
Support for execution : page 1.

LANGUAGES FOR WRITING OPERATING SYSTEMS

Like everything else which a computer does, excepting only a rather few primitive actions
built into the hardware, the tasks undertaken by an operating system are controlled by a
programme which is executed by the computer, and which somebody, or some group,
has written. It is self-evident that the quality of the operating system is a direct reflection
of the quality of this programme, so any measures which will improve the quality of the
programme are of interest.

One such measure is the language used to write the programme. Experience has
shown that a programming task is greatly facilitated if it is carried out in a language which
provides programme structures and data structures appropriate to the task to be
performed. Because of this fact, very many languages have been devised for different
sorts (or, too often, the same sort) of programme. Pascal provides facilities appropriate
to traditional mathematical algorithms, while Prolog caters for first-order predicate
calculus. Each is effective within its own field; each can manage the other's job, but not
as easily. At the level of principle, most non-trivial computer languages are equivalent, in
that they can all handle the same range of computational problems. It is therefore not
usually sensible to argue that language L is appropriate for a job simply because L can do
it. It is more important to ask whether L provides the sort of support we need to write the
sort of programme we want – accepting that the idea of "support" might include such
matters as compatibility with existing software written in a language chosen for different
reasons.

REQUIREMENTS FOR OPERATING SYSTEMS PROGRAMMING.

That being so, we ask what sort of support is required to write an operating system. Even
better, we ask what sorts of support are required, for we want as much help as we can get
from our language. We can easily identify at least three distinct ways in which a good
language can help us : in programming, in documentation, and in safety.

Programming is obvious. Our language must make it easy to write the programmes we
want to write by providing as much as possible of the job already done for us. This
is the substance of the discussion at the head of this chapter.

Documentation is also important. A programme is not only a means of communication
between a programmer and a computer; it must also communicate the sense of the
programme between programmers. If you want to correct or extend a programme
which you can't easily understand, you have to spend a lot of time working out
what it does before you can begin your real job. Paper documentation can be very
helpful, but regrettably often isn't; and in any case the more help you get from the
source language, the better.

Safety is yet another requirement, and a very important requirement in something as
complicated as an operating system. In this context, we emphasise the importance
of getting the programme right. A programming language can contribute to this aim
in two ways. First, the language syntax can be designed to make it difficult to make
mistakes – for example, by balancing lock and unlock instructions just as it
balances begin and end, or alternatively by associating a lock with a single
statement and inserting the lock and unlock operations automatically, as in this
example from IliadIMP1 :

locking(log_req, done)
begin

log_req = yes;
done = yes;

end;

The example is self-explanatory. (Iliad is a language designed for process control
systems, where there is typically much concurrent activity, so good synchronisation
is essential.)

Second, the language semantics can be designed in such a way as to facilitate
reasoning about what happens when programmes are executed. The ideal would be
to be able to prove that the programme is a correct representation of its
specifications. While this ideal has not yet been achieved, languages such as Euclid
and AlphardIMP2 have gone some way towards making it easier.

An interesting example of an operating system in which these considerations
have been taken seriously is OberonIMP3, designed by Niklaus Wirth. The system is
written using a language (also called Oberon) designed for the purpose. Oberon
is a complete operating system comparable to those used in sophisticated personal
computers (it is designed for a workstation), and was developed from scratch by
two people in three years. They attribute their success largely to the Oberon
language.

SPECIFIC LANGUAGE REQUIREMENTS.

We can begin by observing that things happen when the computer computes, and that we
want the computer to change things in the world; that's called getting results. The point of
that rather obvious remark is to emphasise that we really do want our operating system to
be a procedural system which has side effects. That doesn't mean that we can't use non-
procedural or functional languages, but it does mean that we can't rule out the "old-
fashioned" procedural sort. (It is worth remarking that we can use non-procedural or
functional languages only because they've been bent in the interests of getting something
to happen.) In practice, though many languages have been used for writing operating
systems, procedural languages are by far the most common, and we shall restrict our
discussion to languages of that sort. We shall therefore assume that we begin with all the
conventional facilities of a language something like Pascal or C, and to match the
assumption we change the question a little : what additional facilities do we need to write
an operating system ?

