
Computer Science 340

Operating Systems

1995 EXAMINATION : ANSWERS AND NOTES.

Material in this font was added after marking the scripts.

It seems that an increasing proportion of stage 3 computer science students are illiterate to the extent
of being unable to read the text on the front of the answer book. It says, on every answer book :

"Begin the answer to a new question on a new page".

QUESTION 1.

(a) The file must have two components :

1 : The file attributes, which describe various properties of the file;
2 : The file data, where the contents of the file are stored.

The operating system must manage the attributes, so that it knows the properties of the file when it needs
them to do things to the file. It need not know about the contents of the file, but it must manage the
space where the contents are stored, in order to control disc use effectively.

To find the file, its name is sought in some sort of table maintained by the operating system and usually
stored on the file volume with the files. From other information associated with the name in the file table
it is possible to find the position on the disc of each component of the file. (Commonly the file
attributes are stored in the table, together with the information needed to find the file data, but other sorts
of file organisation are not uncommon.)

A Macintosh file has a third component :

3 : The resource branch, which contains various items used by the file but not properly part of the file
data.

Not everyone stated that the system had to manage the file data !

Several people answered that the Macintosh file was different because it appears
on the screen as an icon. That got no marks, because isn't a property of the file.
(It's a property of the system.)

As always, people didn't read the question. I asked for the components of a disc
file; far too often, I was given the components of a disc system – file tables,
directory structures

(b) The principle of an object-oriented file system is that each file should (in some sense) include methods
for performing any applicable operation on itself. In practice, the same method can often be used for many
files of the same type, so it is not sensible to store an individual copy of the instructions with each file.
Instead, files are grouped into classes, with the methods stored in association with class structures rather
than with individual files where possible.

This file organisation simplifies the user interface because it is no longer necessary to remember the
details of any procedure used to perform an operation on a specific file. Any plausible instruction can be
issued in respect of any file, and, if it's possible, the file itself will "know" how to perform the required
action.

The diagram below illustrates how files of different types may share methods by inheritance. All files are
deleted in the same way, so the delete operation appears as a property of the universal class file; all text
files are printed similarly, but code files cannot sensibly be printed, so the print method must appear
lower in the hierarchy; different methods of execution must be used for different sorts of executable file, so
code files and command files have separate execution methods.

340 Examination, 1995 : Answers : page 2.

Class :

Exec :
Print :

Del :

Class :

Exec :
Print :

Del :

Class :

Exec :
Print :

Del :

Class :

Exec :
Print :

Del :

Class :

Exec :
Print :

Del :

data

Class :

Exec :
Print :

Del :

data

Class :

Exec :
Print :

Del :

data

ordinary code file : ordinary text file : ordinary command file :

code file :

command file :

text file :

file :

method

method

method

method

The important feature of an object-oriented file system isn't the classification or
inheritance; it's that the methods are associated directly with the files. The
structures are (very effective) means of implementing this important feature, and
should certainly be included in "the ideas behind an object-oriented file system".
(I gave marks for answers which stressed the structural aspect, provided that they
made sense, and made some non-trivial reference to methods.)

Several people missed out the bit about the user interface.

An object-oriented file system is not the same as an object-oriented interface. The
"select-and-click" interface design can be combined with a quite conventional file
system (as in the Macintosh).

I gave you three operations to use in your description so that you could show how
different sorts of grouping could be implemented by defining appropriate classes
of file. People who didn't do that received fewer marks; it's one of the more
important properties of the object-oriented system.

(c)

Likewise, people who didn't use the class structure in their answer to this part of the
question got fewer marks. That isn't arbitrary; for separation of function it's important
that the programme (in this case, the core) only needs to know the class to be
associated with the files it produces. Changing the methods should be an
operation on the class, not on the core programme or the files.

Rather similarly, I gave benefit of doubt in some cases where there was some
suggestion that the core programme would know about the printing. The printing

340 Examination, 1995 : Answers : page 3.

utility is separate, so there's no reason at all why the core programme should be
involved in a print request.

(i) A new class must be constructed, presumably as a subclass of some existing class, which identifies
the core programme and utility as its editing and printing methods. The core programme must
know the identity of this class (number, name, disc address, or whatever, as required by the
system) so that it can make the link from its new files to the correct class.

Class :

Edit :
Print :

Class :

Print :

data

Edit :

core1

utility1

package1 files :

any package1 file :

People thought of many interesting things which the core programme had to know,
but very few thought of the class of the constructed file. As that is the one thing it
needs to know which is unique to the object-oriented system, the others didn't get
so many marks. (A possible alternative is the identities of the files which implement
the methods, but the class is better.) I accepted (almost) any suggestion that
the core programme had to know something to put into the file in some way to link it
into the object system.

The Macintosh system uses the identity of (usually) the parent programme as the
class, but that's a cheap way out, and doesn't lead to a satisfactory object-oriented
system. How do you manage a hierarchy ?

(i i) The class structure must be reorganised so that there are two file classes, each inheriting the same
core programme (core2), but with different printing utilities. New files will be associated with
the new printing utility.

