
Computer Science 340

Operating Systems

TEST, 1995 : Answers

These are not the only possible answers, nor necessarily the best ones.
They are certainly not the shortest ones; we have preferred to present
fuller explanations rather than real answers. In most (maybe all, but
we're playing safe) cases, you can get full marks with far less
material than the answers given here.

Material in Helvetica type was added after marking the test.

__

QUESTION 1.

(a) Necessity : The user database is necessary to provide the information needed to separate the different
users' activities and property. A user logging in to the system must be identified and given access to only
such parts of the system as are appropriate – and must not have access to any other user's "property". The
database is also necessary to provide some sort of continuity between sessions for people using the
system; without that, it would be impossible to keep track of people's "property" in the system.

The security function of the userdata is important, but people who just said that didn't get all the
marks. I wanted either two sorts of security (such as access and identification of the person's
home directory in the file system), or security and something else (such as continuity in
accounts).

Security : The user database itself contains a variety of information, much of which must not be
directly accessible to any ordinary user, or unauthorised use of the system might be possible.

• Information not relevant to the operation of the computer system itself (names, addresses) may
be open to reading and writing by the user concerned; some may be more widely available for
reading (consider finger in Unix systems), though current obsessions with privacy may limit
such access.

• Information of concern to users but required by the system (account balances, privileges) may be
readable but not writable. (Passwords, in contrast, are likely to be writable but not readable.)

• Information of concern only to the system (disc addresses) may be inaccessible to the user,
though as a matter of principle unnecessary concealment is better avoided.

The "discussion" of security requirements was commonly very brief indeed.

In a large proportion of the answers, there was no indication that different parts of the userdata
had different security requirements.

It was possible to interpret the "security requirements" part of the question either as "what are
the security considerations which must be taken into account in controlling access to the user
database ?" (which I intended) or "what security information should be held in the user
database ?" (which I didn't). I still think that my interpretation is the more obvious, but I gave
marks for either.

Many answers included statements that no access to the userdata should be provided except
through system calls. That's right as far as it goes, but the same goes for any file in the system. I
wanted more information about what sort of access should be permitted.

(b) There are many possible answers to this part; see the course notes (Requirements specification, pp 40-
41). Here's a possible answer :

340 TEST ANSWERS : page 2.

Database items :

Home directory Required to set the initial value of the working directory on logging in.

Current credit Required to keep track of expenditure from session to session.

Active session items :

Working directory Used to locate a file whenever a file name relative to the working directory
must be resolved.

Terminal identity Used to direct messages relevant to the job or user to the appropriate
terminal.

The significant distinction is that between information stored between sessions, and information
stored only within sessions.

There was a strong preference for username and password as components of the userdata. In
hindsight, that's hardly surprising; if I'd thought about them beforehand, I'd probably have
excluded them ! (- because they're rather too obvious). But I didn't, so you got the marks.

A few rather surprising things were discussed as components of the permanent or temporary
userdata; examples were records of mail transactions, what processes were running, what files
were in use, etc. While it's always impossible to assert that such information isn't in any userdata
collection on any system anywhere, some things are more probable than others. Usually, if
some system component is managed by a special part of the system, the userdata would not
duplicate the information, though it may contain a link of some sort to some other part of the
system. For example, the userdata may include a flag indicating that there is mail, and possibly a
link to a mail file, but more specific information is more likely to be held by the mail system.
Similarly, information on processes and files is more likely to be restricted to process and file
tables; misunderstandings about processes are to some extent fair enough, because we
haven't yet covered them in the course, but you should know about files. Lists of things are
awkward, because they are variable in size, so explicit lists of processes or files in use,
mentioned by several people, are unlikely; if you need to know, it's easy to search the file table
or process table. (But the current directory has no other natural home, so is legitimately part of
the temporary userdata.)

A few people found a loophole which I hadn't noticed in the question : they described items of
information about users which were not permanently recorded, as requested – but which
weren't about individuals either, which wasn't what I had in mind. (For example, a list of active
users.) That was a fair cop, and I gave marks accordingly.

340 TEST ANSWERS : page 3.

(c)

Attribute Userdata Preference
files

Explanation

SIMILARITIES

Persistence Once set, preserved until
reset.

The stored material sets parameters specific to the
individual without the need for redefinition every time the

item concerned is started.

DIFFERENCES

Security Maintained
by the

system.

None The userdata file is used in a shared system, where other
people may interfere with your property; preference files
are used in personal systems, which are assumed to be

used by individuals.

Linked to : Operating
system

Programmes They do different things. The userdata must be available
to the system before you log in, as it is needed for the

identification; the preferences files are only needed when
the programmes are started. (Note that personal systems

can maintain system data – control panels,
CONFIG.SYS and AUTOEXEC.BAT – while shared

systems provide for personal configuration files – .login,
.cshrc, .plan, etc.)

I was rather overconfident in expecting that everyone would know what I was talking about.
While no one admitted it, it was clear that some people didn't know what preferences files were,
and hadn't really used any user database facilities. I therefore accepted many plausible guesses
which were not necessarily good ones.

