How

Computer Science 340
Operating Systems
DOING THINGS WITH UNIX

CAVEAT : these notes should be sufficient to get you through the 340 assignments on
Unix. They are not intended to be a complete, or even adequate, description of the
system for general use.

AND FURTHERMORE : some of the details depend on the Unix implementation you
use, and the systemin which it isrunning, so using Unix in the city is not quite the
same as using Unix at Tamaki. The examples were designed at the city site, so reflect
circumstances there, but there will be differencesin detail with different systems— or
even with the same system, as things evolve. We think these notes are more or less up
to date, with significant variations mentioned where it seems appropriate, but if you
come across something you think it would be helpful to include please let us know.
You might like to know for later reference that “ Bash is ultimately intended to be a
conformant implementation of the [EEE POS X Shell and Tools specification (IEEE
Working Group 1003.2)” .

(The material hereis part introduction and part examples of things you’ll come across
later in the course. Don't worry too much if some of it seems hard to absorb; unless
you've learnt about it before, there is quite a bit which you might not understand until
some way through the semester. Y ou should understand the instruction parts; if not, ask a
laboratory demonstrator.)

Unix starts.

When a Unix system isfirst set into action, it starts a process using a programme called
init, which then starts a copy of itself for each terminal attached. When anything happens
at theterminal, init looks after the details of the logging-in operation. If the login is
completed satisfactorily, init starts a shell (which is just a special sort of programme,
written to accept instructions from the terminal, and to run other programmes as required
by the instructions), and then dies, leaving the shell to look after the rest of the terminal
session. When the session is over, the shell dies, and the original init waits for the next
login.

The shell reads all the instructions you enter at the terminal, and executes them,
commonly by starting a new process. The shell then waits for the new process to die —
that is, for the programme it is running to end — then once more awaits instructions.

There are several common shells, with names like Bourne shell, C shell, and Bash.
(Not “Bash shell” —“Bash” stands for “born again shell”, so you needn’t say “shell”
again afterwards.) They are dlightly different. It has been customary to use the C shell in
the city and Bash at Tamaki; the programme which init runs to implement the C shell is
cdl csh, and to implement Bash it runs bash. All these shells are generally similar, each
exhibiting certain features which are supposed to be good. We have no particular
preference which one you use, unless it turns out that the assignments are ridiculously
easier in one than in the others, when we'll insist that you do it the hard way. We'll let
you know if we need to.

As part of the system's logging-in process, it tries to find its knowledge about you.
Obviously, the system has to store your login name and your password (or something
equivalent) somewhere, and it also remembers afair amount of other information. An

340 Doing things with Unix : page 2.

important part of that is your home directory, which isthe way in to all the files you own
in the system. When you log in, this directory is set up as your current directory; we shall
see what that means later.

Logging in for thefirst timein the city. (If you’ ve already done some of this, you needn’t
repeat it.)

. First find your login name and initial password. Go to a printer (preferably in the
Computer Science department, but the Mathematics printers will work too if you
take Mathematics papers) and pass your identity card through the reader. The
screen will show your login name and show one page to print. You MUST print
this page. It has on it the rules of the laboratory and your initial password. If you
don't print the page then something will happen which is so nasty that no one has
told me any details. Y ou should then go to a booking terminal and change your
password. Then, and only then, will you be able to use Unix.

. Book a Macintosh in the usual way.

. The communications between your Macintosh and the processors running the Unix
system are handled by a programme called telnet. Double-click on the telnet icon
to starttelnet. Then select "Open connection ..." from the file menu, and enter the
name of the processor you want to use where the "session name" is requested.
(You can use any of those available to you, which are at the moment essentially
€s26; others might be possible in principle, but cs26 is strongly preferred.) Y ou
can enter anything you like as a"window name", including nothing at all. Then
click on "OK".

. After afew seconds, your screen should display a window, with some text ending
with | ogi n. The Macintosh has transformed itself into your Unix terminal.

. Enter your login name. Then enter your password, when requested.

Logging in for the first time at Tamaki.
It isn’t so easy to give general instructions, as there are several different waysto do it.
Y ou don’'t need to book terminals - you just find one and useiit. All being well, you'll find
instructions at the terminal.