What can we say about the sorts of programme we shall write with the language ?
It is clear from the material we've covered so far that we must cater for many essentially
independent threads (by which in this context we mean activities within the operating
system, not the visible processes seen by someone using the system), which can
sometimes communicate with each other, share areas of memory, enforce mutual
exclusion, and require certain sorts of synchronisation. These are not facilities built into
many conventional programming languages.

Our list does not include mutually dependent threads, and that is a curious
omission. We have omitted the topic not because it is unimportant, but because it is
widely ignored and, in practice, rarely supported. Many operations we would like to do
can be elegantly constructed as sets of dependent threads, each maintaining its own state
but all part of the same overall process. A good example is the common requirement to
read an input stream, to analyse it, and to deliver single units of the stream on request.
Here, the reading, the analysis, and the requesting streams are all interdependent, but each
is also a self-contained activity which manages its own buffers and associated items.
These were once called coroutines, but the usage is not common now, perhaps because it
has rarely been supported in programming languages, which gets us back to where we
started. To support this structure, we want our language to have a property which is not
found in Pascal or C : the ability to describe coupled activities, each with its own state,
cooperating in a task. We can get by in conventional languages by dint of contorted
programming with state saved in global variables, or - perhaps better - by using threads
within a single programme, but in neither case are we helped by many available
languages. We shall bear in mind this desirable feature as we proceed with our
discussion.

Having now seen the facilities we want in the system, we should be able to answer
the question. Here are some examples, selected from a broad field according to no
discernible algorithm; you should be able to see where each of the items fits in.

Data structures :

Support for execution : page 3.

Tables;
Queues;
Messages;
Semaphores;
Files.

Programme structures :

Concurrent execution;
Synchronisation;
Communication;
Critical sections;
Interrupt handling.

Usability :

Readability;
Provability.

That's what we want – perhaps even what we need. What do we get ?

ASSEMBLY LANGUAGE.

(Yes, we've missed out machine language. There are some things we don't mention.
But even machine-language programming had its charms, so effective that a poem on the
subject mysteriously wrote itselfIMP4.)

In fact, the omission is fair enough; assemblers came along well before anything
which could reasonably be thought of as an operating system was developed, so this is a
realistic place to start. Indeed, it's the right place to start, because many operating systems
were written in assembly language, and it would not surprise us to find that some still are.

We can be more positive than that. Discussing assembly language has a clarifying
effect on our thinking, because it eliminates one question entirely : there is no point in
asking whether or not the language can perform some function which we think we want,
because it is trivially true that with assembly language you can make the computer do
anything of which it is capable. That focuses our ideas on the real function of a language,
which is to help us efficiently to write satisfactory programmes.

First, then, does assembly language help us to avoid getting code wrong ? This is a
question about the syntax of the language : when we make mistakes, does the assembler
find them and tell us about it ? Not very well. At the lowest level, the assembler will of
course identify errors in the formation of single lines of code; if we write text which isn't
assembly language, we'll be told. Unless it's a very very old assembler, it will also notice
references to undefined constants. After that, though, there is little that the assembler can
do. By the very nature of assembly languages, there is little chance for the assembler to
work out what we're trying to do with some piece of code, so it simply hasn't any
information which it can use to identify errors at any higher level than the syntactic. An
alternative view of the same difficulty is that almost any sequence of machine instructions
is a valid programme, so there is hardly any chance of identifying unsatisfactory code.

If the assembler can't identify errors, is there anything in the language which will
help us to see errors we've made ? Again, no : not even enthusiasts for assembly
languages argue that their programmes are models of clarity. They (the programmes, and
sometimes the enthusiasts) are incomprehensible without a very precise mental model of
the processor for which they are designed, and the ability to hold the state of the
processor in your mind as you read the programme and to make the correct interpretation
of the code is a skill acquired only after much practice.

