
Computer Science 340

Operating Systems

FIRST TEST, 1992 : Answers

These are not the only possible answers, nor necessarily the best ones. They are the best I
can think of under a very crude approximation to examination conditions; and they are far
more extensive than I expect anyone to produce in the test itself.

Most material in italic type was added after marking the test.

__

A general comment : There are very few "correct answers" to any questions connected with operating
systems. Even if there were, the answers would probably change as the technological base extended. If all
the questions had simple and straightforward answers, I could set you a multiple choice test and save
myself many unexciting hours of marking. (I probably wouldn't, though, as I think anything requiring
stock answers is quite inappropriate for a stage 3 course.) Because of the absence of easy answers, it's
important that you have some understanding of the factors involved so that you are able to reevaluate the
answers when circumstances change. This is the sort of ability which I try to get at in the tests and the
examination.

I have my own opinions, of which you will doubtless be aware. I know that they are opinions, though,
and do not expect you to accept them uncritically. Unless there is a clear answer, I don't much care what
you believe - for example, I don't care whether you are a rabid graphical interfacer or whether you would
happily consign all graphical interfaces to perdition. I do care whether you have thought about the merits
of different sorts of interface, and have good reasons for your beliefs, and can explain them when requested
to do so.

There were 15 marks for each question.

If you think of an example which seems to answer a question, it is a good idea to ask yourself whether it
is just one example of a more general, and therefore often more significant, phenomenon. For example,
that one icon can be placed on top of another one, completely hiding it, is a nuisance; the general
principle that this sort of hiding will always be possible if you have "opaque" objects on the screen which
can be moved about at will is more interesting if you're looking for general properties of graphical
interfaces, for it suggests general solutions. (Either make the system move potentially obsuring objects a
little, or make objects slightly transparent, which so far as I know is a brand new thought which has only
occurred to me because I looked for the general statement. QED)

And now, a word from our sponsors, the Council for Restoring English AsI Knewit :

There are no marks for spelling, grammar, or punctuation, but I correct mistakes if I see
any. If no one ever tells you, you may never know. I accept both English and American
spelling.

(All the following comments refer to mistakes made by at least two people, so don't take
them personally.)

• The abbreviated form of "they are" is "they're".
• The abbreviated form of "you are" is "you're".
• "Available" is spelt "available".
• "Basically" is spelt "basically".
• "Explanatory" is spelt "explanatory", just as it was on the test paper.
• "Privilege" is spelt "privilege".
• "Receive" is spelt "receive".

340 FIRST TEST answers : page 2.

• "Their" means "belonging to them"; "there" means "in that place"; "they're" : see
above. ("Th'air" is occasionally used in rather affected poetry to mean "the air"; I
don't think that has anything to do with the test, but I add it for completeness.)

• "Its" means "of it"; "it's" is an abbreviated form of "it is".

One person appeared to think it was a 310 test; another thought 320, which is even cleverer.

__

QUESTION 1.

"Comment" can cover all manner of things : you can enlarge on the question, distinguish between
different cases, support it or attack it, analyse it, explain it, and so on. They all require a measure
of thought, and that's what I wanted in the answers. I didn't always get it. It seems that a number
of people accept the superiority of the graphical interface as revealed truth, and do not wish to risk
confusion by thinking about it.

I didn't expect answers of anything remotely approaching the length of this specimen. I gave full marks
for two or three good points, or one or two very good points, of the many which could be made.
Rather less than full marks usually means that I thought you made good points, but could have
worked them out more carefully. Around half marks or below usually means that I thought either
that you were wrong in fact or in inference, or that you should have covered more ground in some
way.

"Using the Macintosh and Unix systems as examples" isn't the same as "Consider only Macintosh and
Unix systems in your answer". It's not sound argument to condemn all textual interfaces because
the Unix shell language is dreadful. It's also worth bearing in mind that quite a lot of people think
that the Unix shell language is marvellous.

I don't discuss menus in my answer, mainly because I didn't think of it. That's because I intended the
question to be about operating system interfaces, and I hardly ever use the Finder menus. Many
people did write about menus, which I accepted, for they are certainly important even if the
Macintosh system doesn't make much use of them. (A passing thought : the authors of the
Macintosh system have gone to some lengths to avoid nasty technical words like "file". So why
does the Finder have a "File" menu ?)

In quite a number of answers to (a), it wasn't clear whether points made were supposed to be about
assertion (i) or assertion (ii).

The restriction "for operating systems " means that I only have to talk about using the interface to give
operating system instructions; this is not a question about GUIs generally. With both sorts of interface,
the same information must somehow be conveyed to the operating system, so the major difference is in
the amount of "predigestion" which can easily be handled by the system.

(a)

(i) graphical interfaces for operating systems are more self-explanatory than
textual interfaces;

Textual interfaces : Rarely give any indication of what you can do; typically require that you
know exactly what software you want to use, the names of any file(s) you wish to work
on, and details of parts of the instructions which affect the way in which each operation is
performed.

As nothing is presented, it is impossible to show distinctions between different sorts
of operation; while some (mainly older) systems required xxx to execute the system

340 FIRST TEST answers : page 3.

instruction x x x and run yyy to execute the non-system programme y y y, this was more of
an added complication than a helpful feature.

It is easy to make a textual interface very bad indeed, by not taking care to use
sensible names for instructions and files, and by hiding useful functions in obscure
parameters.