There is a grey area around facilities provided in a shared system for specifying various system
parameters which you wish to be set for your sessions – such as .login and .cshrc files in Unix,
which live in your directory but are executed by the system. Because there is explicit provision in
the system for using information from these files while starting the session, I'd classify them as
part of the userdata which was held in your directory because it was convenient and satisfied the
security requirements. I accepted answers from people who took the view that these were
preference files, and gave any justification.

I should have been a little more careful in phrasing the question, because it allows answers with
very little substance – "information to be stored by both methods would be basically the same",
for example. I gave some marks (up to half) for answers of that sort, but required something
rather more significant to the operating system for full marks.

These comments add up to evidence that this wasn't a satisfactory part of the question. That's
quite right, and I apologise, but it's rather late to do anything about it. Many answers didn't fit my
expectations at all, so I tried to give marks corresponding to my impression of the
appropriateness and completeness of the answer. If you said reasonably sensible things about
two features of the files, you got most of the marks.

__

QUESTION 2.

Throughout this question it was clear that many people haven't worked out what is done by the
operating system and what is done by the programme. I find that rather alarming. Many people
had operating systems changing the contents of windows or files. This is impractible, even if it
were desirable; you'd have to add extensions to the operating system every time you acquired a
new programme. It's the programme's business to decide what's in the file or on the screen,
then, once decided, it's the operating system's business to get it there. Similarly, while we want
consistency in the interpretation of input to a programme, only the programme knows how to do
it, so the operating system is restricted to passing on low level information – "That was a
double-click" rather than "That was a select operation". While there really is no hard-and-fast line,

340 TEST ANSWERS : page 4.

the principle is that the operating system should provide general facilities, while the programmes
look after specific requirements. One would not expect that the operating system would have to
worry about the details of copying and pasting (for most systems, it's impossible, because they
know nothing of the structure within a window); but it should certainly be responsible for
transporting the data from programme to programme. Consider : if you were writing ClarisWorks
(replace with the name of any other programme running in a GUI system if that offends you),
would you expect the operating system to format your windows for you ?

If you're asked for examples of good design, and explicitly told what to do if you can't think of
any, it isn't good policy to give examples of bad design.

Not everyone got the facts right in their examples; I didn't worry much about that, unless the
"facts" were obviously silly.

(a) Consistency is important because it reduces the size of the system genie – the body of knowledge
needed to use the system effectively. If a principle applies consistently throughout the system, one need
not learn different conventions for different parts of the system.

A good example of consistent design is the uniform design of windows in the Macintosh system. Almost
all conform to the standard pattern, and the various components of the window almost always work in the
same way, so that in almost all circumstances one can move the window, move the material in the
window, change the size of the window, and close the window using standard methods.

Consistency was often interpreted rather restrictively, sometimes to the extent of associating it
with the fact that "vi X" will always edit X (which isn't really true in any useful sense : try it using a
directory name for X). While it's certainly consistent, that isn't what is commonly meant by
consistency in the context of GUI. (It's more a matter of functionality than consistency : you'd
normally expect to speak of consistency between two potentially different things.) For
example, that double-clicking a file icon always opens the file isn't an example of consistency –
it just shows that the file-open operation is encoded as a double-click. You get an example of
consistency if double-clicking anything at all does something quite like opening it.

I was interested in an assertion that Unix had achieved its "power and popularity" "just because
[of] the consistency of" its convention that "everything is treated as a file, a directory is a file, and
[a] print device, [and] a terminal are also files". I remain unsure of the "just because", but there's
something in the rest of it, though I'd have preferred the assertion to have been expressed in
terms of streams. Whether it's a good example is debatable; it's the sort of consistency you can
achieve by refusing to acknowledge any differences – on the level of "all files are character
streams", however much structure they may have. A Macintosh or Windows analogy would be a
convention which treated text and graphics files identically as character streams, and I don't think
that would be regarded as a good consistent user interface.

ANECDOTE : In one answer, the example given for consistency was <Shift-Insert>, which
always means "paste" in Windows. No, it doesn't, I thought, it's <Shift-Insert> in Turbo-C++, but
usually <Control-V>. But, being comparatively inexperienced in Windows, I tried it. The
answer – so far as I could check it – is perfectly correct, but there's nothing visible on the
screen to tell you so. I can't find <Shift-Insert> in the manuals, either. Consistency : good; self-
explanatoriness: dreadful.

Self-explanatoriness is important because it makes the system easier to learn. If a part of the system
is self-explanatory, it offers clues which help one to use it effectively.

A good example of a really self-explanatory operating system is very hard to find. (Self-explanatory
programmes are easier to find, but not what we asked for.) The big difficulty is that "self-explanatory"
means different things depending on where you begin. A really self-explanatory system would explain
itself from the beginning to an "average" person (hermaphrodite, skin patches of all known shades,
speaks Esperanto or Ido, etc., and – fortunately – non-existent). GUI systems commonly have standard
ways of giving help which can be used to make it easy to start using new programmes and techniques,
but they rely on knowing a great deal about the system conventions before you start. Here are two
answers, one appropriate for a specialised (speaking and reading English) average person, and one
appropriate to someone who has already learned to use a GUI.