Once connected —

The sequence (after connecting) looks something like this :

(3 1 (cs20.cs. auckl and. ac. nz) (ttyd0)

logn dan - - here | entered my login name, "d an".
Passvar d - - herel entered my password, which isn't
displayed.

Last logn Mn Feb 27 16:45 3 fromd an. cs. auckl ad
- - should really end "d an. cs. auckl and. ac. nz" .
You have nail . - - Unix tellsmethere is eectronic mail
waiting.
%

340 Doing things with Unix : page 3.

(NOTE : | apologise for the squashed characters; I'm using them because | want to
reproduce reasonably well what actually appeared on the screen when | ran the examples.
If anyone can tell me of a narrower evenly-spaced font it would help.)

The %is the prompt character, meaning that Unix is awaiting instructions. (It might be
something else on your system.)

When you've finished your session, use | ogout to log out from Unix, then select
"Quit" from the File menu to get out of telnet. DO NOT OMIT THE | ogout STEP : if
you do, your Unix session might continue until you do log out, presumably after your
next session, consuming resources which will impair the performance of the system for
other people.

Giving instructions.

Enter the instructions at the keyboard. The first "word" you enter isthe instruction itself; it
may be followed by one or more arguments, usually prefixed with "-". Some examples
appear in the descriptions below. Some of the instructions are built into the shell itself;
they are called internal instructions. All others — which is to say, most — are called
external instructions, and are in fact the names of programmes. Therefore, in most cases a
Unix shell executes a separate programme to obey an instruction.

(Thisisquite aclever trick, because it separates the operating system's terminal
handler from the programmes which do the work. It is therefore (comparatively !) easy
to write anew shell if you don't like the existing version. For example, you might want to
write a shell which presents a graphica interface instead of the C shell's textud
interface.) (NOTE : You are advised not to start writing your own shell until after
completing the 340 course. You are unlikely to have time for both at once.)

Changing your password.

Thisisthe first thing you should do once you have logged in for the first time, so wel'll
use it as an example of how to execute a Unix instruction. Most Unix instructions are the
names of programmes, so if you enter “dribble x y z” Unix will try to find an
executable file (code or command file) called dri bbl e, and execute it passing x y z as
the parameter string. (The exceptions are afew common instructions which are built into
the shell and are therefor executed directly, but we won't worry about the distinction.)
The instruction we want to change the password is passwd (NOT PASS/D, or any other
combination of uppercase and lowercase letters; Unix worries about case). For me,
al an, the dialogue goes like this :

Yopasswd - - herel enter the instruction.

Gang ng pessvord for d an

Qd pessver d - - herel enter my existing password.

Naw passvord (6 to 8 chars): - - here | enter the password | want in future —
Aain - - and here |l enter it again.

Passvord changed

There nay be a dd ay wile the UIN X password dat abese i s updat ed

340 Doing things with Unix : page 4.

Getting information.

A programme called man gives you access to the system manual. To find out about how
to use any of the system instructions, enter nan <nane of instruction>. Here's how
to find out about passwd :

nan passva - - the response below starts on a new page.
pesswel(1) pesswel(1)
NAME

passwd, chfn, chsh — Ghanges passverd file infornation

SNPS'S
pessvd [-f | 5] [usernene]

chfn [user nang)
chsh [user nang]

This security-semsitive comand uses the SA(Security
Integation Achitecture) ratine as aninterface to the
security nechani sns. See the natrix. conf(4) reference page
for nare infornati on.

OESRPION
The passwd conmand changes (or instals) the password
associated wth your usernane (by defaut) o the spec -
fied usernane.

The chfn command changes the finger infornation in the
@S fiddassociated wth your usernane o the specified
usernane. (EIBis an dsd ete term but refers to the
finger infornation fidd of the passwl structure as
definedinthe prd h file and the finger infornation fied
o the /etc/passwd file as described in the passwl(4) ref-
erence page. Theinfornation inthe G35 fid d has been
fornalized by OB X and is a coma separated |ist cota n
ing the user's ful nane, ofice phone, office nunber, and
hone phone nuntver .

.... and much, much more — see below.
To get out of man, enter q.

man can also help if you don't know what's available which might be relevant to a
topic. If you enter nan —k <keywor d>, (or apropos <keywor d>, which is equivalent,
debateably more comprehensible, and one keystroke longer) it will display alist of all
entriesin the on-line manual which mention the <keywor d> in their short descriptions. It's
up to you to find the entry you want !