340 Examination, 1995 : Answers : page 4.

Class :

Edit :
Print :

Class :

Print :

data

Edit :

utility2

Class :

Edit :
Print :

Class :

Print :

data

Edit :

utility1

Class :

Edit :
Print :

core2

package1 files :

any package1 file :

package2 files :

any package2 file :

all package files :

(There are several other possibilities, but I thought that one was the most obvious. Anything
which preserves the principles of the object-oriented system will do. A rather neat alternative is to
regard the old files as a special subset of the new files :

Class :

Edit :
Print :

Class :

Print :

data

Edit :

utility2

Class :

Edit :
Print :

Class :

Print :

data

Edit :

utility1

core2

package1 files :

any package1 file :

any package2 file :

all package files :

Once the old files have all gone, their branch of the tree can be removed, leading back to the
original state.)

Many people said something about how to manage the printing programme, but
didn't say what should be done with the new core programme.

An example of not using the class structure : "All files that were created by the old
core programmes must have [their] methods changed to the methods for the new
one ...". Another, quite common : "Any requests to the old package must be
redirected to the new package" – with no indication of how that is to be achieved.

It's curious that many people who enthusiastically commended the possibility of
associating different methods with different files in part (b) busily tried to avoid
doing just that here.

340 Examination, 1995 : Answers : page 5.

(i i i) The same structure must be maintained to cater for the old files, but their printing method
must be replaced by something. It is sensible to insert a small programme explaining what's
happened, and giving advice. ("Edit the file with the new core programme, and store it again.")

Class :

Edit :
Print :

Class :

Print :

data

Edit :

utility2

Class :

Edit :
Print :

Class :

Print :

data

Edit :

show message

Class :

Edit :
Print :

core2

package1 files :

any package1 file :

package2 files :

any package2 file :

all package files :

Pictures are not always worth a thousand words, but in this part of the question they
were often worth a few marks. Some people stuck to verbal descriptions, and left
me unsure of whether they understood what they were doing; a simple diagram
would have made it clear – though perhaps that wasn't what they wanted !

Many people wrote statements such as "the core programme must be inserted in
the class hierarchy". If that means that the core programme is identified as the
editing method of a class in the hierarchy, that's right, but why didn't you say so ?

Others wanted to define classes of printable and editable files; the point about the
object-oriented system is that all files are potentially both printable and editable,
because it must always be possible to deal with print and edit requests. If in fact a
file can't be printed, then its "print" method must be some sort of error indicator, but
it's still there.

A surprising number of people insisted that all the files should be reformatted,
including those off-line. They didn't say how that was to be managed. It is important
to understand that an operating system must be designd to deal with reality.

Another answer to this part can be obtained by defining "something" in my answer
in a different way : you could construct a new method which used the core
programme to change the old files into new files, then print them using the new
printer. Some people suggested that, and got the marks. I'm not sure whether
that's better because it's automatic, or whether my way is better because there
might always be someone who wanted the old format for some special reason.

One suggestion : "But why not keep the old one ? It can't take up all that much
space...". Well, I don't know – perhaps the ancient printer finally broke down. How
about I set the questions, and you answer them ?

QUESTION 2.

340 Examination, 1995 : Answers : page 6.

(a) Four values for the action parameter are conventionally distinguished, two (get and put) for data transfer
and two (control and status) for administration.

Get requests transfer of data from the stream identified in the fileidentifier into the data area.
The returned value of the resultdescriptor shows what happened during the operation.

Put requests transfer of data from the data area to the stream identified in the fileidentifier . The
returned value of the resultdescriptor shows what happened during the operation.

Control requests the execution of some instruction on the stream (or the file or device associated with the
stream) identified in the fileidentifier . Details of the instruction may be defined in some
structure passed through the data parameter. The returned value of the resultdescriptor
shows what happened during the operation.

Status requests information about the stream (or the file or device associated with the stream) identified
in the fileidentifier . Details of the request may be defined in some structure passed through
the data parameter, and the result may be returned through the same parameter. The returned value
of the resultdescriptor shows what happened during the operation.

Different interpretations for different devices are achievable by associating procedures which handle the
requests with the different device types in the device table. To deal with any of its requests, DOIO first
finds the device associated with the stream using the file information block, and then uses the get, put,
control, or status procedure supplied for the device in the device table.

I didn't insist on the set of operations given in the answer, but I did insist on a
complete set – which does require that there should be means for issuing arbitrary
instruction and requesting arbitrary information.

Most people (not all) got get and put (or read and write); many fewer got
control and status, or anything equivalent. Instead, they started on a long list, often
beginning seek, open, close, There are two reasons why the list won't do :
first, it's hard to give a complete list, because it depends on what devices you're
using; and, second, it can't possibly cater for all future eventualities, so it's a bad
basis on which to build a stable system. Apart from that, open is questionable
anyway, if you're implementing DOIO with a device table : it can't be handled by the
ordinary method because the file information block isn't complete. I'd have
accepted it if anyone had noticed that and commented accordingly, but no one did.
(Consider the implementation : if the first parameter isn't always some sort of
index into the process's file table, you first have to check the action parameter to
find out what to do – then, if it isn't open (or one or two others which are related)
you have to find the file information block, and the device descriptor, and then use
the action parameter. Yes, it's possible, but it's very messy, and we'd rather not
design systems that way. It would, of course, be nice if people who do design
systems agreed with that point of view.)

