
340 Test 2, 1990 : answers and comments : page .

Computer Science 340

Operating Systems

SECOND TEST : ANSWERS AND SOME OTHER BITS

Answers look like this;
comments (added after the test) look like this.

QUESTION 1.

Assignment 2 strikes again. The specimen answers are those I wrote down before the test; the
answers you gave weren't always the same, but some of them were Macintosh equivalents of
my answers, which I had to accept - sometimes. I've tried to distinguish between differences of
interpretation, and differences of principle.

For example, the Macintosh interprets opening a file as an operation you perform on an
existing file, as is clear both from its file manager procedures and from the choice it usually
offers in dialogue between "Open" to open an existing file, and "New" to make a new one.
The alternative is that "Open X" should return you an open X if it's at all possible - which
includes making a new one if necessary. (Think of the Pascal rewrite function.) That's a
difference of interpretation, and I accepted either view.

On the other hand, any interpretation of "open" which excludes multiple simultaneous
opening, for reading at least, is unrealistic for a general-purpose operating system. That's a
difference in principle. (Someone explicitly mentioned the possibility of exclusive opening,
which is fair enough.)

(a)
• Find the file attributes, check that access is permitted.
• Construct the file information block.
• Allocate buffer space.
• Report the operation complete.

Very few people mentioned anything to do with the file information block (terminology
varies; I accepted anything plausible). After assignment 2, I'd have thought that
ParamBlockRecs would be forever engraved on your memories.

Quite a few people think that part of the open operation is to load a file into memory. If they
mean that the first block (or something of the sort) is loaded, it makes some sense, though
unless you know that the file will be used sequentially the effort might be wasted, but usually
they seemed to mean the complete file. This seems highly unlikely; apart from the obvious
question of having enough memory, unless you know before you start that you'll want all of
the file, it's a waste of time. Part of the misapprehension may be a consequence of your lack
of contact with any but toy files; files measured in megabytes are common, and tens or
hundreds of megabytes not out of the way for large systems. Add to that many programmes'
need to use several files simultaneously, and the constraints of operating within a shared
system, and it should be clear that holding complete files in primary memory as a matter of
course isn't a viable general policy. Disc caches may approach this condition by chance, but
can't guarantee it.

A disadvantage someone suggested was that the existence of files which were not represented
in a directory was counterintuitive, and violated the system illusion. That's an excellent point,
which I hadn't recognised before. Marking tests isn't all bad !

340 Test 2, 1990 : answers and comments : page .

(b)
When the attributes specified, explicitly or by default, don't match the actual attributes of the file :
• Security violation;
• Open a non-existent file for reading;
• Attempt random access on a stream file;
etc.

A file can be opened even if it is already open - but some care is necessary. There's no
difficulty in having a file open by many programmes at once so long as they're all reading the
file. There are difficulties when one or more programmes want to write to a file opened by
other programmes, but even these can be managed subject to certain constraints.

(c)
It is possible to use such a file because all operations on it are performed in terms of the file

information block, not the file directory entry.
An advantage is that it is possible to use temporary files without the overhead of searching file

directories.
A disadvantage is that if the programme or system fails without closing the file, then all information

is likely to be lost.

The point of the question is that the operations on the file are administered using the
information in the programme's file information block; the directory is not involved at all,
except in opening and closing the file. The directory isn't involved in allocating disc space,
either; that's a matter for direct transactions between the disc writing software and the disc
space manager.

Several people devised ingenious stratagems to search for a file which wasn't in a directory -
inspect memory, special hardware devices, search remote machines. Generally, if you can't find
a disc file in some sort of directory, then you can't find it. The first sentence was intended to
tell you how you got the file; the question is about how you can use it. A lot of people seem
not to have read the first sentence at all.

It isn't a disadvantage that you might not be able to find the file again; it is certain that you
won't be able to find the file again. Where could the information be kept ?

The file would normally be kept on the disc. (In fact, whether or not it's on the disc is
irrelevant : the question was about directories.) Many people seemed to expect it to live in
primary (or virtual) memory, which will presumably grow out of the side of your computer
as and when required. Why in the world should anyone provide lots of special additional
software for special cases when the existing stuff will do the job perfectly well ? ("Ram disc"
doesn't count - it's rigged up to look just like a disc, with directories and all. See device
independence.) There were occasional hints that people might have been thinking of the "log-
structured file system" - but that's still a copy of the original disc system, with directories as
usual.

340 Test 2, 1990 : answers and comments : page .

(i)
When the file is closed, the system must :

Determine the external name of the file;
Search for the directory;
Enter the new file name, and any required attributes, into the directory;
Link the directory entry to the file by putting its address in the directory.

(ii)
If the file is not closed at the end of the programme, the system must :

Return to the system the disc area allocated to the file.

Despite the explicit statement to the contrary in the first sentence of part (c), a number of
people gave an answer amounting to "behave as in (i), finding an external name from
somewhere".

Your experience probably suggests that it's unnecessary to take special action to close a
file, but I'm far from sure that it's the operating system, as opposed to the compiler, that
brings this about. From memory, I think that both C and Pascal undertake to close any files
that are left open when the programme ends. If you want to try some experiments, write a
little programme which makes a file and does something with it, then somehow stop the
programme before it ends. Then look for the file. The only language within my reach at the
moment is Zortech C on MS-DOS; with that, the file vanishes. Be careful with the
Macintosh - a file can end up not in use but open, and can then be something of an
embarrassment.

What OUGHT to happen ? That depends on what you think is important. If disc space
is in short supply, you don't want to use any unless you have to, and it's reasonable to insist
that anyone requiring a permanent file should ask for it explicitly. On the other hand, you
could argue that as the memory space available to a programme becomes bigger and bigger,
there's very litle need to make temporary files anyway, so it's reasonable to assume that all
files are intended to be permanent. You could also take into account the effect on the system
illusion, mentioned earlier.

Some suggested that the system should ask whether or not the file should be saved. That only
works if there's someone there to ask. Even if there is, the last thing I want when I've finished
doing something with a programme is a lot of silly questions to answer : OF COURSE I
want to save the file at the end of an editing session (all (?) Macintosh word processing
things); OF COURSE I want to print the stupid file in a perfectly standard format (after
selecting PRINT). If I didn't, I'd have said so. A good interface will do obvious things
automatically, but make it easy to change the specification if you need to.

340 Test 2, 1990 : answers and comments : page .

QUESTION 2.

a) Nothing can take the processor away from a process which is currently running in kernel mode
(interrupts run in the context of the process). It will continue to run until it leaves kernel mode or puts
itself to sleep.

b) The interrupt is handled whilst in kernel mode.
The interrupt conveys information that some other process should now run (i.e. the currently

running process does not have the best priority).
This causes a flag to be set.
The interrupt handler finishes and returns to the process running in kernel mode.
The flag is tested as the running process is about to return to user mode.
If it is set the dispatcher is called to restart another process.

c) We can use a simple lock because the kernel cannot be preempted.

lock:
while lock_x do

sleep waiting for lock_x;
lock_x := true;

Mutual exclusion is guaranteed by the kernel.

QUESTION 3.

a) No busy wait.

b) The process still runs, therefore it takes up processor time and memory.
No guarantee that a waiting process will get the resource, indefinite postponement.
No record of processes waiting for the resource.

c) The process waits in a queue. Only running when the resource is available.
The system makes sure that the most worthy process gets the resource next.
The queue is a complete record of processes waiting for the resource.

d) Holding one resource whilst waiting on another can lead to deadlock. If the conditional wait returns
without the resource we could release the first resource and try for both of them again.