Graphical interfaces : Provided that there are not too many possibilities, a graphical interface can
show you much of what you can do at any time by displaying icons on the screen to
represent various system facilities and files which are available to you, and which you
would have to request through the keyboard in a textual system. It is also possible easily to
distinguish between different sorts of action - so as well as representing non-system
programmes and files by icons, there can be a menu bar for system administration tasks.

It is sometimes suggested that the icons themselves can convey much useful
information. (The suggestion is usually followed by a remark that "a picture is worth a
thousand words", or more commonly a garbled version of that proverbial saying.) I am not
persuaded that this is true. A very few of the icons I have seen have really been self-
explanatory; and most of my windows rapidly fill up with identical icons representing
word-processor documents. (Or, rather, they would if I ever used the icons.) It is much
harder to make your own icons for files than to make your own names, and to make the
icons represent their contents in any useful way requires a significant level of skill in
graphic design, which few people have. (If they did, we wouldn't be continually pestered
by competitions to design logograms for all manner of organisations which presumably
have nothing better to do. Some pictures may be worth a thousand words, but it doesn't
follow that they all are.)

There is more merit in the suggestion that you can represent useful information in
the arrangement of icons on the screen. In practice, though, it doesn't seem to be done
much; I don't think that any of the windows which I've seen has been laid out in any
significant way. That's not to say that it wouldn't work, though.

While there is no reason why a textual interface can't be made to give you lots of information, the
custom is not to. It would be perfectly straightforward to arrange a textual system to show lists of
files in the current directory, classified as programmes and data, and of available system
instructions as part of the tidying-up operations which go on at the end of each programme.

The textual interfaces therefore don't have to be any less informative than the graphical
ones; the question is, why in fact are they ? The answer is a combination of history and
economics. History contributed both an expectation that people who used computers would know a
lot about them, and the teletype. The teletype was slow, and to present anything resembling a
menu after each step in a session would have been intolerable. Communications lines weren't
particularly fast, either, and a screenful of characters (once we got screens) could take a
significant time to transmit and display. Economics said we couldn't afford to buy faster
communications lines, so we put up with slow ones, and minimal text displays.

In fact, the distinction between "textual" and "graphical" interfaces is not in itself
particularly significant. Even a textual interface using a display restricted to characters instead of
full graphics is not greatly limited; provided the speeds of the hardware and communications are
comparable, you can do just the same things with the character display as with the graphics -
except that you can't have icons. If I'm correct in supposing that the icons themselves contribute
rather little to the "self-explanatoriness" of the interface, then the original statement must be
rejected.

A more significant distinction is that between the old purely serial displays - teletypes and
their screen equivalents - where characters can only be presented on the current line (sometimes
without even permitting backspaces), and displays in which any point on the screen can be

340 FIRST TEST answers : page 4.

addressed at any time. Once full-screen addressing is possible, the two-dimensional screen interface
can be exploited even if only characters can be displayed. Many sophisticated forms packages were
developed for addressable character screens, and they worked very well indeed. (They still do.) For
the rest of the question, I shall use "textual" and "graphics" to distinguish between the serial and
addressable displays.

A gratifyingly large proportion of people did write "a picture is worth a thousand words",
though not many were garbled. Well done ! (It was less encouraging that quite a few
of those who quoted the proverb seemed to regard it as some sort of axiom -
 therefore , they said, a graphical interface is more self-explanatory.)

Someone remarked on the uniformity presented by the graphical interface, arguing that it
made all operations easier to use, and that the conventions established helped to
make the whole interface more self-explanatory. It's a good point, and the basis of
ideas about the system Genie; but for a complete answer to the question you also
have to ask why similar conventions couldn't be established for a textual interface.

Another point is that overall consistency is important; icons should always behave in the
same way, even when displayed in windows that don't represent directories.

There seems to be a widespread opinion that you don't have to remember anything once you
have a graphical interface. In fact, you may not have to remember the names of files
so much, but you have to remember many more sorts of activity than you do with a
textual interface - click, double click (or other mouse buttons), drag, drag to trash,
selecting (text and icons), and so on.

One part of learning is easier with a graphics interface : you can learn the set of useful
actions by watching someone else do it. This does make it easier to learn what it's
sensible to try, and also that you won't get bitten if you do something silly. All you
learn by watching someone use a text terminal is that you proceed by typing.

A good answer (only slightly paraphrased) : no, it isn't self-explanatory, but given a menu
bar, some windows, and a collection of folders, then you should be able to get going
with a bit of trial and error. I think that's related to another suggestion that the good
thing about a graphical interface was that you didn't have to remember syntax .

A complementary point of view was put in some other answers. If you sit a real novice in
front of an interface of either sort, it's fairly probable that nothing useful would
happen in any reasonable time. Both of them need some learning. But I don't think
that's really what "self-explanatory" means; we don't say that some written document
isn't self-explanatory because it would be no help to people who can't read or don't
understand English. We assume basic competence in using the medium in question.

Even a textual interface is a sort of metaphor : think of it as a "slave" metaphor. You give
instructions to an agent which you expect to do exactly as instructed. That's fairly
close to the basic computer, but not many basic computers can understand even the
mangled human language implemented by the Unix shells. It is a metaphor; the
observation that so much computer input and output looks at least comprehensible
prompted many people to believe that the system could understand English, and that
all you had to do was to ask it questions.