I was puzzled by several answers in which certain possible actions were listed in this
part, then another set (sometimes a better set) were used in part (b).

There seems to be a widespread belief that a status request needs no data. While
that would perhaps be possible if the whole device status could be held in a single
variable which could be returned through the resultdescriptor, that's hardly a
reasonable general assumption to make, and it also ties up the resultdescriptor so
that there's no channel for reporting real errors. It's more plausible to use a structure
for the data, in which fields can be set to identify the sort of information required
and to receive the results.

Many answers didn't include anything about the device table or device descriptors.
I wanted some reference to the device table, or something equivalent, for full
marks; if the descriptors were not collected together in some structure, they
wouldn't be much use.

340 Examination, 1995 : Answers : page 7.

(b) (i)

calculate the sector number;

if the sector isn't in the sector buffer

then begin

if another sector is in the buffer

then if it has been changed

then put the resident sector back to the disc;

get the new sector;

end;

change the sector;

put the sector.

(The final put is necessary to ensure that the byte is written to the disc.)

(Apologies for the spelling mistake.)

Why did so many people waste time on telling me how to open a file when the
question states that the file "is open for input and output" ?

- and I'm concerned that so many people don't know that you can't write a single
byte into a disc sector. Apart from its being general knowledge, I talked about it in
the lectures, and it's in the notes (for example, Implementation, page 55).

(i i) The instruction requires a random-access write operation. Given the action s defined above, this
must be performed by a control action to find the correct position in the file, followed by a put
operation.

DOIO(XYZ, control, { seek byte 3376 }, result);

The request is handled by the device's control procedure. It must execute this part of the operation :

calculate sector number;

if sector isn't in the sector buffer

then begin

if another sector is in the buffer

then if it has been changed

then put the resident sector back to the disc;

get the new sector;

end;

DOIO(XYZ, put, 67, result);.

The request is handled by the device's put procedure. It inserts the value given (67) into the
current file position as determined by the preceding control operation.

DOIO(XYZ, control, (flush buffer }, result);

The final control action is necessary to ensure that the altered sector is copied to the disc.

(And this one should say "What sorts of DOIO call ...".)

The details again depend on the operations defined, but full marks required a
plausible sequence of DOIO operations, and an answer to "how would they be
executed ?" including explicit mention of calculating which sector was required,
reading from the disc, inserting the byte in the buffer, and writing the disc.

340 Examination, 1995 : Answers : page 8.

QUESTION 3.

(a) Different languages and other systems want to structure memory in different ways; such a memory
structure is called a memory model. A memory model is rather more than a handy way to describe
the operation of part of a programme. It amounts to an assumption about how the computer
hardware works, so it must apply to everything that goes on. For example, Algol-like languages
rely on a stack model of memory.

A description of any memory model is acceptable, provided that it shows what sort of address is used in
the programmes, and how this is identified with a specific memory location in use.

Software support for "foreign" memory models is possible, but exceedingly expensive, because it requires
action at every attempt to use memory. Software memory support is therefore usually restricted to
services directly connected with the native addressing model of the computer hardware.

For the explanation of a memory model, I wanted two parts : that programmes
wanted memory organised in different ways, and that the model was an assumption
about the hardware. There were various ways of making these statements.

A purely verbal and qualitative description of a memory model got half marks.
Because of that, most answers got half marks. In view of the intimate connection
between memory models and addressing, I'd expected that a description of the
model would naturally include at least a description of the address implied, and
probably a note on how to map it onto a flat memory.

There is no such thing as a paged memory model; the memory model is the
programme's view of memory, and paging is carefully designed to make no
difference to the programme's view of memory.

There was some confusion between memory models, memory management
techniques, and virtual memory systems. I did want an answer about a memory
model; I'd gone to some pains to emphasise (in lectures and notes) that the
memory model was determined by what the software wanted, so answers which
only considered hardware or memory management didn't get many marks. Some
people tried to have it both ways : "The memory model is how the memory is seen
by the O/S and by the process ...".

Several people suggested that you couldn't run several memory models at once
because they would conflict in some way, or they would be very hard to manage.
That's not so; each programme has its own memory model, and it's no harder to
keep it confined than to it is to stop processes straying into
each others' areas.

In fact, you can run different memory models at once – that's why the question
didn't ask why system could not support different models. You can do it with
software, by interpreting, or with hardware, given a sufficiently microprogrammable
processor. All have been done. You can have a different memory model for each
process if you like.

(b)

Several people gave very peculiar answers, and – as they didn't explain their
reasoning, as requested – got no marks. It is very hard to work out whether there's
any sense in silly answers without some sort of clue.

Several people wrote things equivalent to assumptions that A's code included all
the other code. That's not satisfactory; the programme is described as "Pascal-like".

Many answers were based on the assumption that all the sizes were identical.
There is absolutely no basis for that assumption in the question. Why would I write

340 Examination, 1995 : Answers : page 9.

down all those Cis and Mis if they didn't mean anything ? (Well, maybe don't
answer that.)

(i) All memory must be allocated separately. The total is ∑i(Mi+ Ci).

Almost everyone got this one. People who didn't explain the reasoning only got
half marks.

