
Computer Science 340

Operating Systems

DOING THINGS WITH UNIX

CAVEAT : these notes should be sufficient to get you through the 340 assignments on
Unix. They are not intended to be a complete, or even adequate, description of the

system for general use.

AND FURTHERMORE : some of the details depend on the Unix implementation you
use, and the system in which it is running, so using Unix in the city is not quite the

same as using Unix at Tamaki. The examples were designed at the city site, so reflect
circumstances there, but there will be differences in detail with different systems – or
even with the same system, as things evolve. We think these notes are more or less up

to date, with significant variations mentioned where it seems appropriate, but if you
come across something you think it would be helpful to include please let us know.
You might like to know for later reference that “Bash is ultimately intended to be a

conformant implementation of the IEEE POSIX Shell and Tools specification (IEEE
Working Group 1003.2)”.

(The material here is part introduction and part examples of things you’ll come across
later in the course. Don't worry too much if some of it seems hard to absorb; unless
you've learnt about it before, there is quite a bit which you might not understand until
some way through the semester. You should understand the instruction parts; if not, ask a
laboratory demonstrator.)

How Unix starts.

When a Unix system is first set into action, it starts a process using a programme called
init, which then starts a copy of itself for each terminal attached. When anything happens
at the terminal, init looks after the details of the logging-in operation. If the login is
completed satisfactorily, init starts a shell (which is just a special sort of programme,
written to accept instructions from the terminal, and to run other programmes as required
by the instructions), and then dies, leaving the shell to look after the rest of the terminal
session. When the session is over, the shell dies, and the original init waits for the next
login.

The shell reads all the instructions you enter at the terminal, and executes them,
commonly by starting a new process. The shell then waits for the new process to die –
that is, for the programme it is running to end – then once more awaits instructions.

There are several common shells, with names like Bourne shell, C shell, and Bash.
(Not “Bash shell” – “Bash” stands for “born again shell”, so you needn’t say “shell”
again afterwards.) They are slightly different. It has been customary to use the C shell in
the city and Bash at Tamaki; the programme which init runs to implement the C shell is
call csh, and to implement Bash it runs bash. All these shells are generally similar, each
exhibiting certain features which are supposed to be good. We have no particular
preference which one you use, unless it turns out that the assignments are ridiculously
easier in one than in the others, when we’ll insist that you do it the hard way. We’ll let
you know if we need to.

As part of the system's logging-in process, it tries to find its knowledge about you.
Obviously, the system has to store your login name and your password (or something
equivalent) somewhere, and it also remembers a fair amount of other information. An

340 Doing things with Unix : page 2.

important part of that is your home directory, which is the way in to all the files you own
in the system. When you log in, this directory is set up as your current directory; we shall
see what that means later.

Logging in for the first time in the city. (If you’ve already done some of this, you needn’t
repeat it.)

• First find your login name and initial password. Go to a printer (preferably in the
Computer Science department, but the Mathematics printers will work too if you
take Mathematics papers) and pass your identity card through the reader. The
screen will show your login name and show one page to print. You MUST print
this page. It has on it the rules of the laboratory and your initial password. If you
don't print the page then something will happen which is so nasty that no one has
told me any details. You should then go to a booking terminal and change your
password. Then, and only then, will you be able to use Unix.

• Book a Macintosh in the usual way.

• The communications between your Macintosh and the processors running the Unix
system are handled by a programme called telnet. Double-click on the telnet icon
to start telnet. Then select "Open connection ..." from the file menu, and enter the
name of the processor you want to use where the "session name" is requested.
(You can use any of those available to you, which are at the moment essentially
cs26; others might be possible in principle, but cs26 is strongly preferred.) You
can enter anything you like as a "window name", including nothing at all. Then
click on "OK".

• After a few seconds, your screen should display a window, with some text ending
with login. The Macintosh has transformed itself into your Unix terminal.

• Enter your login name. Then enter your password, when requested.

Logging in for the first time at Tamaki.

It isn’t so easy to give general instructions, as there are several different ways to do it.
You don’t need to book terminals - you just find one and use it. All being well, you’ll find
instructions at the terminal.