340 Doing things with Unix : page 5.

%nan —k passvord
acceptad e password (3) — Determines if a password neet's deducti on requi renent s
(Ehanced Security)

coflict (8 —search for dias/passvord coflicts

dscrypt (3 —encrypt a pessword, d spet chi ng based on the associ ate
d a gori t hm(Bhanced Security)

d sperypt (3 —encrypt a password, d spet chi ng based on the associ ate
d a gori thm(Ehhanced Security)

axchpnd (11 — Ceate o change passvord program

npuae praected password dat abese entry (Enhanced Security)

get pess (3 ~ — Reads a pessvord |

oetprvent, getprpwi d, getprpawam putprpwam(3) — Mnipul ate protected pessw
ord det abese entry (Bhhanced Security)

lock (1) — Requests ad verifies a user password

| ocked out_es (3 — deternine i f passvor d-nanagenent disallovs user logn
(Enhanced Security)

passl en (3 — Deternnnes min nompassvord | ength (Bnhanced Security)
passwd (4) — Password files

pesswd, chfn, chsh (1) — Ganges passvard file infornation

popwd (8) — Sats password for a ROP subscri ber

printpy (8 — Qitpus the cotents o the password dat abase

..... and some more.

The numbersin brackets identify different sections of the manual; you need them to
find entries which are not the first listed for the keyword. So

%nan 4 passwd

gives you something which starts like this:

pessvel(4) pessvel(4)

NAME
passwd — Passvard fil es

OESRPION
Apasswd fileis afile cosisting of records separated by
newine characters, one record per user, cotaining seven
cdon (:) separated fiddds. These fid ds are as fd | ovs:

..... and much, much more.

About “much, much more”.
- or, at least about nor e. You will not be surprised to know that we are not the first people
to notice the inconvenience of the torrent of information which washes over the screen

when you enter something like “ man passwd”. Indeed, not only has someone noticed, but
someone has done something about it. To see what thisis, enter :

%nan passwd | nare

Files.

340 Doing things with Unix : page 6.

The effect of the | (which denotes what is called a pipe) is to take the output from
whatever isto the left (in this case passwd), and to redirect it from the screen to
whatever is on theright (in this case another programme called nor e). The output from
nor e naturally goes to the screen — unless, of course, you redirect it somewhere else with
another pipe. Y ou can chain alot of programmes together with pipes like thisto form
what is (inevitably) caled a pipeline. The result obviousy depends on the
programmes concerned, but with the example given what appears on the screen is:

pessvel(1) passve 1)

NAME
pesswd, chfn, chsh — Ganges passvard file infornation

SN S
pessvd [-f | —] [usernene]

chfn [user nang]
chsh [user nang)

Ths security-semsitive comand uses the SA(Security
Integration Achitecture) routine as an interface to the
security nechanisns. See the natri x. conf(4) reference page
for nore infornati on

ESRPION
The passwd conmand changes (or instals) the password

- and that’s all (unless you have adifferent screen size). When the screen is full,
everything stops, giving you time to read what’ s there. When you'’ re ready for the next
page, press the space bar. Alternatively, try these:

Press space for anew page;

Press f for anew page;

Press b for the previous page;
Press u to go back half a page;
Press d to go forward half a page;
Press q to stop.

Unix files are regarded by the system as ordered sets of bytes; no other higher leve
structure is defined. The ssimplest form of file name isastring of aphanumeric, and afew
more, characters. More complicated names can be composed as a sequence of simple
names separated by /; this name structure reflects the organisation of the files in a
hierarchic directory.

There are severa waysin which Unix can interpret afile name which you enter at
your terminal. Thisisn't just to make life complicated; it's also to make it simpler. The
reason for the variety is that you want to use fileswhich live in different places. Y ou

340 Doing things with Unix : page 7.

certainly want to use your own files, which live in your own directories, out of sight of
anyone else; but you also want to use the system files, which live in the system
directories, and can be seen by everybody. Whenever you give afile name, therefore, the
system will first look for it in your current directory, and then in appropriate system
directories. The sequence of directories inspected is called the search path, and is specified
inafile (inyour directory) called .cshrc, which you can inspect and change if you
wish. (' Just use an ordinary editor.) Only if the system can't find the file anywhere in
this search path will it report failure.