(i i) As there is no virtual memory, space must be provided for all code segments, but local memory
need only be allocated for segments currently in use. The minimum requirement is :

∑ i (Ci) + Ma + max((Mb + max(Mc, Md)), (Me + Mf)).

Quite a number of people didn't seem to think it necessary to provide space for the
code of the leafier procedures all the time. They didn't say where the code came
from when they wanted it. If they'd suggested that some sort of overlay system was
being used, it might have made sense of some of the answers, but not all –
though as a segmented model was specified it would be hard to justify !

- except for a few who explained carefully that it was swapped out, despite the clear
statement that the system was "without virtual memory". Not many marks there.

If you sometimes want A bytes of memory, and you sometimes want B bytes, then
the minimum total memory with which you can manage is the MAXIMUM of A and B.
Not everyone worked that out. I assumed that the mistake was a slip of the pen, and
gave benefit of doubt, but sometimes there wasn't much doubt.

(c) The compiler must be able to produce code to request local memory on entry to a procedure, and release it
to the system when leaving a procedure. Possible forms of the functions are allocate(size) (which
may return a segment descriptor) and release(segmentdescriptor).

This part was almost trivial – if I hadn't been pushed for time when setting the
examination, it would have been harder. Nevertheless, many people got low or no
marks. (It was sometimes clear that people who had the right answer were worried
because it was too short, and tried to pad it out with other material. That was entirely
my fault; I'll try not to let it happen again.)

That was usually because they didn't answer the question. I explicitly mentioned
"application programme interface" and "used by the programme" to emphasise that
I didn't mean the system memory management details – but I got them, frequently.

There were some compromise answers – several people suggested allocate and
release , but then spoilt it by saying that allocate (for example) "retrieve[s] the
segment from somewhere (probably the hard disk)", with something
corresponding for release . They got about half marks, possibly modified by other
comments indicating more or less understanding.

QUESTION 4

a) Complexity
Simple locks are the simplest of the three. They require a single bit for the lock and some way
of guaranteeing exclusive access by disabling context switches or indivisible instructions.
They are accessed with lock and unlock operations. They may or may not have an associated
queue of waiting processes.

Semaphores consist of an integer counter and the wait, signal and initialize operations. They
are more complex than simple locks because the counter can take on many different values.
All implementations (that I know of) include queues to hold waiting processes.

340 Examination, 1995 : Answers : page 10.

Monitors are the most complex of the three. A monitor consists of protected data and
procedures with initialization routines as well as condition variables with associated queues.
There is also a guard routine which catches all requests to enter the monitor and ensures that
only one process at a time is running in the monitor.

Safety
Semaphores and simple locks both make it easy for mistakes to occur. Resources are only
protected if they are used properly. Programmers must call lock or wait before using a
resource and must signal or unlock it after finishing with it. There is nothing to stop a process
keeping a resource indefinitely. Both locks and semaphores must be correctly initialized by an
explicit initialization before any operations are performed.

Monitors were designed to minimise such possible mistakes. The only way to use the
protected resource is via the monitor. Exclusive access is guaranteed by the monitor. As long
as the monitor is written correctly the resource cannot be held onto indefinitely by the
requesting process. The initialization routine is called automatically when the monitor is
created, therefore no process can access it before the initialization is complete.

So why semaphores?
Semaphores are more general than simple locks, they can easily be used as simple locks and
can also be used to coordinate multiple copies of similar resources. They make it particularly
easy to implement producer/consumer processes with ring buffers.

While monitors are much safer, they have to be supported by the language the programs are
written in, whereas semaphores are language independent. Semaphores are also more
flexible than monitors. A monitor enforces exclusive access by making sure that only one
process is running within the monitor at a time. This is sometimes an unnecessary restriction.

The use of semaphores to safeguard resources can be made as safe as monitors (houses?)
by insisting that a particular process or subsystem is in charge of the resource. All requests to
use the resource must be handled by this process which takes the place of the monitor. The
semaphores are only used inside this process.

b) The wait on s2 inside the Wait routine stops any access to the general semaphore because s1
provides exclusive access to the general semaphore and it hasn't been released yet.

The solution is to release s1 before waiting on s2, as in:

wait(s1);
counter := counter – 1;
if counter < 0 then begin

signal(s1);
wait(s2)

end else
signal(s1);

There is another problem with multiple calls to the General Wait. It is possible for a second
process to call the General Wait and if it is lucky (following a couple of General Signals) to
proceed before the process waiting on s2. This can be solved by serializing access to the
General Wait routine by another binary semaphore.

s1 should be initialised to 1 and s2 should be initialised to 0. The counter variable is the value
of the general semaphore.

c) Message passing is concerned with sending information from one process to another. This is
the basis for the producer/consumer problem as well. We want to make sure no information is
lost from the producer in the same way that we want to make sure no messages are lost when
we do a send. We also don't want the same message being received twice, which is also a
requirement of the producer/consumer problem.

The message passing system itself will provide these properties. There are two main ways it is
done. Either the sender is blocked until the receiver can take the message or there is
buffering of messages by the message passing system.

A semaphore solution to the same problem, can use analagous methods. This is still a little
more complicated than with message passing because the shared buffer has to be explicitly

340 Examination, 1995 : Answers : page 11.

protected. Providing exclusive access to the buffer is insufficient to solve the problem, the
producers and consumers must be synchronized to ensure that data is not lost or duplicated.
Results can be buffered, and in this case producers need to be blocked when the buffer is full
and consumers need to be blocked when the buffer is empty.