Once connected –

The sequence (after connecting) looks something like this :

OSF/1 (cs20.cs.auckland.ac.nz) (ttyq0)

login: alan -- here I entered my login name, "alan".
Password: -- here I entered my password, which isn't

displayed.
Last login: Mon Feb 27 16:45:33 from alan.cs.auckland

-- should really end "alan.cs.auckland.ac.nz".
You have mail. -- Unix tells me there is electronic mail

waiting.
%

340 Doing things with Unix : page 3.

(NOTE : I apologise for the squashed characters; I'm using them because I want to
reproduce reasonably well what actually appeared on the screen when I ran the examples.
If anyone can tell me of a narrower evenly-spaced font it would help.)

The % is the prompt character, meaning that Unix is awaiting instructions. (It might be
something else on your system.)

When you've finished your session, use logout to log out from Unix, then select
"Quit" from the File menu to get out of telnet. DO NOT OMIT THE logout STEP : if
you do, your Unix session might continue until you do log out, presumably after your
next session, consuming resources which will impair the performance of the system for
other people.

Giving instructions.

Enter the instructions at the keyboard. The first "word" you enter is the instruction itself; it
may be followed by one or more arguments, usually prefixed with "-". Some examples
appear in the descriptions below. Some of the instructions are built into the shell itself;
they are called internal instructions. All others – which is to say, most – are called
external instructions, and are in fact the names of programmes. Therefore, in most cases a
Unix shell executes a separate programme to obey an instruction.

(This is quite a clever trick, because it separates the operating system's terminal
handler from the programmes which do the work. It is therefore (comparatively !) easy
to write a new shell if you don't like the existing version. For example, you might want to
write a shell which presents a graphical interface instead of the C shell's textual
interface.) (NOTE : You are advised not to start writing your own shell until after
completing the 340 course. You are unlikely to have time for both at once.)

Changing your password.

This is the first thing you should do once you have logged in for the first time, so we'll
use it as an example of how to execute a Unix instruction. Most Unix instructions are the
names of programmes, so if you enter “dribble x y z” Unix will try to find an
executable file (code or command file) called dribble, and execute it passing x y z as
the parameter string. (The exceptions are a few common instructions which are built into
the shell and are therefor executed directly, but we won’t worry about the distinction.)
The instruction we want to change the password is passwd (NOT PASSWD, or any other
combination of uppercase and lowercase letters; Unix worries about case). For me,
alan, the dialogue goes like this :

% passwd -- here I enter the instruction.
Changing password for alan
Old password: -- here I enter my existing password.
New password (6 to 8 chars): -- here I enter the password I want in future –
Again: -- and here I enter it again.
Password changed
There may be a delay while the UNIX password database is updated

340 Doing things with Unix : page 4.

Getting information.

A programme called man gives you access to the system manual. To find out about how
to use any of the system instructions, enter man <name of instruction>. Here's how
to find out about passwd :

man passwd -- the response below starts on a new page.

passwd(1) passwd(1)

NAME
 passwd, chfn, chsh – Changes password file information

SYNOPSIS
 passwd [-f | –s] [username]

 chfn [username]

 chsh [username]

 This security-sensitive command uses the SIA (Security
 Integration Architecture) routine as an interface to the
 security mechanisms. See the matrix.conf(4) reference page
 for more information.

DESCRIPTION
 The passwd command changes (or installs) the password
 associated with your username (by default) or the speci-
 fied username.

 The chfn command changes the finger information in the
 GECOS field associated with your username or the specified
 username. GECOS is an obsolete term, but refers to the
 finger information field of the passwd structure as
 defined in the pwd.h file and the finger information field
 of the /etc/passwd file as described in the passwd(4) ref-
 erence page. The information in the GECOS field has been
 formalized by POSIX and is a comma separated list contain-
 ing the user's full name, office phone, office number, and
 home phone number.

.... and much, much more – see below.

To get out of man, enter q.

man can also help if you don't know what's available which might be relevant to a
topic. If you enter man –k <keyword>, (or apropos <keyword>, which is equivalent,
debateably more comprehensible, and one keystroke longer) it will display a list of all
entries in the on-line manual which mention the <keyword> in their short descriptions. It's
up to you to find the entry you want !