Someone - very properly - made an interesting attempt to define a criterion for assessment.
The idea was to measure "self-explanatoriness" by the time it takes to "understand
and use" a system, which in turn is defined as having sufficient knowledge to use the
system confidently. (I would have said having acquired an adequate system Genie.)
Think about it.

340 FIRST TEST answers : page 5.

One interesting illustration that turned up a few times was assertion that the presence of the
disc icons on the Macintosh interface showed you that your disc was in the machine.
It would be a better illustration if it were true. Try ejecting using the Special menu.

Dialogue boxes are rather close to text.

Graphical interfaces rely less on words, and therefore less on fluent English. (I think that's
one of the best arguments I've heard for graphical interfaces !)

Most people took "self-explanatory" to mean "helpful in showing what you can do", which
is how I intended it to be taken. One took it to mean "effective in showing the state
of the system", which isn't what I meant, but I accepted it.

But nothing is as simple as it seems : someone suggested that a textual interface was more
self-explanatory because, as there was only one thing you could do with it (press a
key), you couldn't go wrong, whereas there were several different possibilities with
a graphical interface - press a key on the keyboard, move the mouse, press the mouse
button. See remarks above about assuming basic competence.

Someone, somewhere, has done a magnificent publicity job for the Macintosh icons. Many
people remarked that "you can tell what sort of file it is by looking at the icon".
That's true, more or less. But why do you want to know ? All you do is click it
anyway. It's much more use to me to distinguish between two files called 340 Test
and 340 Test Answers than to know that I have two Word text files.

One or two people wrote (often following the stuff about the Xerox Star) of the icons
 becoming the files, or the display becoming reality. I suggest that such views are
very sloppy thinking. If a few illuminated pixels on a screen which spell a name
don't "become" a file, then how is it that a few illuminated pixels on a screen which
form an icon do ? Computers are much too insidious for any such carelessness to be
safe; there are already far too many people about who can't distinguish fact from
fiction.

Another common belief is that a graphical interface somehow relieves you of the need to
know how the system works. Try asking a random selection of people who use MS-
DOS how it works; most of them don't know. They find their ways through the
operating system bits by following recipes - "Just type these things and it will
work". Note that the recipes do work; I've seen someone trying to follow a recipe on
a Macintosh, and being quite lost because (I think) an icon had been moved off
screen.

You have to be fair. There was a tendency in some answers to compare a Macintosh
interface used by someone with some experience of it with a Unix interface used by a
rank beginner.

You may care to reflect on just how self-explanatory the Macintosh interface was when you
tried to read my Word and MacWrite files.

(ii) i t is easier to select an action using a graphical interface than with a textual
interface.

Textual interfaces : you usually have to specify the names of the programme and files you want to
use, and perhaps additional bits which affect the details of what happens. Everything is done
by poking keys. There is no physical limit on the number of actions which can be
simultaneously available.

340 FIRST TEST answers : page 6.

Graphical interfaces : You communicate your wishes to the computer primarily by a sequence of
selection actions of some sort; any variants must be handled within the software. The
selection usually requires that you use a mouse to position a pointer of some sort, then
issue a signal - typically a "click". If the screen becomes too cluttered, it's hard to find the
icon you want.

So which is the easier ? That depends on you, and on what you're trying to do.

You : The better you can type, the easier it is to use a textual interface. It's significant that many
people move from the mouse to the keyboard alternatives once they become accustomed to
the Macintosh; unfortunately the keyboard alternatives are usually combinations of one
character key with one or two special keys, and have all the valuable mnemonic properties
of the Unix shell instructions.

The problems posed by graphical interfaces to people with poor vision are covered in
the other part of the question, but there are others. The less physical dexterity you have, the
harder it is to use a graphical interface. For many people who don't have good control of
what their hands do, the marvellous new graphical interfaces represented a great leap
backwards. You can use a keyboard if you can get your hand to about the right position and
stab (though shift keys can be awkward); you can't use a mouse effectively unless you
have reasonably good "fine motor control" to control the pointer fairly precisely.

For the majority, who don't type too well, and have adequate control over their
hands, the graphical interfaces undoubtedly have advantages. The screen becomes an
extension to the keyboard, with some number (but probably not more than 20 or so, even
on a large screen) of keys each of which selects a single action.

What you are trying to do : The magic of the graphical interface only works if the action
you want is visible on the screen. If it isn't, then you have to go back to remembering
where to find the required object just as you do with the textual interface. This is not an
easy problem to solve. Unless you are interested in only a rather small number of
activities, the screen will be too small; then you have to choose between putting too many
icons on a small screen, using a window larger than the screen, and - probably best, but
still losing the immediate presentation of all possibilities - imposing some sort of
hierarchic classification on the activities, such as the Macintosh "folders".

Once again, the conventionally formed question is misleading. The significant distinction here is
that between interfaces which require that instructions be entered in textual form through the
keyboard, and those in which there are means to select an instruction already displayed (or readily
available through some conventional means such as pulling down a menu) on the screen. This is
commonly implemented by using a mouse, though you may find it informative to think about
alternatives, such as cursor keys, joystick, light pen, touch screen, trackball, or eye-gaze detector.

Notice that not only selection by clicking is important : compare the Unix wildcard
characters with the Macintosh interface's rough equivalent of drawing a box round several icons.

A good point : simple actions are easy with a graphical interface, but how do you manage
more complicated things like file redirection ?

A lot of people said that selection with a graphical interface was easy, but didn't say
anything about what you did if you couldn't see the icon you wanted.