340 TEST ANSWERS : page 5.

A description of a mythical system, suitable for rank beginners :

The most prominent feature of the keyboard is a large green button clearly labelled HELP. At any
time in a session, pressing the button displays, probably as a menu (ideally on a secondary
screen, so that your current position is not obscured), a list of the actions available to you and an
explanation of what they are and how to do them.

(That isn't a joke. If you know nothing about computer systems, that's about the only way that a
system can tell you what you can do.)

The system is good because help is always available, and does not interfere with what you are
doing. There are no constraints on the information presented, so the help can be as detailed as
required. The special button is independent of any other actions, so is never unsafe; the help is not
forced upon you, so as you become more expert you can stop using it. The button is green because
that conventionally means that it's safe – people are (or should be) wary of pressing red buttons.

A description of a less mythical system, suitable for those with some experience :

The implementation of windows in the Macintosh system is an example of good design.

The standard window provides features with which it can be identified, moved, resized and reshaped,
closed, and made active. Where necessary, scroll bars can be included to move the material of
interest under the window.

This is a good example because, once you know the conventions, they work reliably. Each of the
features has a simple and clearly defined function, is readily recognisable, and almost always
works. (The exceptions are usually due to the software developers, not the system.) Most
important, they work in a direct and obvious way; to resize a window, you move its bottom right
corner to where you want it to be, and so on. (The scroll bars are not quite so obvious : moving
the position marker moves the text in the opposite direction.) If a feature is omitted (usually
scroll bars), it is clear that the corresponding operation isn't available. It is also a good example
because almost all windows conform to the specification; this is a consequence of good(ish)
software support from the manufacturers.

Someone suggested touch-screen systems as a good example of self-explanatoriness. I
agree : most of those I've seen are in fact very good examples – they are very explicit in their
instructions. On the other hand, I don't think I've seen one used as an operating system
interface.

A common example of self-explanatoriness was the "Trash" icon on the Macintosh. (I think the
"Delete" key on the PC is even more self-explanatory ! – but that's by the way.) Someone
very properly pointed out that the self-explanatoriness (can anyone suggest a better name for
that property ?) didn't extend to emptying the trash. That didn't matter on the old systems,
where the trash was automatically cleared quite regularly (which is a reasonable continuation of
the metaphor for city-dwellers), but on later versions it isn't automatic.

Another (less common – only once, so far as I remember) suggestion was the "filing cabinet"
icon used for the Windows file manager, and the answer included a remark that it might be less
easily understood by those unaccustomed to an office environment. That's a significant point,
and it applies to some degree to the Macintosh interface too. (It was inherited from the Star
through the Lisa; the office emphasis is diluted, but the desk is still there.) It is something of a
surprise that this office (or, at least, clerical) metaphor is so readily accepted by people who
don't have that sort of background.

A common type of answer for an example of a well designed self-explanatory feature was "... the
logout command in Unix which does what it implies ...". Which, of course, is perfectly true. It
wasn't what I had in mind (see my specimen), but it fits the question and gets the marks.

340 TEST ANSWERS : page 6.

(b) There are very many possible answers at the detailed level, but the main issues are concerned with the
establishment of communication between the processes, and with the display of the pasted material : if
you copy graphics material into a text file, who is going to display it ? I'll give full marks for evidence
of reasonable understanding of either of these issues and its implications. Three possible answers follow.

I got a little tired of reading that "a picture is worth a thousand words" (usually mildly
misquoted). I know it's in the notes, but in a qualified form (Requirements Specifications,
page 21). Even if it were true, it wouldn't necessarily be useful unless you could guarantee that
the words were relevant. Have you ever read any reviews of art exhibitions ? It would be more
interesting if you could prove that "for any set of 1000 or fewer words, it is possible to compose
a picture which has the same semantic content and which can be understood by anyone who
sees it". Send your proofs to me.

There is nothing in the question to suggest that the two processes are (or are not) running at
the same time. I would expect you to be aware from your experience that material once copied
on the Macintosh (for example) remains in the clipboard until it's replaced by something else
or the system is restarted. (I am not as accustomed to Windows, but an experiment which I have
just performed shows that saved text certainly survives the programme from which it was saved,
so some similar structure must be available.)

So far as I remember, no one seemed to notice that the question isn't simple, and very few
commented on the problems of displaying the copied material. The reason why we urge you to
think about what's happening as you use computers is that, if you do so carefully, you will see
that there are more things going on than appears on the surface.

Rather few people addressed the question of different sorts of data – some explicitly stated
that they assumed all the data were similar, despite the explicit reference in the question to "text
and graphical material".

A significant proportion of the answers contained nothing that wasn't already available in the
separate programmes; cutting and pasting were mentioned, but nothing to do with movement
of material from process to process.

Several answers contained statements of the form "you can't do <x> because it would get
lost" – for example, "if you copy text to the desktop it won't be part of a file". (That isn't a direct
quotation.) If you don't want it to get lost, then it's up to you to decide what should be done
with it – that's part of the question. The Macintosh operating system is not some sacred object
which must not be changed for fear of thunderbolts; this part of the question is about designing
an extension to the operating system, so do so.

There were some odd almost-inconsistencies. For example, a statement in (i) that the system
had to notice the copy instruction and copy data from the display into a special buffer would be
accompanied by a statement in (i i) that the system should provide a procedure which the
programmer could use to copy data into the special buffer.