Y our home directory in the city is /user s/studs/ugrad/stage3/yourname; at
Tamaki, it depends which system you're using. (If you want to know, use prd — see
below.) That becomes your current directory when you log in. If it were not for the
search path, you would have to type /users/ st uds/ ugrad/ st age3/ your nane/ xyz
whenever you wished to use afile xyz in your directory.

Using files.

The simplest way to make afileisto use a programme called cat, which is short for
catenate, which means chain together, which is quite inappropriate in this context. This
illustrates a Unix habit, a delight to its devotees and a pain to everyone else, of putting
general programmes to particular purposes which are not obvious from the programmes
names. (Try nan cat for more details.)

To understand the instruction we shall use, we must first find out about file
redirection — but before even that (zeroth ?), we shall indulge in some propaganda. In
most of this*“Using files’ section, we'll be talking about streams rather than files. We'll
call them files, because that’s common, and it’swhat you' Il find in Unix literature, but in
the 340 course materid we shall try to distinguish fairly carefully between the two
structures. Here, we'll mark something we think is a stream by quotation marks. The
distinction issimple. A file is composed of data standing still; it is a set of dataitems
connected together into some sort of structure, and usually persistent — it sits there on a
disc or other medium until you want it. In contrast, a stream is composed of data moving
about; it is a set of data connected primarily by sequence in time, and usually not
persistent — if you don’t catch the items as they come, they are likely to be lost. The
things we connected together by a pipe are primarily the input and output streams of the
programmes we use. Bearing that in mind, then, we proceed.

Unix programmes generally have two specia “files’, called the standard input and
standard output, which are normally identified with the keyboard and screen, respectively.
If you just give the instruction cat by itself, you haven't specified any alternative input or
output “files”, so the programme copies from keyboard to screen. Furthermore, it will
keep on doing so until it finds the end of itsinput “file” — so you will need to know that
Unix sees <ct r| - D> as the end-of -file signal from aterminal.

We can use afile asinput in place of the usual “file” by appending its name to the
cat — so cat xyz will takeitsinput from the disc file xy z and send it to the (assumed)
output “file”, the screen. That's away to look at a small file on the screen. If wetry cat
xyz uvw rst, then we will see the three files xyz, uvw, and rst displayed on the
terminal in sequence. There at last isthe catenation.

340 Doing things with Unix : page 8.

We can aso redirect the standard output to adisc file. The instruction

cat xyz uvw rst > abc

will direct the chained output to the disc file abc, replacing any existing file of the same
name. Y ou could write the new material to the end of an existing file abc with

cat xyz uvw rst >> abc

What we want, though, is to copy from the keyboard to adisc file. What happens during
the session fragment below should now be clear.

%cat > newiile ?-- Copy from keyboard to afile called newfile.
Thisisthefirst lire
Thisisthe secod line

Thsisthelast lire - - After thisline, | entered <ctrl -D».
%cat newile - - Copy from afile called newfile to the
screen.

Thisisthefirst lire
Thisis the secod |ine
Thsisthelast line

%

We can redirect input “files’, too. The xyz part of cat xyz above is an argument to
cat; cat readsit, and itself switches from the keyboard to the named file for inpuit.
Generally, as you would expect, what programmes do with their argumentsis up to the
programmes. But whatever the programme does, you can instruct the system to use a
different “file” for input. If you enter cat < xyz, the result isjust the same as for cat
xyz. Now, though, you are using this input “file’ redirection technique; cat has no
parameters, and therefore still uses the standard input, but the system has changed the
source of the standard input to be the file xy z instead of the keyboard. To emphasise that
there is adifference, consider what happens if you enter cat < xyz uvw rst : uvw
and r st are displayed on the screen. Why ? Because first the “< xyz” defines xyz as the
standard input, but then the presence of two arguments, uvw and rst, causes cat to
replace its standard input by these two files, as described earlier.

Doing things with files,

Now we shall introduce a number of operations which apply to files themselves. These
don’t do anything to the contents of thefile, like those we mentioned above, but they’'re
useful for managing — particularly — disc files. Most of these really are files, not streams.

Files are kept in directories. (Strictly, they’re subdirectories; the directory isthe
whole list of files for the disc, but the “sub” is usually dropped and everyone seems to
understand.) If you're used to MS-DOS or Windows directories, or Macintosh folders,
you will have no surprises (well, not many), so we won'’t describe them in any detail.