Despite my warning, quite a few people put material more appropriate to question 2 here. It
was usually wrong, too : not all graphical interfaces require you to select the object
to be worked on rather than the programme which does the work.

340 FIRST TEST answers : page 7.

A surprising number of people chose copying files as an example of an operation which is
easier with a graphical interface than with a textual interface. It can in fact be quite
messy; with a Macintosh, unless you're copying to a different disc, you have to
select the file, choose "Duplicate" from the File menu (or enter D), drag the new
icon to where it should be, then - unless you're happy with "Copy of X" - rename it.
Compare "cp X d". (Exactly one person described copying correctly - but that isn't
to say that others didn't know about it.)

And several people thought it "more natural" to drag icons than to give the instruction - but
don't you ever ask people to do things for you ? I move things on my desktop, but I
never copy then there (except on rare occasions, very approximately, and very
laboriously), though I quite often ask people to copy things for me. This isn't
meant as nitpicking - I knew what they meant, and marked accordingly - but just as a
suggestion that things are not nearly as clear cut as some of you seem to think.
Don't believe what you read in Macintosh (or Unix) books (or in lecturers'
comments on tests, for that matter) without thinking about it first.

There was widespread confidence that the graphical interface is easier because you can see
everything on the screen. I just don't believe it. I have an A3 screen which I tile
fairly carefully to avoid accidental window overlaps, and I still don't have space to
display more than a fraction of the files I need to work with. Perhaps the graphical
interface is easier for people who have hardly anything to do ?

Many answers to both (i) and (ii) made the very sensible point that one's response to
claims like those presented in the question depends strongly on one's background and
experience. We all have a tendency to like what we know, even if it's Unix, and to
regard new ideas with reserve. It is even just possible that what I fondly believe to be
my unbiased and objective views on the relative merits of various sorts of interface,
derived through many years of thought and careful analysis, may not be quite as
unbiased and objective as I think.

(b) "Soundstation"

(i) The interface as described is far from self-explanatory - indeed, unless you move the pointer
around, it conveys no information at all. Even moving the pointer may or may not convey
information, depending on whether or not the pointer happens to touch in "earcon". To
make it work at all, one would need a way of sounding all the available "earcons" -
probably sequentially rather than simultaneously ! - to find out what and where they were.

Though a large number of distinguishable sounds with recognisable characteristics
can be produced by exploiting musical pitch, rhythm, timbre, and so on, it is even harder to
produce self-explanatory sounds than self-explanatory icons. It is possible to speak each
item's name as its "earcon", but this can take significantly longer than is desirable.
(Though it's an important secondary facility.) Grouping can still be effective.

(ii) The important differences between (human - assumed throughout) eyes and ears as
devices to locate objects are that eyes are more precise, and they can attend to one object
among many others simultaneously visible. Provided that the Soundstation "screen" is
made large enough (it's an advantage that it doesn't have to be physical), it's easy enough
to identify at least nine distinct directions on a 3 x 3 grid, and selecting one of these with a
mouse-driven pointer would be reasonably straightforward.

Selection becomes more difficult as the Soundspace becomes more congested; it
would be useful to be able to select a location, then to sound the "earcons" of nearby items
in sequence and to select the desired item as it was sounded.

340 FIRST TEST answers : page 8.

This part of the question was answered rather well. Most people found something sensible
to say, and most agreed that the Soundstation isn't very impressive as decribed in the
question. I think most identified some deficiency; a few went on to suggest how the
deficiency could be remedied. It was clear that there was a general understanding of
what the interface was supposed to do, and a sound (NOT intended as a pun) critical
attitude towards the proposal.

One person in effect declined to answer the question on the grounds that it was impossible
for a sighted person to judge the effectiveness of an interface designed for people who
cannot see well. There is an important principle involved here, and I shall go into it
in a little detail.

The basic point made is valid. I cannot tell just what it is like to be unable to
see reasonably well. (I am slightly myopic, but certainly not sufficiently to get any
practical idea of seriously impaired vision.) By the same token, though, I cannot tell
just what it is like to be enthusiastic about graphical interfaces, and I don't feel too
inhibited about discussing them. The analogy is not trivial; the point is that we are
all different, and if you decline to discuss situations about which you don't have
personal experience you will find little enough to talk about.

The other side of the coin is that we all have much in common : we are all
human, with broadly similar emotions, desires, and thoughts, and we do not in our
daily lives assume that all other people are completely unknown quantities. We
accept the differences, and use our imaginations and our intellects to try to see the
world from someone else's point of view if we need to. We can thereby come to
some conclusions on behalf of other people. The dangerous step is then to put those
conclusions into practice without seeking the opinions of the people whom they
will affect; we must not forget the differences, but we must also not forget that
because of them our conclusions will be approximate.

If you refuse to offer your opinion, then you are in effect depriving people
without your knowledge, experience, and understanding of access to your knowledge,
experience, and understanding. There are lots of people who have special needs of one
sort or another and who want to use computers, but who have no idea of what's
possible or of the questions which they should be asking. If they are to use
computing effectively, then the people who do know - us - have to take the first
step, and make suggestions. Following the foregoing remarks, we shall certainly
express our suggestions by saying "Would it be a good idea if ... ?" rather than
"What you need is". (You may then find that they don't understand - through
unfamiliarity with the technology rather than stupidity - so you have to provide a
prototype before you can get any further.)