340 Doing things with Unix : page 5.

% man –k password
acceptable_password (3) – Determines if a password meets deduction requirements
(Enhanced Security)
conflict (8) – search for alias/password conflicts
discrypt (3) – encrypt a password, dispatching based on the associate
d algorithm (Enhanced Security)
dispcrypt (3) – encrypt a password, dispatching based on the associate
d algorithm (Enhanced Security)
dxchpwd (1X) – Create or change password program
getespwent, getespwuid, getespwnam, setprpwent, endprpwent, putespwnam (3) – Ma
nipulate protected password database entry (Enhanced Security)
getpass (3) – Reads a password
getprpwent, getprpwuid, getprpwnam, putprpwnam (3) – Manipulate protected passw
ord database entry (Enhanced Security)
lock (1) – Requests and verifies a user password
locked_out_es (3) – determine if password-management disallows user login
(Enhanced Security)
passlen (3) – Determines minimum password length (Enhanced Security)
passwd (4) – Password files
passwd, chfn, chsh (1) – Changes password file information
popwrd (8) – Sets password for a POP subscriber
printpw (8) – Outputs the contents of the password database

..... and some more.

The numbers in brackets identify different sections of the manual; you need them to
find entries which are not the first listed for the keyword. So

% man 4 passwd

gives you something which starts like this :

passwd(4) passwd(4)

NAME
 passwd – Password files

DESCRIPTION
 A passwd file is a file consisting of records separated by
 newline characters, one record per user, containing seven
 colon (:) separated fields. These fields are as follows:

.... and much, much more.

About “much, much more”.

- or, at least about more. You will not be surprised to know that we are not the first people
to notice the inconvenience of the torrent of information which washes over the screen
when you enter something like “man passwd”. Indeed, not only has someone noticed, but
someone has done something about it. To see what this is, enter :

% man passwd | more

340 Doing things with Unix : page 6.

The effect of the | (which denotes what is called a pipe) is to take the output from
whatever is to the left (in this case passwd) , and to redirect it from the screen to
whatever is on the right (in this case another programme called more). The output from
more naturally goes to the screen – unless, of course, you redirect it somewhere else with
another pipe. You can chain a lot of programmes together with pipes like this to form
what is (inevitably) called a pipeline. The result obviously depends on the
programmes concerned, but with the example given what appears on the screen is :

passwd(1) passwd(1)

NAME
 passwd, chfn, chsh – Changes password file information

SYNOPSIS
 passwd [-f | –s] [username]

 chfn [username]

 chsh [username]

 This security-sensitive command uses the SIA (Security
 Integration Architecture) routine as an interface to the
 security mechanisms. See the matrix.conf(4) reference page
 for more information.

DESCRIPTION
 The passwd command changes (or installs) the password
:

- and that’s all (unless you have a different screen size). When the screen is full,
everything stops, giving you time to read what’s there. When you’re ready for the next
page, press the space bar. Alternatively, try these :

Press space for a new page;
Press f for a new page;
Press b for the previous page;
Press u to go back half a page;
Press d to go forward half a page;
Press q to stop.

Files.

Unix files are regarded by the system as ordered sets of bytes; no other higher level
structure is defined. The simplest form of file name is a string of alphanumeric, and a few
more, characters. More complicated names can be composed as a sequence of simple
names separated by /; this name structure reflects the organisation of the files in a
hierarchic directory.

There are several ways in which Unix can interpret a file name which you enter at
your terminal. This isn't just to make life complicated; it's also to make it simpler. The
reason for the variety is that you want to use files which live in different places. You

340 Doing things with Unix : page 7.

certainly want to use your own files, which live in your own directories, out of sight of
anyone else; but you also want to use the system files, which live in the system
directories, and can be seen by everybody. Whenever you give a file name, therefore, the
system will first look for it in your current directory, and then in appropriate system
directories. The sequence of directories inspected is called the search path, and is specified
in a file (in your directory) called .cshrc, which you can inspect and change if you
wish. (Just use an ordinary editor.) Only if the system can't find the file anywhere in
this search path will it report failure.