If the message passing scheme uses a form of indirect naming such as mailboxes then coping
with multiple producers and consumers is trivial. The mailbox receives one copy of every
result and passes it on exactly once regardless of the number of producers and consumers.

QUESTION 5.

(a) The access matrix for a system defines the permitted mode of access by any subject to any object.

A capability is held by a subject; it defines the subject's mode of access to a specific object. The level of
access defined is granted to any subject who (or which) presents the capability.

An access control list is associated with an object, and defines the mode of access to the object for every
subject. Any attempt to gain access to the object is checked against the list; if the desired mode is
listed for the subject making the request, access is permitted.

Each capability defines the modes of access to a specific object available to any subject holding the
capability. It therefore defines elements of the row (or column) of the access matrix corresponding to
the object, but just which elements are so defined is determined by the way in which the capabilities have
been distributed. The collection of capabilities held by a subject defines the subject's column (or row) of
the access matrix.

Each access control list defines the mode of access of every subject to the object with which it is
associated. It also defines elements of the row (or column) of the access matrix corresponding to the
object, but in this case individual elements can be determined precisely and cannot be changed by external
agencies.

This was essentially bookwork, but it seemed to be easy to make mistakes.

(b) (Three possible answers for different capability models. I've given the same list of operations in each
case, though some are unnecessary in specific cases, and therefore not required by the question. Comments
are collected at the end.)

340 Examination, 1995 : Answers : page 12.

Variable model, hardware implementation :

(i) A capability is a hardware-implemented data type. It is composed of an identification field, which
determines the object to which it applies, and a list of privileges. In addition, all addressable
memory (primary, secondary, etc.) locations and the corresponding processor registers
incorporate a capability bit which is turned off if the location contains ordinary data but is turned
on if the location contains a capability.

Capabilities are kept secure by the hardware, which is so constructed that new capabilities
may only be formed while in supervisor mode.

(i i)

Operation Implementation

New capability Any system component which constructs or sets up an object of protected
type (files, directories, devices, etc.) must, while running in supervisor
mode, construct a capability variable including an identifier for the object

and a complete set of privileges. This is converted into a capability using a
"make capability" hardware operator, and can then be returned to the subject

performing the action.

Copy Conventional load and store operations may be used; the hardware must not
change the capability bit. Not required.

Transfer No special implementation is needed. A capability may be transferred from
subject to subject in a message, in a file, through shared memory, etc. Not

required.

Reduction A hardware operator is required. It must accept the initial capability and a
specification of the privileges to be removed, and construct a new

capability representing the new set of privileges.

Validate and Test A hardware test operator is required for validation. Ordinary inspection is
not a sensitive operation, and need not be protected : the capability is

disentangled to give object identity and privileges, and obvious tests are
conducted. If the encoding is complex, or the object identities are difficult

to interpret, a system procedure can be provided

Withdraw There is no mechanism for withdrawal with capabilities implemented as
variables. Not required.

Variable model, cryptographic implementation :

(i) A capability is an ordinary data structure, which can be implemented as a software data type. It is
composed of an identification field, which determines the object to which it applies, and a list of
privileges. In addition, it has a check field which contains a bit pattern which, taken with the
identification and privilege fields, can be tested for validity by some cryptographic technique.

Capabilities are kept secure by the cryptographic technique. Only one pattern of the check
bits can validate the combination of bits in the earlier fields, and the function which determines the
check field is designed to be very hard to discover from examples of its results. With a large check
field (say, 48 bits), trial-and-error methods would take too long to be worthwhile..

340 Examination, 1995 : Answers : page 13.

(i i)

Operation Implementation

New capability Any system component which constructs or sets up an object of protected
type (files, directories, devices, etc.) must, while running in supervisor
mode, construct a capability variable including an identifier for the object

and a complete set of privileges. This is converted into a capability using a
"make capability" function, and can then be returned to the subject

performing the action.

Copy Conventional load and store operations may be used; the capability is an
ordinary variable. Not required.

Transfer No special implementation is needed. A capability may be transferred from
subject to subject in a message, in a file, through shared memory, etc. Not

required.

Reduction A supervisor call is required. It must accept the initial capability and a
specification of the privileges to be removed, and construct a new capability

representing the new set of privileges, which it returns to the caller.

Validate and Test A supervisor call is required for validation. Ordinary inspection is not a
sensitive operation, and need not be protected : the capability is

disentangled to give object identity and privileges, and obvious tests are
conducted. If the encoding is complex, or the object identities are difficult

to interpret, a system procedure can be provided.

Withdraw There is no mechanism for withdrawal with capabilities implemented as
variables. Not required.

Privilege model :

(i) A capability is represented (for people) as an entry in the userdata system, or (for other sorts of
subject) as an entry in some other system table. The entry for a subject lists the capabilities
which have been acquired by the subject, identifyng the object concerned and the level of access
permitted.

Security is achieved as with any other part of the system data; the information is not
present in any process's memory, and access is only possible through supervisor calls.

