
340 TEST sketch answers: page

1

Computer Science 340

Operating Systems

1989 TEST, part B : SKETCH ANSWERS

Here is an outline of possible answers to questions 5 and 6 of the test. These are not
THE only acceptable answers; but they're (abbreviated versions of) the answers I
hoped I'd get. The answers are written (mostly) in this typeface.

Alan Creak,
June 1989.

Material written in this italic typeface is comment added after marking the test.

QUESTION 5.

off-lining :

1 Copy F on SSC from cards to tape.
2 Read F from tape to disc on LFE.
3 Execute P on LFE reading F from disc and writing R to disc.
4 Copy R on LFE from disc to tape.
5 Copy R on SSC from tape to paper.

spooling :

1 Copy F on SSC from cards to disc on LFE.
2 Execute P on LFE reading F from disc and writing R to disc.
3 Copy R on LFE from disc to paper.

off-lining :

1 Copy F on SSC from cards to tape. (1/c + 1/t) I S

2 Read F from tape on LFE. (1/t) I R

3 Execute P on LFE. (1/L) (I + O) R

4 Copy R on LFE to tape. (1/t) O R

5 Copy R on SSC from tape to paper. (1/t + 1/p) O S

spooling :

1 Read F from cards on LFE. (1/c) I R

2 Execute P on LFE. (1/L) (I + O) R

3 Copy R on LFE to paper. (1/p) O R

Total cost for off-lining =
(1/c + 1/t) I S + (1/t) I R + (1/L) (I + O) R + (1/t) O R + (1/t + 1/p) O S

= { (1/c + 1/t) I + (1/t + 1/p) O } S + { (1/t + 1/L) (I + O) } R

If c = p = z, say :
Total cost for off-lining =

{ (1/z + 1/t) (I + O) } S + { (1/t + 1/L) (I + O) } R
= { (1/z + 1/t) S + (1/t + 1/L) R } (I + O)

340 TEST sketch answers: page

2
Total cost for spooling =

(1/c) I R + (1/L) (I + O) R + (1/p) O R

If c = p = z, say :
Total cost for spooling =

{ (1/z + 1/L) R } (I + O)

If off-lining is cheaper than spooling :

{ (1/z + 1/t) S + (1/t + 1/L) R } (I + O) < { (1/z + 1/L) R } (I + O)
(1/z + 1/t) S + (1/t + 1/L) R < (1/z + 1/L) R
(1/z + 1/t) S < (1/z - 1/t) R

Using the values given :
2.02 S < 1.98 R; or R > 1.02 S.

This question didn't turn out quite as I'd expected, because I composed it in the belief that
the test would be open-book. When it became clear that Robert had worked to the other
assumption, it was too late to do much about it except have a closed-book test, and at
that point I should have checked my questions rather more carefully. I would not
otherwise have thrown mediæval terms like “off-lining” at you without some sort of
supporting definition; even “spooling”’s a shade marginal.

A lot of people didn't answer the question as set - very commonly, the second part was
omitted or merged with the first or third parts. That's unwise for two reasons :

• It messes up the marking scheme. As I regard the test as an attempt to find out
how well you know operating systems rather than a test of your obedience to
arbitrary instructions I go to some trouble to try to interpret what you give
me, even if it isn't what I expect; but it's often difficult to identify the precise
components which I hope to find, and this inevitably leads to some
inconsistency.

• You get the wrong answer. A lot of the people who didn't “Write down
expressions for the cost of each of the steps”1 got some of them wrong. I split
the question up deliberately so that you wouldn't attempt to compose
complicated expressions without giving due thought to their components.

A lot of people lost marks because they missed bits out - parts of the file transfers, or all
of spooling, or part of the costs, or whatever.

First part.

A few people included time to load (and sometimes to compile and link) P. I
hadn't intended that, and I don't think it's realistic : it certainly isn't part of the time
needed “to process a data file … through a programme P”.

I asked you to describe “the sequence of operations” involved in the operation -
then later I asked you to “describe briefly” the corresponding spooling job. I'd
intended both “describe”s to be interpreted in the same way, but a lot of people
gave me a list of steps for the first and a chatty description for the second.

A number of people thought that SSC was controlled by LFE, with data transferred
between the two on a hard-wired link of some sort. Off-lining was used before
decent interrupt systems were available to make spooling possible; any sort of
interprocessor communication (except along terminal-like lines at a few kByte s-1

) just wasn't feasible in practical systems.

There was some disagreement as to just what constitutes an “operation” : as I
hadn't defined it (I couldn't, without giving you most of the answer), that's fair
enough, and I accepted anything plausible.

