
Support for execution : page 1.

STARVATION

Starvation is the name given to the indefinite postponement of a process because it
requires some resource before it can run, but the resource, though available for allocation,
is never allocated to this process. It is sometimes called livelock, though sometimes that
name might be reserved for cases where the waiting process is doing something, but
nothing useful, as in a spin lock. However it happens, starvation is self-evidently a bad
thing; more formally, it's bad because we don't want a non-functional system. If
starvation is possible in a system, then a process which enters the system can be held up
for an arbitrary length of time.

To avoid starvation, it is often said that we want the system's resources to be shared
"fairly". This is an appealing suggestion, but in practice it isn't much use because it
doesn't define what we mean by "fairly", so it's really more of a description of the
problem than a contribution to its solution. It's more constructive to investigate the paths
by which a system can reach a livelocked state, and try to control them.

CAUSES OF STARVATION.

Starvation is caused by failure to allocate some resource to a process, so to find the causes
we must inspect the policies which the system uses in handling resources. Here are some
possibilities.

• Processes hand on resources to other processes without control. If decisions about
resource allocation are taken locally without considering the overall resource
requirements of the system, anomalies can occur. If processes queue for a resource,
and the resource is always handed on to the next process in the queue, it is essential
that every process awaiting the resource must be placed in the queue.

• Processes' priorities are strictly enforced. If a process of worse priority requires a
resource in competition with a constant stream of processes of better priority, it
might wait for ever.

• "Random" selection is used. If processes awaiting service are not queued, but an
arbitrary process is selected whenever the resource becomes available, it is possible
for some processes to wait for a very long time. In some circumstances, that
doesn't matter too much – for example, if it is known that the average demand for
resources is far less than the resource pool available, the congestion is almost
certain to last for very short periods. The trouble with this strategy isn't usually that
processes wait for ever (unless your "random" number generator isn't), but that
you just can't tell what will happen. A good example is the Ethernet
communications technique, where processors use a common communications
medium without overall synchronisation, and resolve attempts to transmit
simultaneously by delaying for an arbitrary interval and then trying again. Once the
medium becomes moderately heavily used, quite long delays can be experienced.

• Not enough resources. This is commonly the real problem, so far as physical
resources are concerned, though as its solution costs money it might be a hard one
to solve. Provided that the supply of resource exceeds demand over a reasonable
period of time, it should be possible to satisfy the demand, and strategies can be
chosen to provide service to all processes which need it. On the other hand, if
demand exceeds supply, no amount of ingenious trickery can serve everything, and
under these conditions starvation can often occur.

Starvation can happen at any organised scheduling level, though it is more likely in the
automatic allocation processes than in the higher-level manual parts. (We assume that
there is more intelligence and flexibility at the manual level; bureaucracy can defeat this
assumption.)

REMEDIES.

Cures for starvation are in general based on means of ensuring that the conditions for
starvation can't happen. Here is a selection.

• There must be an independent manager for each resource, which must manage all
allocations of its resource; this will guarantee that processes don't just pass
resources around between themselves without making them available for general
allocation.

• Strict priorities should not be enforced. A poor priority should be regarded as a
weak claim, but not an overridable claim. There are at least two ways to achieve this
end :

- Improve the priority of a waiting process with time; then even a process with
poor priority which has waited for a long time will eventually be able to
compete successfully with a newly-arrived process of much better basic
priority. Of course, the improved priority doesn't last – after allocation, the
process's priorities revert to their original levels.

- Implement priorities by rationing; regard the priorities not as indications of
absolute importance, but as measures of the proportion of the resources
which can be consumed.

• Avoid random selections, uncontrolled competition, etc. It is very unusual for
random resource allocation techniques to have any intrinsic merit. After all, if a
random technique will work, it doesn't matter which process receives the resource,
so you might as well queue them and give the resource to the process at the head of
the queue. If anything, the queue overhead is less, and you win by the closer
approximation to a functional system.

• Provide more resources. This is the only satisfactory solution to continued
congestion when demand approaches supply. If the supply and demand are closely
balanced, even small fluctuations of demand can cause queues to form which can
take a very long time to eliminate. Of course, if you have sufficient resource to
reduce queueing to an acceptable minimum with any normal demand, you will have
periods when the resource is standing idle.

That's why the hospitals have queues. If you have
enough resource to handle an epidemic, then most of
it is idle for most of the time, and you are accused of

mismanagement; if you try to manage with the
minimum possible resource and keep it all in use,

then long queues are inevitable for most of the time,
and you are accused of mismanagement. But try

explaining that to a politician. The political solution
currently practised is to tell some of the processes
that they don't need the resource, or that they must
wait until they need far more resource, or that they

must get it from some other operating system.

Whether you can enforce the remedies through operating system constructs alone is not
very clear. The system must be designed so that the details of scheduling policy can be set
to match local priorities, which might not be determinable from considerations of
processing performance alone. This flexibility can lead to unsatisfactory scheduling
arrangements. For example, if the algorithm for selecting among the dispatcher queues
can be arbitrarily changed, starvation is easy to arrange : just serve the queues of better
priority first unconditionally.

–––