First answer. This answer maintains a functional system, in that activities of one process don't affect those of
another. It is assumed that this principle should be maintained. It is also assumed that the conversions
will ensure that the pasted material either can be displayed (or otherwise handled, depending on the
programme) by the destination programme or can safely be ignored, so no provision for keeping track of
the originating programme is needed.

(Further post-marking comments apply to all answers, so they're presented at the end. What's
that got to do with postmarks ? Not much, but the comments are frank. Non-philatelists
(phobatelists ?) who don't understand that bit may ignore it without loss of information.)

(i) Identify the task. This is neither copy nor paste – these operations must be implemented by
the programmes looking after the windows. The operating system's job is to transport information
between source and destination. To do so, it must be able to communicate both the copied
information itself (so some global repository must be provided – that's the clipboard in a
Macintosh system), and control information to tell the destination programme what's happening.
The copied information must include all attributes – shapes, sizes, positions, typefaces, layouts,
etc. – needed to reproduce the original.

340 TEST ANSWERS : page 7.

(ii) Application programme interface.

The programmer of the source programme must be able to specify (probably by calling some
system procedure) what material is to be exported, what sort of material it is, and how it is to be
displayed. This requires that the system designers establish (and document, and publish) a
common format which must be observed by all programmers, and – of course – provide the
procedures.

The programmer of the destination programme must be able to determine that there is imported
material to be used, and from where it is available, and it must be possible to get the material
(probably by calling some system procedure) if required. The incoming information must be
sufficiently detailed and well structured that the destination programme can determine whether it
has the facilities to display it as specified, or whether some details (such as typefaces) can be
ignored without damaging the information significantly, or whether there is no chance of
displaying the information as given.

(iii) Step-by-step.

(Items labelled SP, DP, and OS happen in the Source Process, Destination Process, and
Operating System, respectively.)

1 : Some material is selected and copied (SP). The selected material must be exported (SP,
OS). (It would be neater to manage the export only when the process is suspended, but
that would require a "you are about to be suspended" signal (OS) to the process. We
assume that there isn't one.) The export must perform any conversion needed to express
the material according to the established conventions (SP), and copy the material to some
global store (OS). (If it didn't, the material would be lost if the source process were
stopped. That's why a mechanism which defers the export until the paste is required won't
work.)

2 : The source process is suspended (OS).

3 : The destination process is resumed (OS).

4 : An imported paste is requested (DP).

5 : The material is retrieved from the global store (OS), converted to local form if necessary
(DP), and inserted into the local data (DP) as appropriate.

Second answer. This is Macintosh-like, so far as process functionality is concerned. It doesn't maintain a
functional system, in that copy-and-paste operations in different programmes can (and frequently do)
interfere with each other because local and global operations use the same store. It is assumed that this
interference doesn't matter. As before, it is also assumed that no provision for keeping track of the
originating programme is needed.

(i) Identify the task. As before.

(ii) Application programme interface.

The programmers must have access (probably by calling some system procedure) to a global
store for copied data, and must always use it. As before, this requires that the system designers
establish (and document, and publish) a common format which must be observed by all
programmers, and – of course – provide the procedures.

340 TEST ANSWERS : page 8.

(iii) Step-by-step.

(Items labelled SP, DP, and OS happen in the Source Process, Destination Process, and
Operating System, respectively.)

1 : Some material is selected and copied (SP). The selected material is placed in the global
store (SP and OS). The export must perform any conversion needed to express the
material according to the established conventions (SP).

2 : The source process is suspended (OS).

3 : The destination process is resumed (OS).

4 : A paste is requested (DP).

5 : The material is retrieved from the global store (OS), converted to local form (DP), and
inserted into the local data (DP), as appropriate.

Third answer. This concentrates on the display issue. As in the second answer, it is assumed that preserving
functional processes isn't important. It is also assumed that all pasted material should be satisfactorily
displayed, even if the destination programme doesn't know how to do it. This can be achieved in two
ways : either we can insist that all copied material be "compiled" into some low-level form which can
express any material and which can be displayed by a standard module of some sort (translate into
postscript or bit map), or the destination programme must be able to call on the original source
programme – the only entity it knows to be capable of the job – to manage the display. Here we assume
the second of these possibilities, which is more complicated, but better in that it is more likely that the
copied material can retain its original structure rather than be converted into something like a bit map.

(i) Identify the task. As before.

(ii) Application programme interface.

The programmers must have access (probably by calling some system procedure) to a global
store for copied data, and must always use it. As before, this requires that the system designers
establish (and document, and publish) a common format which must be observed by all
programmers, and – of course – provide the procedures. To ensure that material can always be
displayed, the stored data must include the identity of the source programme so that it can be called
upon if necessary to manage the display.

There must be provision in the operating system for the destination programme to call on the
original programme to generate an appropriate display of the pasted material. Perhaps the
minimum requirement is for the source programme to accept the copied material from the
destination programme and return a bit map; the programmer of the source programme must be
able to make system calls which will implement this transaction, and the system conventions
must include a requirement that programmes be able to handle such requests and a standard protocol
for the requests themselves. (It's a minimum requirement, because it only handles the simplest
static case. It won't handle animated material, for example.)