(i i)

Operation Implementation

New capability Whenever a system component constructs or sets up an object of protected
type (files, directories, devices, etc.), the operating system constructs a
new entry in the capability list of the subject performing the action. The
entry includes an identifier for the object and a complete set of privileges.

Copy No local copying operation is required. Not required.

Transfer A system call is used. It is given the identity of the recipient, the identity
of the object protected, and a list of the privileges which are to be

transferred, Either it constructs a new capability in the recipient's capability
list, or, if the recipient already held a capability for the object, adds any

new privileges acquired.

Reduction This operation is included in the transfer operation. Not required.

Validate and Test A supervisor call can be provided to control access to the capability list,
but there is no reason why the operation itself should require any special

protection.

Withdraw A supervisor call can be used to request that the system withdraw specified
privileges from identified subjects. The ability to withdraw privileges may

itself be a capability, or it may be restricted to the original owner.

340 Examination, 1995 : Answers : page 14.

(i) Some people didn't say how the capabilities were represented, but nevertheless
told me how they should be kept secure. If I thought that I could make sense of it, I
gave marks, but more often I couldn't, and didn't.

Just saying that a capability is "represented as ... a long stream of bits" isn't enough.
The structure is part of the representation too. Neither is it sufficient to say
"Capabilities are a structure given to a subject" without saying what the structure is.
(Both genuine quotations.)

A fashionable answer was along the lines of "One type of capability system is the
Unix file protection system ...". I call it fashionable, because many people used it,
and it has no rational basis. They all got no marks for this part of the question.

(i i) Full marks for any two operations, reasonably described. Descriptions were more
important than names : six names of operations wasn't quite full marks. I did want to
know that you'd done more than learn the list of names.

(c) The two methods are in many ways complementary.

Capabilities excel in their ability to pass permission from one subject to another. Some way to do so is
essential if (for example) a protected file must be used by a system utility to perform some task for a
subject authorised to use the file. The subject can pass (a suitably reduced version of) the required
capability to the system utility. Similarly, it is sensible in a large organisation to permit a subject to
pass on an appropriate selection of privileges to an underling for certain purposes, which is harder to
manage if permission must always be sought from a central agency.

Access control lists can be made much more specific, and can be controlled by the object's owner at any
time; changes are implemented instantly. Access control lists may be used to restrict access to certain
members of groups even if all members of the groups have been given capabilities, or to impose short-
term restrictions in special cases (such as a general restriction to read-only access while the owner require
write access).

Answers which amounted to "two methods are better than one", without any
discussion, got few marks. Any plausible example of a case where having two
systems really did something useful got at least half marks; with some sort of
discussion, full marks.

Not all answers made much sense. One suggested that having both systems could
be a guard against people stealing capabilities; he didn't say how he proposed to
distinguish a stolen capability from one which had been passed on legally.

QUESTION 6

a) A remote procedure call is a means of sending a request from one process, possibly across a
network to another process. From the point of view of the programs at both ends of the
transaction the calls look exactly like local procedure calls.

The first process (the client) makes an ordinary local procedure call to a stub procedure which
has been linked into the program. The stub is responsible for making the connection to the
remote process (the server). The client stub has to determine where the server process is
and then packages up the request (marshals the parameters) in a way which can be
understood by a corresponding stub procedure associated with the server. This request
message is then sent to the server's machine via the network.

At the server's machine the message is passed on to the server's stub procedure. After
unpacking the message and determining which local procedure is to be called, it makes an
ordinary local procedure call to the server procedure.

340 Examination, 1995 : Answers : page 15.

When the server has completed it returns to the server stub, which packages up the results
and sends them back via a message to the client stub. The client stub unpacks the result and
passes it back to the procedure which made the original call.

b) Advantages of RPC
Easier for the application programmer to use. No need to work out the identification of the
server, nor to construct sends and receives. Since normal procedure calls block the calling
procedure until the called procedure returns, any remote procedure call also blocks the caller.
Thus the state of the caller is unchanged when the result returns and there is no further need
to synchronize the caller with the service.

This means greater safety as there is less chance to make a mistake. There is no need to
worry about different architectures or system conventions.

Of course the work still has to be done somewhere. Someone (possibly not the programmer
of the client or the server) has to carefully design the interface which is to be used by the RPC.
This interface is commonly used by a stub compiler which creates the stub procedures which
are linked in to the client and server.

The extra checking which the compiler does also helps to reduce the possibility of mistakes.

Disadvantages of RPC
It is less flexible to use RPCs. It is impossible for the thread of control which makes the
procedure call to continue until after the procedure call has returned.

The implementation of RPCs is more complicated. As we have seen, interfaces need to be
made available across the system, stub compilers need to compile the stubs, which then have
to be linked into the client and server.

c) This answer ignores the problems of different data formats and the marshalling necessary to
hide these differences.

There are no problems with the operation and outBytes parameters. Their values get passed
in the obvious way, from the client to the server.

outAddress and result are the difficult ones. outAddress refers to an address in local memory
which is totally meaningless in the remote environment and result would be passed by
reference within a local procedure call.

