account the time lag and
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controls the temperature with reasonable success. This takes us back to the principle of computer
control : to find the control programme which makes the system behave as we would like.

Time lags do not need to be long to have unfortunate consequences. The consequences of a
change in any part of the system take a finite time to travel through the whole control loop, and if
that time is of the order of the period of one of the system's natural frequencies ( which are
themselves the result of internal feedback loops ), trouble is possible. The effective time lag can
be affected by electrical capacitance and inductance, and by mechanical inertia and physical time
delays of the sort we have just described, so a real system may have many potential sources of
danger. One of the preoccupations of control theory is therefore the identification of instabilities in
the system, and the approach to this is in effect to determine the behaviour of the system at all
frequencies, and then by some means to find frequency ranges in which unstable behaviour is
found. It may then be possible to compensate for these instabilities by adjusting the controller
programme, or to avoid them by properly managing the system.

Alan Creak,
February, 1995.