(iii) Step-by-step.

(Items labelled SP, DP, and OS happen in the Source Process, Destination Process, and
Operating System, respectively.)

1 : Some material is selected and copied (SP). The selected material is placed in the global
store (OS). The export must perform any conversion needed to express the material
according to the established conventions (SP); this includes labelling with the identity of
the source programme.

2 : The source process is suspended (OS).

3 : The destination process is resumed (OS).

340 TEST ANSWERS : page 9.

4 : A paste is requested (DP).

5 : The material is retrieved from the global store (OS), converted to local form, and inserted
into the local data, as appropriate (DP).

6 : For display, the destination programme may recognise that it is unable to deal with the
display (DP), and call upon the original programme to construct a display of the pasted
material (SP – but not the same process) and return to the destination programme
(again using some standardised form) for incorporation in the local display (DP).

(i)

Defining a task is not the same as describing it. In a significant number of answers, material
obviously originally intended as the answer to subpart (i) had been renumbered (i i i), where it
was often quite a good answer. To define a task is to decide what must be done; once you know
that, you can work out an implementation, which in turn determines the course of events. This
part of the question was intended to proceed through that sequence.

Several answers included phrases like "the operating system would have to work out which
window things are being copied from". That's upside down : it's the process which deals with
whatever you've selected on the window, works out what it is, and tells the operating system to
accept some chunk of data which is to be transmitted (or, correspondingly, requests whatever
has been transmitted). Just think of how you'd write the programme for (say) a word
processor system.

(This has nothing to do with the question, but it illustrates the point. The incomprehensibility of
graphical displays at the operating systems level is a serious obstacle to people who construct
equivalents of GUIs for blind people. The sensible way to build such an equivalent – called a
Screen Reader – is to collect the information – not the picture – presented on the screen,
and then to present this in a manner more easily understood by blind people. This is where you
want the thousand words, not the picture, and there is no way to work out what the words are.
Screen readers have to manage by trying to interpret the bitmap of the screen. There are moves
to extend the API for graphics packages so that they can export some semantically useful
information as well as useless bitmaps.)

A few people commented on various forms of protection checking – in effect, to determine
whether it was permissible to copy into the destination window. That's a reasonable factor to
consider, and I gave a mark. (Fewer worried about permission to copy from the source
window – as you presumably have permission to look at the material, that's probably reasonable
too.)

(i i)

Many answers included things which had nothing to do with the problem of transport of
information between processes. The system would have to tell the programmes about mouse
clicks and positions on the screen even without the transfer operation.

Rather few people talked about the application programme interface. If you were trying to write
the code for a programme to run in such a system, isn't that what you'd want ? How else would
you get the copied material out of your programme ?

Operating systems are not omniscient, and should not be expected to be. The only entity which
can sensibly check whether it can accept pasted material is the destination programme. If the
operating system must know, then there must be facilities for the operating system to ask the
destination programme. If this were not so, how could you ever introduce a new programme into
the system ?

(i i i)

Many answers included instructions on how to do it, but didn't say what the operating system
was doing. Bearing in mind that 340 is about operating systems, that wasn't enough. That might

340 TEST ANSWERS : page 10.

in some cases be because people hadn't really found anything for the operating system to do in
the earlier parts.

Some people rely on magic. (Most operating systems don't work that way.) It appears from
their descriptions that the operating system knows before it leaves the source process that it will
be asked to paste something in the destination process. Please think about what you're writing.

There are also miraculous but unspecified entities (fairies, perhaps) which do things for you.
"The material from the buffer is inserted into the text ..." : inserted how ? – by what ? (And
note the common assumption that it's text, despite the specification of "text and graphical
material" in the question.)

(c)

I had rather hoped that people would consider topics like consistency and self-explanatoriness
in answering this part of the question as a way of answering the "what should" questions. Most
people ignored the "what should" questions instead.

I was surprised that most people just wrote down an answer without any discussion. There is no
simple answer; like most properties of user interfaces, you have to balance considerations like
consistency and self-explanatoriness to reach a compromise answer. (Even if there were a
simple answer and you wrote it down, how would I know it wasn't just a lucky guess ? Compare
"should one drive on the right or left side of the road ?". I didn't record the answers, but I guess
that the number of people answering part (i) by saying that the icon should appear was of the
same order as the number saying that the contents should appear; that proves nothing, but
suggests that the answer wasn't trivially obvious.) Simple statements that "<x> should
happen", without any justification, were not acceptable; I took them as indications that you
couldn't see the problems. Answers of the form "<x> should happen" with some explanation
or discussion were accepted, though not necessarily with full marks, because they give me
some reason to assume that you're not just guessing.

A surprising number of people demonstrated the futility of user interface design by obviously
believing that what you see on the front of a Macintosh computer was a representation of the
operating system, and not a representation of a desktop ! Phrases like "you can't paste text
onto the desktop because it's the operating system" (not a direct quotation) were not
uncommon. Considering that the operating system is carefully designed to simulate a desktop,
that sounds like failure. If you can't think of it as if it were a desktop, it isn't working. (That's a bit
unfair, because you're experts, and are likely to have a more advanced system genie than most
people; on the other hand, though, being experts, you know that you're supposed to interpret
actions on the screen in terms of the desktop metaphor.)