So far as this test question is concerned, the system has been designed. I asked
you to apply your expertise on user interfaces to the proposal. Certainly your
answers would need vetting by people who could speak for the intended community
of users, but they have to have something to vet. Perhaps if the people who designed
the Unix shell interface had taken the trouble to do the same, they'd have produced
something rather less open to criticism. (Actually, that's a bit unfair : they may
well have asked around a little, but the original version was never intended for a
universal clientele.)

Some people wandered from the point a little. There was concern as to whether other
activities could be managed. Just to set your minds at rest :

• Blind people have been touch typing just as well as anyone else for decades.
• For text output, Braille printers have been available for a long time, and

speech synthesisers are now widely used.

340 FIRST TEST answers : page 9.

• True graphical output is much harder to manage, and still experimental.
• It really is possible to generate a wide range of distinguishable short sound

sequences. Armies and navies got along for a long time with bugle calls and
bosun's whistles without insisting that all their personnel should have a
degree in music.

• "Tone-deafness" does not seem to be a problem in practice.

Several people thought that a textual interface with speech synthesiser would be better than
the Soundstation. That was perfectly acceptableas part of the answer to the question,
but it's worth making the point that you may not have the choice. If your employer
expects you to use a Macintosh, what do you do ?

How do you implement menus ? It's a good question, for which I have no snappy answer.
Perhaps a more realistic one would ask how you manage without menus. Do you
need them ? What sort of alternative is there ? (I have no snappy answers to those
questions either, but it's a sound design approach.)

Someone pointed out that the Soundstation was designed to provide the same system Genie
as the conventional graphical interface.

Several people were concerned that it would be hard to associate arbitrary sounds with items
of software. I haven't tried it. But I don't suppose it's very different from
remembering arbitrary control and escape codes, which people seem to manage well
enough; and if you want to use an editor, it may be even easier to remember that it
sounds like a descending major seventh broken chord played on a zither than that it's
spelt "vi".

A rather pleasing idea was to identify the current window by distinctive background music.

__

QUESTION 2.

(a) Explain what is meant by

The "metaphor" is the way we think (or are intended to think) about the behaviour of the
system. With the "desktop metaphor", we think of the system as behaving, in some respects, like
a desktop, while with the "tools metaphor" we think of a kit of tools available for use.

Metaphors have become more important as computers have become cheaper, and have
therefore been used more and more by people with little or no knowledge of how the machines or
the operating systems work. The theory is that it is easier to explain how to use the system if it
behaves more or less like something with which people are already familiar than it is to explain
the system's internal workings.

This was more or less bookwork, and most people reproduced the party line more or less
adequately. A number of people went to considerable trouble to describe the desktop
and tools metaphors, though I didn't ask you to, and many didn't tell me why
metaphors are now thought important whereas once they weren't.

There were two common variant answers.

• One was that the metaphors are thought important now because we can now
afford to spend computer power on matters not directly related to getting the
work done. That's obviously a factor, but I don't think it's the answer. Once
the interactive systems came along, people who used computers were very
happy with the old-fashioned interfaces, and people who didn't use computers

340 FIRST TEST answers : page 10.

accepted that they'd have to learn. Cheaper hardware was usually seen as an
opportunity to run yet more terminals from your even bigger mainframe.
Even when microprocessors made it possible to build clever terminals, the
idea was to make the old model run better.

• The second variant was the economic answer : we're interested in metaphors
because it sells more computers. That's a rather more cynical view of the
world, and I think it's also wrong. The economic factors might perhaps
explain why there are such a lot of desktoppy interfaces about, but a lot of
the early ideas came from work designed to produce - in effect - operating
system interfaces for children. The Xerox Star and Smalltalk grew up more or
less together from work on how best to use computers in education.

I don't think that you can get away without somewhere including the idea of making
computers easier to use. Of course, it may well be that you want them to be easier
to use in order to sell more computers, but that's a second step in the argument.

Another answer which hadn't occurred to me before, but which is obviously correct once
you think about it, was that the metaphor is now thought to be important simply
because people expect it. (Which is to say that you won't sell many computers if
you don't provide some fancy windowy interface.) That's the same reason why
almost all cars have their controls in more or less the same positions, which is
probably not too bad, and almost all English typewriter keyboards begin QWERTY,
which is well known to be an inefficient design.

(b) It is appropriate to look at the text from the point of view of the authors. It is they who issue the
instructions, so they are analogous to the people using the computer. They know what they wish
to be done; they presumably find this form of description clear and straightforward, and a
reasonable way of communicating with a system which they must for safety assume to be fairly
stupid.

Not everyone understood this point. The feelings of the entity which is to carry out the
instructions are irrelevant (unless you wish to start a Society for the Prevention of
Cruelty to Operating Systems); the quotations are presented as natural ways to give
instructions.

(i) The tools are hardly ever mentioned; the only exception is the frying pan in line 6. The
objects (oysters, egg, breadcrumbs, dripping) are mentioned when necessary. But the
primary emphasis is on the actions : beard and drain, dip, beat, dip, coat, put, fry. Quite a
lot is implied : you are assumed to know (or to be able to work out) which tools to
use - that the flour and pepper should be put on a plate or other flat surface, that you know
how to beat an egg - and that you will naturally put the frying pan onto some source of
heat between lines 6 and 7. Notice that in practice it doesn't matter which tools you use,
provided that the action is satisfactorily completed; you can beat an egg with an egg whisk
or a fork, or by shaking it in a closed jar.