That's why writing programmes in assembly language
is fun, if you like that sort of thing, and there's a

sense of achievement in constructing a working
programme which you don't get from high level

languages. Assembly language programming is to high
level programming as climbing the sheer rock face is

to walking up the mountain by the easy track.
(Machine language is specialising in overhangs

without ropes.)

Second, does assembly language help us to get code right ? This question is more
related to the semantics of the language. Does it provide structures (either control
structures or data structures) which we can use to build programmes, and also to
organise our thoughts ? Again, no, almost by definition. It is often possible to use
macros in assemblers, but then it is usually your responsibility to get them right and to
use them appropriately, for no additional checking is provided.

Another way in which a language can help to get programmes right is by being
constructed in such a manner that it is easy to prove that the function of a piece of code
corresponds to a specification of the required function. Yet again, assembly language fails
the test; as we pointed out, the programme means nothing without a model of the
processor, and this leads to such complexity that there is little prospect of routine proofs.
A high level language – even a procedural language – is much easier to handle, because
it uses a much tidier virtual processor.

So far, then, assembly language is not looking too good. Does it match our list of
requirements ? In principle, it can do anything, but we've already commented on that line
of reasoning. In practical terms, it doesn't fit at all well. Only one item – interrupt
handling – is immediately available, and that's only because it happens right down at the
hardware level. The language also fails spectacularly to meet our requirements for
documentation and safety.

There is a folk tale about IBM's system OS360. (In fact, there are
lots of folk tales about OS360, but this is one of them.) OS360 was
written in assembly language, and worked most of the time, but it
was reputed to have reached an equilibrium state containing a
thousand or so errors. The argument was that the system was so
difficult to understand that on average each attempt to correct an
error introduced another one, and there was of course no
mechanism in the assembler which could even notice that an
instruction anywhere in the programme didn't make sense.

HIGH-LEVEL LANGUAGES.

Perhaps it becomes clear that assembly languages are less than ideal for writing operating
systems. We can summarise the reasons why we need higher level languages :

• To make writing easier;

• To give help in writing correct programmes :
— by enforcing correctness through syntax;
— by providing constructs (locks, synchronisation) likely to be useful;
— by facilitating reasoning about programmes.

We would like to go rather further than that. We suggest that ideally the operating system
should be written completely in a high-level language; there should be no need to use an
assembler anywhere.

The list of characteristics above is far from being a complete specification for a
language, and several routes to an effective language have been explored. Here are some
of them. We emphasise that this is not intended as a rigorous classification of
programming languages, though some languages do seem to fit one or other of the
specifications reasonably well. Rather, it is a description of some traits found in

Support for execution : page 5.

programming languages for operating systems which might be found to some extent in
various languages.

Existing language + subroutines :

Most (all ?) high-level languages provide some sort of subroutine. We can use this to
disguise the operating system functions as subroutine calls, and use the existing language
to describe the required operations which link the system calls together.

This approach provides system facilities, but not much else. There are no special
structures, no special syntax, and no special semantics; the result is often a very
complicated application programmer interface, because everything must be expressed in
terms of the available language constructs. The "subroutines" need lots of information
which has to be managed in the programme. The early Primos operating systems for
Prime computers were written in Fortran; as Fortran provides no data structures other
than arrays, many of the subroutine calls which gave access to the operating system
functions required many parameters, and a common error was to omit a parameter or to
interchange two. In the Macintosh system, which provides a Pascal interface, the number
of parameters is reduced, but at the cost of more or less complicated data structures.
(The Macintosh system itself, at least in the early versions, appears to have been written
in assembly language; now it's mainly C.) Despite these criticisms, though, the high-
level languages are still easier and more comprehensible than an assembly language.

The big advantage of using an existing language is that you begin with lots of ready
made support – compilers, libraries, programming techniques, expertise, and so on.