Several people based their answers on the principle that an icon represents an activity. I can't
assert that this principle is wrong, but I'm not aware of any common system in which it's used.
Icons usually represent objects; activities are more commonly represented by windows. It's
sometimes possible to reduce windows to icons when they aren't being used, but then they're
at best suspended activities. No one has taken issue with our assertion in the notes
(Requirements Specification, page 20) that icons represent objects; if you have examples
which contradict (or, for that matter, reinforce) the notes, please tell us – we can't keep track
of everything !

(i) The answer depends on which principle is taken to prevail in determining the behaviour.

• If the WYSIWYG principle prevails : The picture of the icon should be copied. And that's
like the other copy-and-paste, so consistent.

• If the principle that the icon stands for its denotation prevails : then the icon stands for the
file (or whatever), and operations on the icon imply operations on the file, so pasting the
icon should paste the file. If so, does it mean all the contents (= insert the contents as
instructed), or will a file pointer do (which makes sense for multimedia and hypermedia
files, and can be handled as in the third answer to (b)) ?

340 TEST ANSWERS : page 11.

• Practically : what if the icon denotes a directory, or a device ? (That might sometimes be
all right for multimedia, when a pointer can be used, but is unlikely to be all right for
ordinary files.)

Someone answered "both". My immediate reaction was "no" (followed quickly by "ha ha"),
but that was wrong. In effect, "both" is exactly what happens if you copy an icon (by dragging)
from a desktop into a window representing a directory on a different medium. (And see the
comment on Windows below.) This emphasises yet further that the right answer depends on
the circumstances.

In another good answer, it was suggested that the two possibilities should be distinguished by
different means of selection (clicking the icon or drawing a selection box round it).

Yet another : it's an object-oriented interface, so the window should decide what it ought to do.

Several people said that the icon should appear in the document and convert itself into the file
contents when clicked (which is quite a good answer), but didn't say why (which made it a
bad answer). Some explanation is clearly necessary; there are not very many cases where a
file's icon is replaced by the file contents, so it isn't very consistent.

Others asserted that icons couldn't appear in text. They didn't say why not. Perhaps that's
because there's no reason why not; icons in text are quite common in hypertext documents
(which represent one of the cases mentioned in the previous comment).

What I didn't know when I set the question was that Windows will (at least sometimes) let you
do exactly what I described. (Select a file in the file manager (which isn't quite the desktop,
but the same sort of thing), select "Copy" from the file menu, and use "Copy to clipboard".)
When you paste it into a text document, the icon appears in the document; double-clicking the
icon opens whatever the icon represents in the usual way. This doesn't prove much, nor does it
necessarily define the only possible way to do it, but it does prove that people who answered
that it couldn't be done were wrong.

(ii) For consistency – the inverse of (i).

• If the icon picture is pasted into the file in (i), then file information should form a new
icon picture. It isn't very clear what the icon should do, as it has nothing obvious to
represent; it could sensibly be entered into the same directory as the source file as a "file"
with no contents and no type. Unless there were some other operations on such an entity, it
couldn't do much, but you could copy it back to some other file some time. It becomes a
version of the Macintosh "scrapbook", integrated with the file system instead of as a rather
untidy separate entity.

• If the file contents are pasted in (i), then file information should be placed in a new file
represented on the desktop by an icon. Presumably, and as in a file copy, the new file
should be in the same directory as the original, and the icon should be similar to that of the
parent item, as it's the same sort of material.

• If file pointers are used in (i), there's no inverse, unless it's a pointer that's moved.

Generally, the operating system must make provision to receive the information and do something
sensible with it, which will presumably imply a new file of some sort. (Typically perhaps a
dialogue to determine the context of the resulting thing – which directory it sits in, what type of
file, etc.)

At least two people answered that it shouldn't be allowed, because the desktop was the
operating system's window. But the whole point of the system metaphor is that you shouldn't
think about the operating system : if I want to tear a page out of a book, or photocopy it, and put
the page or copy on the desktop, why shouldn't I ? (- leaving out questions of vandalism and
the ownership of the book.)

Few people included any account of what happened to the moved information and how the
system maintained it on the desktop. It must be linked into something somehow – you can't just

340 TEST ANSWERS : page 12.

write it on the screen and leave it there. I didn't worry about the omission for marking, and it isn't
implied by analogy with part (i), but the situation is rather different – in part (i) it was clear that
the transplanted material would have to be linked to the rest of the material in the window in
some way determined by the programme managing the window, but in this part there is no such
obvious answer.

(iii) In most cases, a fairly consistent system is achievable, but the biggest difficulty is in resolving
the contending possibilities for the treatment of an icon. This is a real ambiguity in GUI systems
which (to the best of our knowledge) is never sorted out. The anomalies are very clear in the
Macintosh system, where you can cut and paste, or edit, the file name as text, but you can't do
anything similar with the icon. As the icon is, in essence, just a pictorial file name, this is quite
inconsistent.