(i i) The "carpentry" metaphor is very similar to the "kitchen" metaphor. The only appearance of
a tool is the reference to "cramps" in line 3, where they appear more in the role of objects.
Again, the emphasis is on actions, and the tools are implied.

Two additional features are of some interest. First, lines 1 and 7 describe the current
activity at a higher level - so lines 2 to 6 give the details of the action identified in line 1.
Here is some evidence of hierarchic structure. This is appropriate to the much longer
description of the filing cabinet (about 10 pages) than of the fried oysters (given
essentially in full on the test sheet). Second, lines 9 and 10 give explanations to the
"system" which executes the instructions.

340 FIRST TEST answers : page 11.

We conclude that these commonplace "metaphors" emphasise the actions to be performed. To
make them work, you have to know what actions are available; but that seems reasonable enough.
You do know that you want to write a letter, or alter a memorandum, or draw a picture. This
seems to me to be a very sensible approach to giving instructions.

In giving complicated instructions, it is useful to be able to identify tasks at different
levels, so that the whole task may be described in terms of a hierarchy of subtasks of decreasing
size but increasing detail. This suggests that an operating system interface could usefully
emphasise actions rather than either objects or programmes, and provide some means for
constructing subroutines.

Rather few people gave any discernible "Comment on any implications ... for operating
systems design". Surely there must be some implications ! - even if only that
current interfaces are perfectly adequate.

There were some interesting attempts to force the sets of instructions into one or other of
the standard metaphors. Some of you must have very messy desks. There was wide
divergence of views on which of the two quoted metaphors was appropriate in both
the two cases - which I take as strong support for my assertion that in fact neither
works too well.

There were also some misguided attempts to invent new metaphors based on the topics of
cooking and woodwork. That misses the point; the metaphor isn't about the "subject
matter" of the instructions, but about the forms of the instructions themselves. If
you use your Macintosh for nothing but games, you don't start talking about an
arcade metaphor.

You can make out a sort of case for emphasising the objects - oysters, or parts of the filing
cabinet - on the grounds that they are regularly mentioned, or at least implied, in the
text. Surely that's inevitable, though; you couldn't identify what had to be done
without some reference to the objects ! I still maintain that the major stress in the
instructions is on the action to be performed. It may be that, particularly in the
cookery example, that's because the same object is subjected to a sequence of
processes, so that once we have defined the object we don't need to think about it
much. Perhaps if the same process were applied to a sequence of different objects, we
would find a different view. One could also remark that just identifying the object
simply isn't sufficient to define an operation; the egg could be beaten, or separated,
or broken into the flour and pepper, or hard-boiled, while the rails could be glued in,
or nailed in, or screwed in, or wedged in - and there are lots of other possibilities in
both cases. One would then go on to wonder whether the object metaphor as
implemented in the Macintosh might only work in such ludicrously oversimplified
situations that it would have little real applicability to genuine problems.

Many people regarded actions and tools as the same thing. I've commented on different ways
of beating an egg; the woodworking book describes elsewhere two different ways of
gluing, and that was before the days of PVA and aerosols. If you specify an action
only, then by implication you don't specify the tools to be used in making it
happen.

Observe that the desktop metaphor does not necessarily imply an object-oriented view of the
activities. The desktop idea is much more concerned with a way of storing and
finding things than with a particular pattern of instructions. I am using a real
desktop at this very moment, and it is strewn with piles of test scripts (to be
marked, being marked, having been marked, with an overflow onto the floor because
my desk isn't big enough - the rubbish bin is on the floor too, by the way), the test
paper, my specimen answers, the computer I'm using now, a coffee mug, some
boxes of discs, and a pair of scissors. It is working very well. I drag a script from the

340 FIRST TEST answers : page 12.

unmarked pile to the being-marked position. It then does me no good to click on it.
Nothing happens until I pick up a tool, closely resembling a ballpoint pen. In fact,
the script has no "natural" action : you wrote it, I mark it, then I sort the pile, then I
transcribe the marks onto a spreadsheet. An object-oriented implementation as done
by Macintosh would be pretty useless; tools work well.

Two or three asserted that no metaphor was used in the examples. In the commonplace
sense, that's close to true - but the same can be said about the tools metaphor, as
you really do have a set of tools at your disposal which you use as required. I think
it's reasonable enough to interpret "metaphor" in this question in the sense in which
it is used in computing - as a name for the way we think about the system we use.
Observe, too, that if the instructions in the examples are effective - from their
originators' points of view - without a metaphor, then this view would presumably
be a good base for a computing metaphor.

I suggested that it was "close to true" that no metaphor was used in the instruction books. It
isn't quite true. If you ever have to write instructions which are to be followed by a
lot of people, you very soon find out that it's no use aiming your instructions at the
real people. You have to use a "metaphor" (in the computing sense) of usually
well-meaning but bungling idiots, who are ready to take offence if treated as usually
well-meaning but bungling idiots. (One of the nice things about working in a
university is that that description can be relaxed; it's much more pleasant to deal
with usually well-meaning but bungling intelligentsia, if only because the
description fits all of us and we all know it.)

Someone pointed out the importance of the observations - "when smoking hot", "until the
glue has set" - but didn't go on to suggest that an operating system should have
some means of monitoring what processes do when they're running.

