
Support for execution : page 1.

DEVICE CONTROL SOFTWARE

The programme (written in Modula 2) and diagram below illustrate the relationship
between different parts of the operation of moving data from a process to a device. In
terms of the chapter MAKING DEVICES WORK, this is the interrupt handler and part of
the device driver, though for the sake of simplicity it's a rather less elaborate design as
might be appropriate for a rather simpler system. We've copied it from somewhere, and
we would gladly acknowledge the source if we could remember where it was. Any
relevant information would be welcome.

The module accepts single characters one by one, buffers them as required, and
sends them to a single-character device. It does not handle an explicit input-output request
queue, but the buffer queue is equivalent. Here's a picture :

bufferdriverprocess handler device

visible to the
device driver

visible to the
interrupt handler

non-empty
int

non-full

HEADER.

The software is presented as a device module. Only the name of the character output
procedure, which you call to move a character to the output device, is visible from outside
the module; the remainder of the software is private.

We've added the comments throughout the programme. (They're the bits after --.)

device module buffered_char_output[4];
define procedure driver(in ch : char);

private

GLOBAL DECLARATIONS.

All the variables declared here are associated with communication between the procedure
driver and the handler process. The type csr is a rather underhand way of managing bit
manipulations : intenable and ready are device status indicators found at bit positions 6
and 7 respectively of a device status byte. The ready indicator is not used in this part of
the software. Used as a function, csr returns a byte with the prescribed bits turned on.

const buf_size = 32;
type

csr = set of (intenable at 6, ready at 7);
count = integer range 0 .. buf_size;
index = integer range 1 .. buf_size;

var
inx, outx : index;
n : count;

non_full, non_empty : signal; -- Semaphores.
buf : array[index] of char;-- The character buffer.

THE DEVICE DRIVER.

- or part of it, anyway. In a full implementation of a system as described in MAKING
DEVICES WORK, this procedure would be called within the device driver in order to
print each character.

procedure driver(in ch : char); -- The output procedure visible from
outside.

begin
if n = buf_size
then wait(non_full) -- Await a signal from handler if

buffer's full.
end if;
buf[inx] := ch; -- Put the character in the buffer.
inx := (inx mod buf_size) + 1;
n := n + 1;
send(non_empty); -- Something in the buffer; tell handler.

end;

THE INTERRUPT HANDLER.

handler is the interrupt handler. It communicates with the rest through the global
variables declared earlier, but runs independently as a separate process.

The three variables declared within handler are all associated with specific memory
addresses by the "at" clauses in their declarations. (The addresses are 16-bit addresses,
expressed in octal notation.) This fixed identification of device components with
memory addresses is appropriate in systems – typically microprocessors – which rely on
"memory mapping" to communicate with the external world. For a larger system, one
would be more likely to provide the memory addresses, or some other specification of
communication path to be used such as port numbers, as parameters to the installing
programme.

process handler;
var

int at #64 : signal; -- Interrupt address for "character
received".

status at #177564 : csr; -- Memory-mapped device status register.
bufreg at #177564 : char; -- Memory-mapped device character

buffer.
begin

do
if n = 0
then wait(non_empty) -- Wait until there's something in the

queue.
end if;
bufreg := buf[outx]; -- Put the next character in the device

buffer.
outx := (outx mod buf_size) + 1;
status := csr(intenable); -- Permit interrupts.
wait(int); -- Wait until device acknowledges receipt
status := csr(); -- Disable interrupts.
n := n + 1;
send(non_full); -- There's space in the queue.

end do

Support for execution : page 3.

end;

SETTING UP THE SYSTEM.

This code is the "body" of the module. It is executed when the module is started; it sets
sensible initial values for variables which need them, and establishes handler as a
separate process.

begin -- Set up the initial state.
n := 0;
inx := 1;
outx := 1;
init handler -- Set up handler as a separate process.

end module buffered_char_output;

–––