When you log in, your home directory becomes your current directory. To inspect
your list of filesin the current directory, use theinstruction| s :

340 Doing things with Unix : page 9.

%l s

340

c
dsdality
neurd

tex

%

What happened to .cshrc ? It's a perfectly legitimate file name, but the | s instruction
doesn't normally list names which begin with fullstops. Y ou can make it do so by adding
the “flag” —a — so, starting from my home directory :

%ls a

- - “.” aways meansthis directory.

. - “..” meansthe parent of thisdirectory.
.cshre
histay
Jdagn
.plan

340

c
dsablity
neur a

tex

%

(Those are edited lists, obtained with some trickery to illustrate the point; there are quite a
lot of files with names beginning with fullstops, conventially each giving initia
parameters for some operation of the system.)

To begin with, your home directory is al you have. Y ou can make new directories
within your current directory using the nkdi r instruction :

nkd r test

makes a new directory called test. To change your current directory, use the instruction
cd :

cd test

If you want to find out what your current directory is, use pwd (for "print working
directory" — absolutely nothing to do with passwords) :

Yopvel
/users/staff/d an/test
%
The new directory appearsin your directory listing :

%l s

340

c
dsdality
neurd

test

tex

%

To distinguish between directories and files, add the “flag” - :

%l s -

tad 2173
OF VKT - XT - X
oFWKr - Xr-x
OF VKT - XT - X
-rWr--r--
o VKT - X - X
-TWr--r--

340 Doing things with Unix :

6dan
6 dan
2dan
ldan
4 dan
ldan

staff
staff
staff
staff
staff
staff

page 10.

8192 Dec 22 1995 340
8192 e 27 1995 C
8192 Ju 16 11: 23 disdhility
20606 Mir 10 1055 reurd
8192 Dic 4 1995 test

2118823 Ar 30 15 3 tex

The cryptic first column lists various properties of the item; the first letter is d if it’s a
directory, and the rest are to do with protection. They’re in three groups, one for thefile's

owner, one for agroup, and one for everyone else.

“-" means no access; “r’, “w” ., and

“X” mean access is permitted for reading, writing, and executing the file. The item for
neural is protected thus:

owner group anyone else
(u, for user) (g) (o, for other)

- r w - r - - r - -
nota | owner| owner| owner| group| group| group| other| other | other
directorymay reafl may | may no{may reagl may nof may nofmay reafl may nop may nog

write | execute write | execute write | execute

For adirectory, the significance of “x” isdifferent : it means that people in the appropriate
category can search the directory. The other items retain the same meanings as for files.

To change the protection parts, use chmod. Here are some examples :

chnod u-w neur al

chnod a+x tex

chnod o-x 340

Remove (—) permission for the owner (u)
to write (w) to thefile neural.
Give (+) permission for everyone (u+ g+
0) (a) to execute (x) to thefile tex.
Remove (—) permission for others(0) to

search (x) the directory 340.

There are many simple file operations which you can use to organise your filesin
sensible ways. Here are afew examples. You can delete afilewithrm (remove) :

rmtex

340 Doing things with Unix : page 11.

but to delete adirectory you usermdir :
rnai r test

Use mv (move) to change the name of afile:
mv neura anot her nane

It's“move’ becauseit will move the name from one directory to another if you giveit that
sort of information :

m neurd test

moves the file neura to the directory test, while

nv nera test/anot her nane
both moves the name and changesiit.
Shell scripts—which isto say, command files.

A command file is a series of operating system instructions stored in a file, which
amounts to a programme to be executed by the operating system. A Unix command fileis
called a shell script, doubtless, though not necessarily, for some reason. As you would
expect, it is executed by the shell; asthe shell is an ordinary (more or less) programme,
driving it from afile instead of from the keyboard is exactly analogous to redirecting a
programme’ sinput “file” from keyboard to disc file.

Here' sarather trivial example. Suppose that you had some conscientious objection
to using Unix pipes. (Or perhaps your “|" key doesn’t work.) Here’'s how you could
make a shell script to do the same job as the example we gave for looking at the man page

for passwd :
%cat > nopi pes - - Makeafilecaled nopi pes.
nan passwd > not api pe
nore < notap pe
rmnot apl pe - - followed by <ctrl-D».
%chnad X nopi pes - - Makethefile executable.
%nopi pes - - Executeit.
pessvel 1) pessvel(1)
NAME

pesswd, chfn, chsh — Ganges passvard file infornation

SINS S

340 Doing things with Unix : page 12.

Editing.