Someone remarked that there were a lot of technical terms in both passages, and wondered if
the readers would have access to explanatory notes such as I gave on page 3 of the
test. Bearing in mind that the reader is the analogue of the operating system, that's
just a requirement that the system must know how to do all it will be asked to do.
Put the other way round, that's to say that it's only sensible to ask an operating
system to do the things it knows how to do. Both the "operating systems" in the
question are very specialised indeed : one knows how to do cooking, and one knows
how to do woodwork. In practice, all operating systems offer rather different
facilities, which is one of the reasons for the (belated) interest in standards such as
Posix. (As a matter of interest, the woodwork book defines all the terms I defined
except "squareness" and "in.", which is fair enough, but it's hard to find any
explanatory material at all in the cookery book.)

One good point was that the obvious usefulness of the lists of steps in both cases suggested
that a metaphor which included scripts ("command files") would be useful.

A remarkable number of people (or a number of remarkable people ?) asserted that the
woodwork example followed the "noun-verb" pattern. Where ? The only evidence I
can see is in lines 9 and 10, which are not instructions anyway.

One person, making a number of assumptions of dubious reliability, suggested that the
examples "might suggest the O.S.'s be provided with two, separate, gender-specific
User Interfaces". Two comments :

• While not endorsing that opinion, one could make a reasonable case for
supplying different interfaces for people with different personality types.
People are measurably different in the ways they think about problems, and
might well prefer different metaphors.

340 FIRST TEST answers : page 13.

• Curious, though, that the prefix "Mac-" means "son of", and the suffix "-ix"
is sometimes used as the feminine version of "-or".

(The next two paragraphs are an extended comment which hasn't much to do with the question, but
which you may find interesting.)

If I am correct in my contention that an "action" metaphor is the natural way to give
instructions, why is the "tools" metaphor common ? I suggest that it is, at least to some extent,
an accident. The intention with the early system languages was to prescribe actions, not tools;
that's why they were commonly called "command languages", with jobs specified as sequences of
"commands" (which I would prefer to call "instructions"). Many of these were certainly not the
names of programmes - "// JOB" meant "start a new job" to the IBM1130 Monitor system, while
"COMPILE <filename> WITH <compilername>" meant what it said to the Burroughs B6700
MCP. Even when a programme was to be executed, its name was commonly not the primary
instruction - "// XEQ <name>" and "RUN <name>" were used in the two systems mentioned. The
only way to do anything in a computer is to execute a programme, though, so the semantic
distance between the name of a programme and the task it performs is very small, and it became
common to use the name of a programme as a synonym for the instruction to execute it. Indeed,
this was regarded as a valuable attribute of a system - you could "extend the range of system
instructions" by writing your own programmes. Even then, a distinction could sometimes be
observed between the instruction and the tool. The best example I know comes from the DEC
Tops-10 system, where, "edit x" meant "use the programme edit on the existing file x" while
"create x" meant "use the programme edit to make the new file x"; the same programme was
used in both cases, but the appropriate tests for existence of the file x were applied and different
cases reported as errors. The distinction between tool and action has perhaps since become blurred,
but I think there's a strong case for questioning the existence of the "tools metaphor", except in the
minds of people who don't understand what they're doing.

A final interesting point is that in both cases additional information is available to the
"system". The cookery book is not written for experts; but it is presumably assumed that if you
don't know how to beat an egg there will be someone not too far away who does. (An off-line
"help" system is available - on page 2 : "Housewives ! send your cooking problems to Elizabeth
Edmonds ... A fully qualified cookery expert will be pleased to advise and assist in solving your
household cooking problems.") Similarly, as I remarked above, the last two lines of the carpentry
example presented information on why certain instructions were given. Clearly, this information is
there, or offered, because the "system" is human, but there are two parallels with operating
systems. First, fairly practically, but only tenuously connected with the examples, there is the
principle that if you want an operating system to be more helpful, you have to give it the
information it needs to do the additional work. Second, following the examples, but much more
speculatively, a clever operating system given additional information such as the overall aims of a
job or reasons for including certain steps is likely to be in a much better position to carry out
intelligent fault diagnosis and, perhaps, correction or even prevention.

__

QUESTION 3.

I was surprised that this question was so unpopular - and on the whole so badly done. I'd expected most
people to be rather happy about a "real" operating systems topic after the comparatively waffly
stuff about history and people. If the answers I received had been better, I'd have assumed it was
just shortage of time, but that didn't seem to be so.

The NOTE at the beginning of the question was intended to define things rather precisely. The first part
cut out clever tricks with multiple processors and networks; the second said that there was no secret
information; the third defined security as an internal matter, concerned only with memory access. I
slipped a little on the third, because I didn't state that "memory" meant primary memory - files are

340 FIRST TEST answers : page 14.

also a sort of memory. I think the intention was clear from the usage of "memory" elsewhere in
the question, and also because the majority obviously accepted the meaning which I intended, but I
gave some marks to answers which said the "memory protection only" system was insecure
because people could get at each other's files.

To demonstrate security, it isn't enough to say that you can be good if you try; you have to show that
you can't be bad however hard you try. ("Good" and "bad" are here used in the purely superficial
sense of successfully achieving, or not achieving, certain aims; this is not the most appropriate
context for a dissertation on the reality and nature of sin.)

Far too many people assumed that the question was preceded by a phrase something like "Using a
processor just like yours at home with the minimum modification needed to make it fit the
question ...". Well, it wasn't.