Your home directory in the city is /users/studs/ugrad/stage3/yourname; at
Tamaki, it depends which system you’re using. (If you want to know, use pwd – see
below.) That becomes your current directory when you log in. If it were not for the
search path, you would have to type /users/studs/ugrad/stage3/yourname/xyz
whenever you wished to use a file xyz in your directory.

Using files.

The simplest way to make a file is to use a programme called cat, which is short for
catenate, which means chain together, which is quite inappropriate in this context. This
illustrates a Unix habit, a delight to its devotees and a pain to everyone else, of putting
general programmes to particular purposes which are not obvious from the programmes'
names. (Try man cat for more details.)

To understand the instruction we shall use, we must first find out about file
redirection – but before even that (zeroth ?), we shall indulge in some propaganda. In
most of this “Using files” section, we’ll be talking about streams rather than files. We’ll
call them files, because that’s common, and it’s what you’ll find in Unix literature, but in
the 340 course material we shall try to distinguish fairly carefully between the two
structures. Here, we’ll mark something we think is a stream by quotation marks. The
distinction is simple. A file is composed of data standing still; it is a set of data items
connected together into some sort of structure, and usually persistent – it sits there on a
disc or other medium until you want it. In contrast, a stream is composed of data moving
about; it is a set of data connected primarily by sequence in time, and usually not
persistent – if you don’t catch the items as they come, they are likely to be lost. The
things we connected together by a pipe are primarily the input and output streams of the
programmes we use. Bearing that in mind, then, we proceed.

Unix programmes generally have two special “files”, called the standard input and
standard output, which are normally identified with the keyboard and screen, respectively.
If you just give the instruction cat by itself, you haven't specified any alternative input or
output “files”, so the programme copies from keyboard to screen. Furthermore, it will
keep on doing so until it finds the end of its input “file” – so you will need to know that
Unix sees <ctrl-D> as the end-of-file signal from a terminal.

We can use a file as input in place of the usual “file” by appending its name to the
cat – so cat xyz will take its input from the disc file xyz and send it to the (assumed)
output “file”, the screen. That's a way to look at a small file on the screen. If we try cat
xyz uvw rst, then we will see the three files xyz, uvw, and rst displayed on the
terminal in sequence. There at last is the catenation.

340 Doing things with Unix : page 8.

We can also redirect the standard output to a disc file. The instruction

cat xyz uvw rst > abc

will direct the chained output to the disc file abc , replacing any existing file of the same
name. You could write the new material to the end of an existing file abc with

cat xyz uvw rst >> abc

What we want, though, is to copy from the keyboard to a disc file. What happens during
the session fragment below should now be clear.

% cat > newfile ?-- Copy from keyboard to a file called newfile.
This is the first line.
This is the second line.
This is the last line. -- After this line, I entered <ctrl-D>.
% cat newfile -- Copy from a file called newfile to the

screen.
This is the first line.
This is the second line.
This is the last line.
%

We can redirect input “files”, too. The xyz part of cat xyz above is an argument to
cat; cat reads it, and itself switches from the keyboard to the named file for input.
Generally, as you would expect, what programmes do with their arguments is up to the
programmes. But whatever the programme does, you can instruct the system to use a
different “file” for input. If you enter cat < xyz, the result is just the same as for cat
xyz. Now, though, you are using this input “file” redirection technique; cat has no
parameters, and therefore still uses the standard input, but the system has changed the
source of the standard input to be the file xyz instead of the keyboard. To emphasise that
there is a difference, consider what happens if you enter cat < xyz uvw rst : uvw
and rst are displayed on the screen. Why ? Because first the “< xyz” defines xyz as the
standard input, but then the presence of two arguments, uvw and rst, causes cat to
replace its standard input by these two files, as described earlier.

Doing things with files.

Now we shall introduce a number of operations which apply to files themselves. These
don’t do anything to the contents of the file, like those we mentioned above, but they’re
useful for managing – particularly – disc files. Most of these really are files, not streams.

Files are kept in directories. (Strictly, they’re subdirectories; the directory is the
whole list of files for the disc, but the “sub” is usually dropped and everyone seems to
understand.) If you’re used to MS-DOS or Windows directories, or Macintosh folders,
you will have no surprises (well, not many), so we won’t describe them in any detail.