All possible solutions send data representing the actual contents of memory between the
server and the client, it becomes a question of how much data needs to move and when the
moves are made. It is possible to copy all reference parameters to the server when the remote
procedure call is made and send the altered copies back to the client on the return. If the RPC
interface given to the stub compiler is designed to allow the programmer to specify that this
parameter will only be used one way, then only one transfer has to occur. In the case of the
result parameter the copy only needs to go from the server to the client. With the outAddress
parameter the copy needs to go from the client to the server.

The client stub determines the number of bytes to send from outAddress by inspecting the
outBytes parameter. The server stub has to allocate space for this number of bytes and fill the
space in with the received values.

The server stub also has to allocate space for the remote result parameter (this parameter did
not have to be sent to the server). On completion of the operation the values stored in this
variable have to be sent back to the client. The server stub knows how many bytes to send
from the type of the variable.

Back at the client the local result parameter gets filled in with the returned values.

340 Examination, 1995 : Answers : page 16.

QUESTION 7.

How to do it : GUI comment :
cd B Search the current

working directory
(A) to find B;

Make B the working
directory.

The necessary information is the identity of the desired new
working directory, and the fact that a change in working
directory is required.

To identify the directory, make B's entry visible in the A
directory's window, and select it; the identity is retrieved from
the position of the pointer when the selection operation is
received, and the system's map of the screen.

To identify the instruction, carry out some standard operation
(double-click, select a menu item, etc.); the combination of
action and context completes the identification.

cp X Y A new file descriptor
(directory entry)
for Y is constructed;

The file X is copied,
and the copy
associated with the
new file descriptor;

The file attributes are
set in Y's file
descriptor.

The original item, the new name, and the request for a copy are
needed.

The original item and request can be handled in much the same
way as for the previous instruction.

The new name requires more, because it isn't already there, so
can't easily be made visible, and must be entered at the
keyboard. (Neither Macintosh nor Windows provides a
simple copy instruction, presumably because neither Apple
nor Microsoft can think of a neat way to get the new file
name. Windows provides copy as a menu item, and gets the
new name through a dialogue box; in the Macintosh system,
there is no explicit copy, and you have to make do by first
duplicating the file then changing its name.)

mv Z .. The file Z is sought in
the working
directory (now B);

it is not found;
an error is reported.

The information needed is the nature of the instruction, the
object to be moved, and the destination. This is well suited to
a GUI, because the two objects required are already present –
but in this case there is no Z. This instruction can therefore
not be issued with a GUI, because you can't issue an
instruction about object Z unless you can find it, and you
can't find it if it isn't there. This is an advantage of the GUI
approach.

mv X .. The file X is sought in
the working
directory (still B),
and found;

The entry .. is sought
in the working
directory, and found
(it points to
Directory A);

A new file descriptor is
constructed in
Directory A, pointed
at the file body of
X, and filled in with
the correct details;

The X descriptor in
Directory B is
deleted.

The instruction is the same as in the previous example, but this
time all the information is there.

It may be necessary to ensure that objects (windows or icons)
representing X and its desired new position (A) are both
visible (trivial with the Windows file manager, may require
manipulation if B's window obscures A's on the Macintosh).

The instruction is represented by dragging the X icon from its
old position to its new position. The sequence (mousedown
on X icon in B window – mouseup in A window) completes
the identification. In the Macintosh system, the parent
directory cannot be automatically indicated by the mouse
movement; in the Windows file manager, the parent of an
open directory is shown (curiously enough, as ..), so a
direct equivalent of the text instruction is available.

340 Examination, 1995 : Answers : page 17.

rm * Each entry in the
working directory is
identified in turn and
rm is applied to it;

If the entry is a file, it
is deleted, and the
space which it
occupied is returned
to the system
(unless there were
other links to the
file).

The system requires the nature of the instruction, and the
selection of operands. The instruction is delete files – not
directories. The operands are all files in the working directory.

The delete instruction is fairly easy – drag to "Trash" on the
Macintosh, delete key with MS-DOS, menu alternative for
both – but it doesn't distinguish between files and directories.
Selection is therefore necessary.

The selection is harder; selecting all entries in a directory is
reasonably easy, but selecting only files isn't. In the general
case, you would probably have to pick them out one by one.
Group selections can be built up item by item by controlling
the context of the mouse operations; a click on an item while
a specified key (shift on Macintosh, control in Windows)
adds (or removes) an item to (or from) a selected group.

(In the example, it's easy, because it happens that there's only
one file left in B, but that's accidental.)

There were no parts in the usual sense to this question. Two responses were required for
each of five instructions, so I've used the instructions as headings below.

A small, but non-zero, number of people ignored the directory structure given in the
question,and therefore spent time discussing general issues which I'd tried to preserve
them from. Perhaps this was a special case of people simply ignoring most of the
question. An alarming number of answers included comments to the effect that there was
insufficient information, and that it had therefore been assumed that directory B was within
directory A, or that X was the only file in directory B, or that initially the working directory
was A, or that the A window was open and a B icon was visible, or that the Unix instructions
were executed. (I think all those were real examples; I'm not going back to check.)

Contrariwise, others went to the opposite extreme, and reduced rm * to rm Y (or, in
several cases, to rm <nothing at all> – presumably they lost count somewhere). Even if
there wasn't much to do, the questions are about the execution of rm * and its GUI
equivalent.