It was not particularly encouraging to see how many people assumed as a matter of course that you could
cause an operating system to go wrong in one way or another by simple means - passing silly
parameters, interrupts, etc. You may like to learn by heart : "Any operating system which breaks
down under any circumstances is incompetently designed or written". I remark that it's bad design
to try to implement any sort of function using hardware that isn't capable of giving proper support.

(a) (i) In a system with memory address checking but no supervisor call :

If there is no supervisor mode, then there can be no special instruction. In this case, any
instruction which reloads the base and limit registers must be available to all programmes,
which would clearly nullify the security and answer the question. To proceed, therefore, I
assert that there can be no such instruction. If the system is to be shared, then, each
programme must be permanently associated with its own base and limit registers, and
process switching becomes essentially a matter of directing the processor to use a different
set of memory registers (together with a little necessary housekeeping).

Each programme is thereby constrained to run within some defined area of memory,
and has no way out. (If it has, then security is going to be impossible anyway.) It
therefore cannot rely on system facilities for memory management, input and output, and
so on; so each programme must contain its own procedures for these purposes. As there is
no supervisor mode, that's easy enough - in effect, each programme must contain its own
monitor system, which isn't very far from the way a single-user monitor system works
anyway. There may be interesting consequences for the input and output devices if several
programmes try to use them at the same time, but that isn't our problem.

If the system is to remain shared, there must be some mechanism for a programme
to inform the operating system when it has finished. This need be no more than a signal
containing only information on the identity of the programme; the operating system can
then carry out the necessary administration. The operating system will presumably have its
own base and limit registers set to give access to the whole of the memory, so can load
new programmes as required.

I conclude that a secure shared system is possible, but other hardware facilities -
multiple base and limit registers - are necessary.

(This is something like the IBM virtual machine technique, but the analogy is not
perfect.)

It is worth remarking that the absence of an instruction to alter the base and limit
registers does not mean that they can't be changed; they can be made part of the memory
accessible to the operating system. In the IBM 1130, the three index registers were
implemented as words 1, 2, and 3 in the memory. I'm not suggesting that it's a good idea,

340 FIRST TEST answers : page 15.

but we've been forced to describe a rather peculiar computer, so it may as well be a little
peculiarer.

I gave some marks to people who got as far as noticing that anybody could set memory
limits, and concluded that security was impossible. The appropriate conclusion is
 either security is impossible or people mustn't be able to change memory limits -
which is the reasoning underlying my specimen answer.

A full answer must somehow address the problem that with no supervisor call everyone can
do everything.

Each programme must have some system code loaded into its partition, which it can mess
about with as much as it wants - but provided that the memory access protection
still works, that won't do them much good.

Lots of people seem to think that a branch instruction doesn't require access to memory.
Where do they think the code comes from ?

One suggestion was to forbid people to write their own programmes. That could certainly
be made to work, but I don't think it really qualifies as a proper implementation of a
protection system for a computer. If I were buying an operating system, I certainly
wouldn't think much of it.

(i i) In a system with supervisor call but no memory address checking :

Insecure. Overwrite the destination of the supervisor call with your own code, and do
whatever you want.

Several people didn't know what supervisor mode was. It's mentioned in the notes I
distributed. It's also mentioned in the textbook, but it's in chapter 15 which I find I
haven't mentioned in my notes anywhere. But didn't you cover it in 211 ?

Someone pointed out that security is still possible if you execute everything by
interpretation - in effect, building yourself a software virtual machine which
performs all the checks that the hardware machine doesn't.

(b) There are probably lots of ways; here's one example. Use the perfect compiler to write an
assembler producing "imperfect" code which can generate any address you want. The compiler,
being careful, is unlikely to permit you to branch to an array or to overwrite any part of the
programme, so execute the code by writing it to a disc file formatted correctly as an executable
programme, which can then be run in the ordinary way.

I slipped up again. The last sentence of the question should have read "Show how you can
write a programme which, while running in one partition, can gain access to any
part of the computer's memory". Most people took it that way; I apologise to the
few who didn't. As the question was about security, I gave marks for any answer
which described a way of doing something more or less illegal under either
interpretation of the question. I remark that the triviality of the answers to the
"other" question - "Specify a different partition for each programme" - might have
given you a hint that there was something amiss.

One answer suggested using something like a virus, thereby getting access through other
programmes. It doesn't guarantee to get everywhere, but it's certainly uncomfortable.

Several people must have thought that I intended the "rusted" to be put back; their
compilers were certainly full of holes. There seems to be a deplorable lack of
understanding of what compilers can and can't reasonably do. I think it's reasonable

340 FIRST TEST answers : page 16.

to suppose that a trusted compiler is one which won't do anything obviously stupid -
such as :

• Implementing C.
• Implementing VAX assembler instructions.
• Letting you specify the range of the partition - and particularly letting you

specify the range as the whole of memory.
• Compiling code which will branch to the value of a variable interpreted as an

address.
• Allowing a programme to overwrite its own code.
• Executing a system call which lets you refer to any address. (Why would

there be such a call anyway ?)

Others didn't take seriously the statement that access was only through the compiler. This
ruled out solutions like :

• Import a code file from another computer.
• Change the programme or the compiler by "poking". (No self-respecting

system would let you do that anyway. It's for toys, not computers. I agree
that it's sad that there are so many big toys around.)

__

Alan Creak,
May, 1992.