Notice an elegant feature : if copying the icon means "copy contents", then copying and
pasting an icon from desktop to desktop copies the file, thereby integrating data copy-and-

paste with file copy. Maybe that's a step towards a smaller system genie ?

I asked for a comment on the achievable consistency – not the consistency of the answers
you'd given to (i) and (i i).

__

QUESTION 3.

This question really wasn't done well.

(a) Any new processes are going to have to be given capabilities to perform basic tasks such as creating files
when they are started. The capabilities could be inherited from the process which created the new process
or from the capabilities of the owner of the process. In some cases it makes sense for the capabilities to
be explicitly stated, giving the creating process control over the rights of the new process. In other cases,
such as being able to create files, it makes sense to have this right passed on implicitly. The capability to
create files should only provide the right to create files in directories accessible to the owner of the
process. Since the create files capability is either the same as the owner's or is a reduced version of these
the safety of file directories is guaranteed.

Apart from the substantial number of people who refused to talk about capabilities in their
answer, most people did not seem to understand how capabilities function or why any system
would bother to use them. A common answer was that before creating a file the process would
ask the system for the capability to perform this task. Then the capability would be passed back
to the system along with the request to create the file. Possibly a confusion between the
capability to create objects of this type, and the capability of working with this particular object.
The only problem with this approach is that it doesn't use the qualities of capabilities. If the
system is going to be asked to provide a capability as the capability is about to be used, what is
the difference from a system which checks a subject's rights to create a file without capabilities?
In both cases some other method of protection is being used to provide the basic rights.

Some people correctly talked of the user database as being one possible source for original
capability information. Unfortunately most then reverted to the discussion outlined above. A
better answer would be that the capabilities stored in the user database would automatically be
given to any processes started by that user.

More than one person gave an answer about object-oriented file systems. The word "object"
means something completely different when we are talking about "subjects" and "objects" and
security.

(b) Capabilities are created by concatenating the object identification with the required access rights and then
concatenating an encrypted checksum of this data to stop tampering. In Amœba the object identification is
two numbers, one identifying the server (48 bits) and the other number identifying the object (24 bits).
The access rights are stored as 8 bits. The encryption algorithm must be secret, it generates an extra 48
bits of check. When a capability is presented to perform a task, the encryption algorithm recalculates the
identification and the rights and checks this against the stored checksum. Only if the answers agree is the

340 TEST ANSWERS : page 13.

task carried out. This means that capabilities cannot be altered. Any change in the capability requires a
corresponding change in the encrypted field, and the encryption algorithm is supposed to 1) be secret and
2) be "very difficult" to reverse engineer. This method does not stop somebody else getting hold of your
capability and using it. But the passing around of capabilities is one of the "advantages" of using them.

Not many people appeared to have read the notes, or if they had, they certainly didn't
understand them. A common misunderstanding was that files were encrypted rather than
capabilities. This led people to believe that it didn't matter if files were read because they
couldn't be understood. The capability system is designed to allow access only to those
subjects with the required capability.

(c) Even though it is possible to find a valid capability it is very unlikely. We assume that the encryption
algorithm gives a very good distribution of numbers, every bit sequence is equally as likely. Then if the
attempted capability forger can generate, transmit and verify the result of a capability every microsecond it
would take 248 microseconds just to generate all of the possible values.

248 microseconds ~ 228 seconds
228 seconds > 256 million seconds > 4.2 million minutes = 70000 hours > 2800 days
(actually 3258 days)

So on average it would take more than 1000 days to "guess" the required capability. Which is a long
enough period of time to hope that no one would try to do this. Two further points need to be made. If
the capability system didn't warn the system's administrator that someone was attempting to breach
security, then the design is sorely amiss. Secondly as machines get faster we are going to have to increase
the number of bits. We could postulate a million fold increase in speed, which reduces the average testing
time to about 2 minutes. In fact later versions of Amœba have doubled the size of the capabilities.

We intended the simple calculation to be more than stating the obvious (248 different
combinations). Most people made statements such as "it would take forever to find the correct
sequence of bits"; as you can see from the answer we really wanted an estimate of how long. By
now you should have some idea of how fast computers work. In the answer we have assumed a
very fast machine, because this shows the greatest weakness to the technique. Even if your
estimate differed by several factors of 10 you would have got the marks.

Some people commented on how easy it would be for the system to change the encrypted
information, thus making it more difficult to guess the right answer. Unfortunately it is not a trivial
matter to alter capabilities, because all legitimate users have to get the new capability, otherwise
their legal access is denied.

__

QUESTION 4.

(a) (i) Slower access because of having to continually read directories, especially if the required files are
deep in a file hierarchy. There may be a file cache which holds recent file blocks; this would speed
up access to frequently referenced directories. Has very low memory overhead. Easy to maintain
consistency as directories are written back to disk frequently. Little difficulty in adding or removing
file systems.

(ii) Slows down startup, but all file descriptor searches are then entirely in memory and hence fast.
(In a virtual memory system there would be some slow down for rarely referenced directories as
they will have been paged out.) Depending on the size of the system, this could be a very large
amount of information. For many systems it would be an acceptable size (50 users with 100
files, each file directory entry of size 100 bytes gives half a Meg, and then double that for all the
system files (on UNIX anyway)). Since all references for directory information are made in
memory we need to ensure that changes are reflected to disk. More difficult to add file systems (all
the directory information for the new file system must be loaded). Maintaining consistency
between shared file systems is much more difficult.