When you log in, your home directory becomes your current directory. To inspect
your list of files in the current directory, use the instruction ls :

340 Doing things with Unix : page 9.

% ls
340
c
disability
neural
tex
%

What happened to .cshrc ? It's a perfectly legitimate file name, but the ls instruction
doesn't normally list names which begin with fullstops. You can make it do so by adding
the “flag” –a – so, starting from my home directory :

% ls –a
. -- “.” always means this directory.
.. -- “..” means the parent of this directory.
.cshrc
.history
.login
.plan
340
c
disability
neural
tex
%

(Those are edited lists, obtained with some trickery to illustrate the point; there are quite a
lot of files with names beginning with fullstops, conventially each giving initial
parameters for some operation of the system.)

To begin with, your home directory is all you have. You can make new directories
within your current directory using the mkdir instruction :

mkdir test

makes a new directory called test. To change your current directory, use the instruction
cd :

cd test

If you want to find out what your current directory is, use pwd (for "print working
directory" – absolutely nothing to do with passwords) :

% pwd
/users/staff/alan/test
%

The new directory appears in your directory listing :

340 Doing things with Unix : page 10.

% ls
340
c
disability
neural
test
tex
%

To distinguish between directories and files, add the “flag” –l :

% ls –l
total 2173
drwxr-xr-x 6 alan staff 8192 Dec 22 1995 340
drwxr-xr-x 6 alan staff 8192 Dec 27 1995 c
drwxr-xr-x 2 alan staff 8192 Jul 16 11:23 disability
-rw-r--r-- 1 alan staff 29696 Mar 10 10:55 neural
drwxr-xr-x 4 alan staff 8192 Dec 4 1995 test
-rw-r--r-- 1 alan staff 2118823 Apr 30 15:36 tex

The cryptic first column lists various properties of the item; the first letter is d if it’s a
directory, and the rest are to do with protection. They’re in three groups, one for the file’s
owner, one for a group, and one for everyone else. “-” means no access; “r”, “w”., and
“x” mean access is permitted for reading, writing, and executing the file. The item for
neural is protected thus :

owner
(u, for user)

group
(g)

anyone else
(o, for other)

- r w - r - - r - -
not a

directory
owner

may read
owner
may
write

owner
may not
execute

group
may read

group
may not

write

group
may not
execute

other
may read

other
may not

write

other
may not
execute

For a directory, the significance of “x” is different : it means that people in the appropriate
category can search the directory. The other items retain the same meanings as for files.

To change the protection parts, use chmod. Here are some examples :

chmod u-w neural Remove (–) permission for the owner (u)
to write (w) to the file neural.

chmod a+x tex Give (+) permission for everyone (u + g +
o) (a) to execute (x) to the file tex.

chmod o-x 340 Remove (–) permission for others (o) to
search (x) the directory 340.

There are many simple file operations which you can use to organise your files in
sensible ways. Here are a few examples. You can delete a file with rm (remove) :

rm tex

340 Doing things with Unix : page 11.

but to delete a directory you use rmdir :

rmdir test

Use mv (move) to change the name of a file :

mv neural anothername

It’s “move” because it will move the name from one directory to another if you give it that
sort of information :

mv neural test

moves the file neural to the directory test, while

mv neural test/anothername

both moves the name and changes it.

Shell scripts – which is to say, command files.

A command file is a series of operating system instructions stored in a file, which
amounts to a programme to be executed by the operating system. A Unix command file is
called a shell script, doubtless, though not necessarily, for some reason. As you would
expect, it is executed by the shell; as the shell is an ordinary (more or less) programme,
driving it from a file instead of from the keyboard is exactly analogous to redirecting a
programme’s input “file” from keyboard to disc file.

Here’s a rather trivial example. Suppose that you had some conscientious objection
to using Unix pipes. (Or perhaps your “|” key doesn’t work.) Here’s how you could
make a shell script to do the same job as the example we gave for looking at the man page
for passwd :

% cat > nopipes -- Make a file called nopipes.
man passwd > notapipe
more < notapipe
rm notapipe -- followed by <ctrl-D>.
% chmod u+x nopipes -- Make the file executable.
% nopipes -- Execute it.

passwd(1) passwd(1)

NAME
 passwd, chfn, chsh – Changes password file information

SYNOPSIS

..... etc.