340 TEST sketch answers: page

3
Several people wanted to transfer the files on disc rather than tape. This did happen
occasionally towards the end of off-lining, but wasn't common; it didn't happen
sooner because it needed large demountable disc packs. It isn't as easy as it sounds
to attach one disc drive to two computers.

Second part.

UNITS AND DIMENSIONS. Oh, dear. The first cost on the first script I read was
written as c*I*S, with dimensions of $ kB2 s-2. Isn't it obvious that it should
have been (I/c)*S ? The units have to cancel out to give what you want - in this
case, $. Someone else actually wrote “I kB * c kB/s”; and one or two people added
together things of different dimension - like I/t + L + O/t. PLEASE THINK A
LITTLE WHEN WORKING OUT ALGEBRA : and it's horrifying to contemplate
what might have happened if I'd asked you to work it out on a calculator, which
leaves no evidence of the intermediate steps at all.

(After all that, I should add that some people got it all right without any trouble :
well done ! But there weren't nearly enough of them.)

Again, different people had different ideas of what a “step” was. I accepted anything
sensible.

Several people described off-lining as using a magnetic tape transfer for one of the
input and output files, but not the other. That really isn't very sensible; you only
get the full advantage by speeding up both transfers.

Quite a lot of people ignored the first assumption, and used either I or O (instead
of I + O) as a measure of the size of the processing. Once again, they suffered :
the whole point of the “I + O” was to make the algebra simpler. (Of course, it
isn't an unreasonable assumption.) In the long run, it makes no difference to the
answer, because the processing time is the same in both cases.

Do not make your own assumptions until you have to, and then state clearly what
you have assumed and why. In this question, you didn't need any extra
assumptions; in particular, there was no need to assume numerical values for the
sizes of the files.

(In hindsight, it would have been neater to rephrase the third assumption as
something like “The time taken by disc operations is negligible” - which would
have given the same answer without mentioning unrealism. In fact, the question as
set isn't even all that unrealistic, as programmes not uncommonly read or wrote
their own tapes directly; but to make sense of reading directly from or writing
directly to tape, you have to talk about buffering, which introduces complications
of its own.)

Third part.

The numbers are realistic : I took them, more or less, from “Programming
business computers” (D.D. McCracken, H.Weiss, and T.-H. Lee (Wiley, 1959))

If you get a result that looks silly, at least add a comment to that effect : it shows
me that, even if the answer's wrong, you're bright enough not to believe it.

1 : Which, I've just noticed, is not well formed : read “Write down an expression for the
cost of each of the steps”. Nobody complained about the grammar.

__

340 TEST sketch answers: page

4
QUESTION 6.

buffer.in and buffer.out are channels (from context). The programme copies from buffer.in to
buffer.out, always simultaneously reading into one of x and y and writing from the other, and
alternately reading into x and y.

WHILE TRUE
control ? request

IF
(request = get)

SEQ
in ? buff[tail]
tail := tail + 1
IF

(tail > 9)
tail := 0

(request = put)
SEQ

out ! buff[head]
head := head + 1
IF

(head > 9)
head := 0

WHILE TRUE repeat forever.
control ? request responds to any signal on the control channel. The

signal is place in the variable request.
IF(request = get) tests the value of request, and executes the

dependent statement if it's “get”.
SEQ executes its dependent statements sequentially.
in ? buff[tail] reads from channel in into the tail of the buffer queue.
tail := tail + 1 advances the tail pointer.
IF(tail > 9)tail := 0 makes it cyclic.
(request = put) part of the IF : tests the value of request, and executes

the dependent statement if it's “put”.
SEQ executes its dependent statements sequentially.
out ! buff[head] writes to channel out from the head of the buffer queue.
head := head + 1 advances the tail pointer.
IF(head > 9)head := 0 makes it cyclic.

This time I did allow for the closed-bookness of the test by providing the “Extra
information for question 6” sheet - which was, of course, the occam example I'd given out
earlier. Despite that precaution, it was far from clear that everyone had looked at the sheet;
indeed, one person's answer ended in a note something like “I've only just noticed the
Extra information”.
This question was not well done. It seemed to me not unreasonable to expect that
experienced computists should be able to understand a programme written in a reasonably
straightforward, even if unfamiliar, procedural programming language, and to make some
sort of shot at knocking together a programme of their own - particularly when they had a
pattern to copy !
First part.

I asked you to “Explain the meaning” of the code : that doesn't mean I want an
interpretation of what each line does. Hardly anybody wrote (I suspect hardly
anybody noticed) that the code copies its input to its output, though surely that's
the obvious word to use. The usual operating system instruction is “copy” - even
Unix uses “cp”, which for Unix is astonishingly comprehensible.

Second part.

The answer is a fairly straightforward adaptation of the “button ? request” bit on the
“Extra information ..” sheet.