340 TEST ANSWERS : page 14.

Almost everyone said that (i) was more memory efficient and slower than (i i). More marks were
given for better explanations. Only a few people mentioned the differences at start-up and no
one mentioned sharing the file system between several machines and similar difficulties.

Several people got confused about the protection aspects of these approaches. Because we
mentioned writing back to disk if changed in (i) some thought that (i i) didn't do this. Others
thought that (i i) was more secure because it was maintained both in memory and on disk.

Unfortunately some people thought that all files (not just directories) were read into memory
as the system started. Please read the questions carefully.

(b) In this answer I am assuming that apart from the length of the filenames we have a typical hierarchically
structured file system, with arbitrary nesting, and that directory names are treated as other file names.

Advantages for the user – no restriction on descriptive naming of files. The filename could include notes
the user might want associated with the file which are not of the same type as the file contents. The user
could include arbitrary keywords, making the filename a useful search tool.

Disadvantages for the user – if long filenames have been used then having to remember and type them or
select them from a list (the pathnames could be even worse). Slower response time, as searching for a
particular file could take much longer, e.g. using a "find" command to find a file with a particular string
of characters in its name. The whole idea of having a filename is to give a convenient handle to retrieve
the information the file contains; filenames which are too long violate this principle.

From the system's point of view there are two different things going on. Because we are allowing
filenames of any length we can no longer store the names in constant sized arrays. This is a separate
issue from having flexible length filenames. Flexible length filenames can be stored in constant sized
arrays (as long as we have a maximum length) or in variable sized arrays (even with a maximum
length). This latter method is how some UNIX systems do it. So some of the following advantages and
difficulties occur in systems with restrictions on the length of filenames.

Advantages for the system. It is possible that with flexible length filenames, the average length of a
filename will be smaller than a preset inflexible maximum size, thus saving space.

Disadvantages for the system. Without a maximum size, all file table entries, whether on secondary
storage or in memory have to be able to grow to an unlimited extent. Displays of filenames will have to
be flexible, being able to cope with screenfuls of information for single filenames, or else abbreviating
them. This means the displayed sections of different filenames may not be unique. (This consequence for
the system is also a disadvantage for the user.)

Not only do directory structures have to grow (and contract) as the number of files changes as with a
limited filename length system, but a directory holding the information for only one file could be of any
size.

Regardless of how we implement our directory entries, maintaining the name space after file moves and
renames will be more complicated. With fixed size names, directory entries could simply be reused, or
marked as empty for later use.

Very few people thought deeply about this question. A typical answer said it was great for the
users because they could use whatever name they wanted, and that it was bad for the system
because of the vast amount of space the names would take up. More analysis of the situation
was required to get good marks. As an example you should have asked yourself, why is it an
advantage for the users to be able to call files anything they like, how might this facility be used?

Some people couldn't quite believe the question. They talked about how it wouldn't work
because the system would have limits on the size of filenames and these limits would be
overflowed by names that were too large. In a similar vein were the answers which talked about
running out of memory (both primary and secondary) with huge filenames. Since we don't
normally worry about running out of space with our files (of course it does happen, but our
system administrators give us warning, and we apply for a bigger disk drive) why should we
worry about running out of space with our filenames?

340 TEST ANSWERS : page 15.

(c) The advantage of (almost) unrestricted naming can still be achieved with a maximum length (the
length of an average sentence would suffice). Rarely do I need more than the 31 characters the Mac file
system allows. A real limit of 1 or 2 hundred characters should be ample.

For adding notes about the file, a separate note system could be added. The note could be a (usually)
small file, accessible from the directory entry. (Perhaps a third file fork – data, resource, notes.) The
Macintosh allows you to add notes to files, however these are stored in the desktop file and they are lost
when you rebuild the desktop.

In a similar manner keyword lists could be associated with the file in a separate structure.

Hiearchical directories were a very popular solution to this problem. There was nothing in the
question which indicated that we didn't already have them. In fact directories are mentioned
throughout the question and traversing directories is explicitly referred to. The advantages and
disadvantages most people referred to also exist under a hierarchical directory structure. It is
true that the organisation and naming of pathnames leading to a file could include the
information from a long filename, however, some of the uses we may put a long filename to
would not be appropriate for parts of a complete pathname.

Another common answer was to use two filenames, one for the system to use, which has a
limited length, and an unlimited length filename for the user to use. Some of these methods
were impossible, most didn't solve the problem and others solved problems but without
mentioning the new problems they caused, in particular non-unique naming of files.

Related to these were the answers which compressed the filename. First of all the number of
bits required to store compressed data grows as the data grows (with some exceptions).
Secondly, searching for information may get slower (it depends on the relative speeds of
decrypting and i/o).

The question does not assume any particular method of implementing the long filenames.
Hence a peculiar implementation was not a satisfactory answer to this section. All
implementations people came up with suffered from some of the disadvantages mentioned in
part (b).

Robert Sheehan and Alan Creak,
July, 1995.