340 Doing things with Unix : page 12.

Editing.

Using cat is a convenient way to make or inspect a little file, but for a much larger one we
need an editor. The standard Unix editor is v i. It isn't very exciting, but it works. Other
editors are available – it doesn't matter which you use, but v i is the standard.

Here are some elementary instructions which will probably suffice for the 340
exercises. There is a great deal more to v i, some of which you will need if you want to
use it on bigger files; refer to an appropriate textbook for more information.

To edit the file newfile :

vi newfile

The contents of the file are displayed on the screen. With an extraordinarily boring
newfile, you could therefore end up with a screen looking like this :

This is the first line.
This is the second line.
This is the last line.

with a cursor positioned at the first character. You can move the cursor with the arrow
keys on the keyboard. Move the cursor to the first t; then enter “iabsolutely ”̀.
(Don’t enter the quotation marks – they’re to identify the ends of the string.) The i
means "insert characters", and the ` means "stop inserting characters". Between the i and
the ̀ the editor is in insertion mode; every character you enter (except `) is written into
the file. (If you want to enter a character ` from the Macintosh keyboard, press and
` together.) You have to leave insertion mode before you can give any further
instructions to the editor. The result is :

This is absolutely the first line.
This is the second line.
This is the last line.

Move the cursor to the l of last, and enter xxxxx :

This is absolutely the first line.
This is the second line.
This is the line.

Move the cursor to anywhere on the second line, and enter “oThe third line.̀ ”. The o
means "Make space for a new line after this one, and start inserting characters into it". (If
you use O instead of o, the new line is inserted before the current line.) The result is :

This is absolutely the first line.
This is the second line.
The third line.
This is the line.

Move the cursor back to the second line, and enter dd. This deletes the current line; the
result is :

340 Doing things with Unix : page 13.

This is absolutely the first line.
The third line.
This is the line.

You can save the file at any time – provided that the editor is not in insertion mode – by
entering :w (for write). When you enter the colon, the cursor jumps to the bottom of the
screen. Do not be dismayed; v i remembers where it was, and puts it back for you when
the operation is finished. Other operations of this sort include :q to leave v i (or :q! if
the file has been changed and you don't want to file the changes), and :x to save the file
and leave v i.

Printing files.

To print a file called filename, use :

lpr filename

(That works at the city campus, where all the printers work as a single system. At
Tamaki, you have to identify the printer – so “lpr –p <printername>“ instead of just lpr,
with similar specifications for the other printer instructions below. The printer names are
on the printers – look at the closest one, and use that, unless you want to send your files
somewhere inaccessible.)

The file will be queued for printing. When you are ready to collect the printed copy, go to
the printer room and pass your student identity card through one of the barcode readers. A
list of your queued files should then appear on the associated computer screen, and you
can select those you wish to have printed. Any you don't select will be deleted. If there’s
a long queue, you might prefer to wait; you can inspect the queue with the instruction

lpq

That will give you a list of jobs waiting to be printed, each identified by a number. If you
want to delete one of your jobs from the queue, use

lprm <number>

You can’t delete anyone else’s jobs.

340 Doing things with Unix : page 14.

FURTHER INFORMATION.

There are some ancient standard books; the classic is

S.R. Bourne : The Unix system (Addison-Wesley, 1983).

Another, much more explanatory, and with more examples, is

M.G. Sobell : A practical guide to the UNIX system (Benjamin Cumings,
1984).

It's quite likely that there are newer ones, but Unix, almost alone among practical
operating systems, doesn't change; it grows, but the basics are rock-steady. (It doesn't
necessarily always look the same, because the shell you use can make a difference, but
that's a matter of learning the shell you have.) For me, that's its biggest advantage.

There is a fair amount of Unix information on the WWW server; a good place to start is
http://www.cs.auckland.ac.nz/tech-support/software/unix/, which includes links to
several interesting sources.

Alan Creak,
July, 1998.