Using cat isaconvenient way to make or inspect alittle file, but for amuch larger one we
need an editor. The standard Unix editor is vi. It isn't very exciting, but it works. Other
editors are available — it doesn't matter which you use, but vi is the standard.

Here are some elementary instructions which will probably suffice for the 340
exercises. Thereisagreat deal moreto vi, some of which you will need if you want to
useit on bigger files; refer to an appropriate textbook for more information.

To edit thefilenewfile :
vi nefile

The contents of the file are displayed on the screen. With an extraordinarily boring
newfile, you could therefore end up with a screen looking like this :

Thsisthefirst line
Thisisthe secod line
Thisisthelast line

with a cursor positioned at the first character. Y ou can move the cursor with the arrow
keys on the keyboard. Move the cursor to the first t ; then enter “i absol utely 7.
(Don't enter the quotation marks — they’re to identify the ends of the string.) The |
means "insert characters'’, and the ~ means "stop inserting characters'. Betweenthei and
the theeditor isininsertion mode; every character you enter (except =) iswritten into
thefile. (If you want to enter acharacter ~ from the Macintosh keyboard, press and

together.) You have to leave insertion mode before you can give any further
instructions to the editor. Theresult is:

Thisis adsdudythefirst line
Thsisthe secodline
Thisisthelast lire

Movethe cursor tothel of | ast, and enter xxxxx :

Thisis adsdudythefirst line
Thsisthe secodline
Thisistheline

Move the cursor to anywhere on the second line, and enter “oThe third line. ”. Theo
means "Make space for anew line after this one, and start inserting charactersinto it". (If
you use Oinstead of 0, the new lineisinserted before the current line.) Theresult is:

Thsis dsdudythefirst line
Thisis the secod line

The third line

Thisistheline

Move the cursor back to the second line, and enter dd. This deletes the current line; the
resultis:

340 Doing things with Unix : page 13.

Thisis adsdudythefirst line
The third line
Thisistheline

Y ou can save thefile at any time — provided that the editor is not in insertion mode — by
entering :w(for write). When you enter the colon, the cursor jumps to the bottom of the
screen. Do not be dismayed; vi remembers where it was, and puts it back for you when
the operation is finished. Other operations of this sort include :qto leave vi (or :q' if
the file has been changed and you don't want to file the changes), and :x to save the file
and leavevi.

Printing files.
Toprint afilecalled filename, use :

[pr fil enane

(That works at the city campus, where all the printerswork as a single system. At
Tamaki, you have to identify the printer —so “l pr 4o <ori nternang>" instead of just | pr,
with similar specifications for the other printer instructions below. The printer names are
on the printers —look at the closest one, and use that, unless you want to send your files
somewhere inaccessible.)

Thefile will be queued for printing. When you are ready to collect the printed copy, go to
the printer room and pass your student identity card through one of the barcode readers. A
list of your queued files should then appear on the associated computer screen, and you
can select those you wish to have printed. Any you don't select will be deleted. If there's
along queue, you might prefer to wait; you can inspect the queue with the instruction

I'pg

That will giveyou alist of jobs waiting to be printed, each identified by a number. If you
want to delete one of your jobs from the queue, use

| pr m <nuniber >

You can't delete anyone else’ s jobs.

340 Doing things with Unix : page 14.

FURTHER INFORMATION.
There are some ancient standard books; the classicis
S.R. Bourne : The Unix system (Addison-Wesley, 1983).
Another, much more explanatory, and with more examples, is

M.G. Sobell : A practical guide to the UNIX system (Benjamin Cumings,
1984).

It's quite likely that there are newer ones, but Unix, amost alone among practica
operating systems, doesn't change; it grows, but the basics are rock-steady. (It doesn't
necessarily always ook the same, because the shell you use can make a difference, but
that's a matter of learning the shell you have.) For me, that's its biggest advantage.

Thereisafair amount of Unix information on the WWW server; agood placeto start is
http://www.cs.auckland.ac.nz/tech-support/software/unix/, which includes links to
several interesting sources.

Alan Creak,
July, 1998.

