
Computer Science 773

Robotics and Real-time Control

WHAT IS REAL-TIME ?

REAL-TIME AS OPPOSED TO WHAT ?

We don't normally speak of unreal-time or imaginary-time programming, but if we did
we'd mean programming in which time was not of direct importance. While we would,
presumably, still prefer our programmes to finish in as short a time as possible, nothing
will necessarily go wrong if they don't.

In a real-time programme, time is important : there is some sort of deadline by
which we expect that some task will be complete. It might or might not cause irreparable
damage if the deadline is not met, but something will go wrong somewhere. The deadline
is usually (always ?) imposed by some process external to the computer which is not
under the programme's complete control, and with which the programme must
synchronise somehow.

VARIETIES OF REAL-TIME.

Real-time comes in two flavours : hard and soft. In fact, a less dramatic but more precise
statement would introduce a hard-soft continuum, and imagine each real-time programme
as lying somewhere along the line.

The "hardness" of a real-time programme is a measure of the urgency of its
deadlines. Imagine a graph showing the value of some result against completion time :
then the hardness of the programme is related to the maximum steepness of the curve.
Hard real-time programmes typically have to do with controlling machines, while soft
real-time is to do with people – as in network systems dealing with terminal transactions.

Value

Time

hard

soft

One can speculate that the hardness is a consequence of the stupidity of the other (non-
computer) party to the transaction. When the other party is human, and therefore
comparatively intelligent, delays can be recognised, interpreted, and sensibly handled, but
machinery is usually stupid, and less adaptable. In a large, perhaps hierarchic, system,
different degrees of hardness might be found in different parts; typically, the hardness
decreases as the distance from the machinery increases.

773 What is real-time ? : page 2.

CHARACTERISTICS OF REAL-TIME.

Some differences in emphasis between hard and soft real-time computing :

HARD SOFT

Critical
requirement :

Keep up with
events

Provide good
service

Problems : timing communications

priorities distributed
databases

resource
allocation

integrity

scheduling

Emergency
priorities :

regain control ensure integrity

REAL-TIME PROGRAMMING COMPARED TO OTHER SORTS.

Niklaus Wirth suggested that there was a hierarchy of complication in various applications
of programming. He distinguished three cases :

Ordinary sequential programming : Problems can be solved, or they can't. If they can,
complexity theory tells us something about the efficiency. We've developed lots of
useful knowledge about how to write programmes, and we want to keep using it.

Concurrent programming : Ordinary programming + synchronisation. There are no
(serious) problems if different threads don't interact. If they do, there are
possibilities both of conflict and of faster completion – but, apart from deadlock, in
the worst case we are usually no worse off than with sequential programming. With
concurrent systems, we would like to keep using the sequential programming skills,
and to add the synchronising parts as a separate package. We want :

Sequential computing + synchronisation = concurrent programming.

Can we have it ? We can certainly get quite close, provided that we interpret
"synchronisation" fairly liberally. (For example, it has to include mutual
exclusion.).

Real-time programming : Concurrent programming + timing. The rate of execution of the
code is no longer determined only by the properties of code and computer, but also
by interactions with entities which act independently of the computer. Now we can't
avoid problems, because there is a new sort of constraint : you might not have time
to do the calculations. The worst case is failure. Nevertheless, it is still sensible to
try to build on what we can do. Can we preserve both sequential and concurrent
programming skills and separate out the timing ? This time, we want :

Concurrent programming + time constraints = real-time programming.

773 What is real-time ? : page 3.

Wirth argued that the same method could be used again; real-time computing can be
reduced to comparatively time-insensitive concurrent programming by providing
further primitives which encapsulate the awkward details of critical time
dependencies. He put these ideas into practice in designing the languages Modula
and (later) Modula-2, which were specifically intended for real-time systems, and
were very effective.

But the solution wasn't perfect. In fact, the two steps of increasing complexity differ
significantly in a way which Wirth's argument does not take into account. In a
multiprogrammed system, there are several processes which impose constraints on each
other through requirements of the form "Process A cannot proceed past point P until
process B has reached point Q". Except for these purely logical constraints, the proceses
do not interact; in particular, the different processes proceed independently, and there is
nothing in the constraints which will prevent the required conditions from eventually
being met. (I assume that the system concerned is in principle feasible, so that deadlock
can be ignored.) In a real-time system, this is not so. The requirements now are of the
form "Process A must reach point P before time T", but these requirements are no longer
independent for processes which share a processor, as the more time we allocate to
process A to satisfy its requirement, the less we can give to process B. There is no way to
avoid this direct interaction between the processes (short of providing more processors,
a solution not within the ambit of software engineering), and no amount of clever
software will take it away.

For the time being, then, we must adopt an empirical approach. Wirth's analysis at
least points out the importance of time in real-time computing, and in practice this turns
out to be a prominent feature. The other main novelty is the requirement that real-time
computers must communicate with the systems they control, so problems of interfacing
become significant. These fundamental questions lead on to related topics; the following
notes review these briefly.

FIRST-ORDER SPECIAL THINGS.

Event-driven computing. Much of real-time computing is driven by events, in the
sense that programmes must wait for some condition to be satisfied before starting.
The conditions may depend on explicit signals received as interrupts from the
controlled system, or on values read from the controlled system, or on internal
variables maintained by the computer. The events constrain the times at which
actions can start.

Time limits. A process once started typically must be completed within some specified
time. These limits are the duals of the events, in that they constrain the times by
which actions must stop.

Communications. A real-time system must usually exchange information with the
object which it controls. This may require interfacing with any form of signal,
particularly with hard real-time systems which deal directly with machinery of one
sort or another. At higher levels in a system, as the timing requirements become less
stringent, standard protocols may be used, as most communications will be between
computers.

SECOND-ORDER SPECIAL THINGS.

Under this heading, we can consider responses to the characteristics of real-time
computing listed above. We might expect to find programming disciplines and software
engineering techniques appropriate to the topics mentioned. There are indeed some such

773 What is real-time ? : page 4.

methods, though they are not as well understood as the corresponding topics in
conventional computing.

Apart from fundamental problems of the sort discussed in connection with Wirth's
work, there are practical difficulties. Many real-time programmes run on dedicated
microprocessors embedded in machinery of various sorts, and without facilities for
systematic programme development and debugging. It is therefore not uncommon for
programmes to be developed in larger machines, and to be transferred to their proper
environments only when considered fairly complete. Proper testing is difficult under these
circumstances, and fault correction may involve a cumbersome cycle of testing on the real
system, followed by diagnosis and correction on the development machine, after which a
new version for the real system can be produced. System emulators on the development
machine can help, but it remains difficult accurately to reproduce the production
environment for thorough off-line testing.

REFERENCE.

N. Wirth : "Toward a discipline of real-time programming", Comm. ACM 2 0, 577
(1977).

Alan Creak,
March, 1998.