Some general comments on the two responses :

(i) Many people found things to say which I didn't include in my answer (security
checks were common), or missed out things I'd included (searching
directories). I gave two marks for anything about the same size as my answers or
bigger. (And, of course, correct.)

A curious answer turned up several times. It was "Run a programme called cd (or
whatever) with parameters B (or whatever)" – without any comment on what cd
was supposed to do. I suppose you could argue that the answer fitted the
question, but only by asserting that what cd does isn't part of the file system, which
I don't believe. I could also quibble that "Run a programme called cd" assumes a
certain sort of implementation which isn't necessarily general, but I didn't.

(i i) You were asked to explain how the information needed to identify the instructions
was acquired. Some people just told me what to do – for example, "double click on
the folder labeled B" was given as a complete answer to this part for the first
operation. What's the information needed by the system ? How is it acquired from
the action ? It was also common for the instruction given to be specific to some
system (either Macintosh or Windows), with no attempt to give a general answer.
As I don't do half-marks, I had to give either 0 or 1 for such "answers"; I decided that
I had to give 1, so some people got rather too many marks for this question. They
were too many, because I don't want to give stage 3 marks for knowing how to use a
Macintosh.

340 Examination, 1995 : Answers : page 18.

Very few people took the trouble to identify the information needed – so even
fewer were able to tell me in detail how it was acquired. Hardly anyone thought that
the instruction itself was information.

Having given me the details of how the system took notice of clicks and mouse
positions in the first example, some people seemed to think that would do. It
wouldn't.

An alternative was to describe the GUI operations, then to add a note at the bottom
saying that all the information came from the mouse movements. I gave a few marks,
but really wanted more specific details for the separate instructions.

Several people told me that there is now a "move" instruction for MS-DOS; thanks.

cd B To make a directory into the working directory isn't the same as opening it; many
directories may be open, but only one is the working directory. Systems usually
have some sort of pointer which identifies the working directory.

cp X Y This instruction, interpreted in the context given, can only mean copy as a
new file Y in the B directory.

A surprising number of people didn't know how to copy a file in Macintosh or
Windows without opening it and using "Save as ...".

mv Z .. Even people who hadn't mentioned searching directories elsewhere
mentioned it for this one. But they still didn't mention it for the others.

In part (ii) I expected (but didn't always get) a comment pointing out that it was
impossible to give the instruction.

Quite a number of people copied the file data as well as doing things with
directories in (i). Why ? Unless the new copy is made on another disc (when mv
doesn't usually work anyway), there's no point – you don't need the old copy any
more.

mv X .. I wanted some mention of removing the original directory entry for full marks
in (i).

rm * Considering that the information is given in the question, I wanted some comment
about not deleting directories. In particular, answers to (ii) recommending "select
all" or equivalents got no marks unless appropriately qualified.

Many people said, or implied, that programme, or procedure, rm was executed with
* as parameter. It made no difference to the marks, but I'm surprised that few people
apparently knew that wild characters such as * are interpreted by the Unix shell, not
by the individual procedures. Having the shell do it is the only reasonable way to
guarantee consistent interpretation.

QUESTION 8.

(a) (Several activities may depend on the clock. The sequence described here is the activity related to the
dispatcher, and is executed after the other activities if a time slice ends at the clock interrupt.)

{ Stop the running process. }
1. Interrupt the running process (= start the clock interrupt handler).
2. Save the process's current state (machine registers, etc.) in the process's memory or PCB.
3. Set the PCB state to ready, attach it to the end of the ready queue.
{ Enter the dispatcher to start the new process. }
4. Remove the PCB from the front of the ready queue, set its state to running.

340 Examination, 1995 : Answers : page 19.

5. Set the current state from the saved state in the new running PCB or process's memory.
6. Reset the programme counter from the running PCB (= branch to the new process).

(b) (i)

Initial : { Frequency 10; time-slice 10; destination Other }
Other : { Frequency 1; time-slice 100; destination Other }

The product of frequency and time-slice is equal for both queues, so on average a process will
receive the same share of processor time whichever queue it is in. The smaller frequency of the
Other queue cuts down its context-switching frequency correspondingly by a factor of 10.

(i i)

Initial : { Frequency 100; time-slice 10; destination Other }
Other : { Frequency 1; time-slice 100; destination Other }

The processes in the Initial queue receive 10 milliseconds execution 100 times as often as
processes in the Other queue receive 100 miliseconds of processing As before, the lower frequency
of the Other queue cuts down its context-switching overhead by a factor of 10.

(c) Context switching is expensive in time, and adds nothing to the productivity of the system so far
as raw processing is concerned. It's used because it makes timesharing possible, which can help in
the productivity of people using the system, but if we can get away without it without
compromising the people's productivity we would like to do so.

Some context switching is inevitable, as many processes' resource requests cannot be
handled immediately, and if we are to continue to use the system some other process must take
over. We would still like to cut down as far as possible on accidental context switches.

If the timeslice length has been well chosen, most processes will stop because of resource
requests before their timeslices are complete. In such a case, the occurrence of a clock interrupt
suggests that the process concerned is engaged on some solid processing without making additional
requests, and is therefore ideally suited to use rather longer timeslices efficiently. By increasing the
timeslice length and decreasing the dispatching frequency correspondingly, the same amount of
processing is carried out, but the system overheads connected with context switches are reduced.