Extended language :

We can hope to get a little, if not the best, of two worlds by taking the background and
expertise, and some of the facilities, associated with an existing language and combining
them with such special language structures as seem appropriate. To do so, we take the
existing language as our model, but add anything convenient. This approach can be very
successful, but not transportable. At the least, you have to write your own compiler,
though you might be able to make life a little easier by choosing the model language as the
compiler's target. (This is often less satisfactory than might appear at first sight. It might
be comparatively easy to generate the required code, but it's much harder to link the
model language's error reporting and error diagnosis and correcting software with your
extensions.)

The Burroughs operating system for their B5500 and B6500 series machines, the
MCP, was written in a language of this sort. It was called DCAlgol, for Data
Communications Algol, a name which emphasises one of the directions in which the
language was extended. The language provided data types for messages, files, and
processes, the second and third corresponding closely to the structures we have called the
file information block and process control block. New syntax was included to handle
these entities, and also to give access to certain specialised hardware operators for string
operations such as searching and translating, bit manipulations of various sorts, a test-
and-set machine operation called readlock as described in the chapter PROBLEMS OF
CONCURRENT PROGRAMMING, and the linked list operators we mentioned in the
chapter MEMORY MANAGEMENT : THE SYSTEM'S VIEW. In addition, the
semantics of the Algol procedure call was extended to include transfer of control between
coroutines, separate execution threads within the same programme, and initiation of new
processes. People who became accustomed to using it liked it a lot.

In fairness, it must be added that DCAlgol turned out to be not quite sufficient, and
there was also a high-level assembler called Espol (Executive System PrOgramming
Language). Later both of these languages were merged into a new high-level language
called Newp, of which we have no experience.

High-level assembler :

Languages of this class are designed with only one of our desirable features in mind : to
make writing easier. They provide control (and maybe data) structures at a high level –
but limited (or no !) checking for abuse. These languages are popular with
programmers – "very powerful"; "close to the machine"; "hey, look at this great trick".
Because there is no characteristic syntax for significant operations, it is typically possible
to produce very obscure code, which is not helpful to others who might have to read it.
(We are reminded of a student who participated in one of our courses many years ago,
and claimed as one of the good features of the programme which he had written that "the
code is not obscured by comments". The difference is that he was joking.)

The high-level assembly languages offer little or no protection against mistakes, and
programmes are typically quite unprovable. Most of the time, of course, all is well;
programmers who use such languages might be rash, but are not usually stupid, and
encode all the required structure correctly. Our objection is that the language offers no
help at all in simplifying the programming (by providing appropriate constructs), or in
detecting any errors which are made (by identifying them in the syntax analysis). We
are human, we are fallible, we make mistakes, and we are very happy if a compiler can
tell us that we've made a mistake before the mistake leads to any nasty consequences.

Specially designed language :

Our final category includes the languages which have been constructed from scratch with
the intention of implementing our desirable features, or perhaps a slightly different set,
depending on the views of the developers. Some examples of such features are :

• Useful data structures (processes, files, messages).
• Control structures appropriate for multiple processes : concurrency,

communications, critical regions, etc.
• Policies which facilitate formal treatment : all objects carefully defined, import and

export lists, potentially dangerous features (consider goto and pointers)
abolished or restricted.

We have already mentioned OberonIMP3 as one example of a language designed for the
job. Another, with stronger emphasis on the formal analysis of systems, is Concurrent
EuclidIMP35. This is an active research area; languages of this sort are still being
developed. We may infer that no one has yet found the ideal solution. Perhaps there isn't
one, but it's still worth looking, as every improvement in the languages we use to write
our operating systems is likely to result in systems which are more reliable.

WHY NOT HIGH-LEVEL LANGUAGES ?

We have offered arguments in favour of using appropriate high-level languages for
writing operating systems; here we present some arguments against. We remark before
beginning that we know of no good argument against the use of high-level languages.
Many of those we have seen can be reduced to something like this assertion : "Because
the highish-level language with which I am familiar (or its compiler) doesn't do
<something desirable>, it follows that no high-level language (or compiler) could do
it". A second sizeable group of objections are equivalent to : "I want to use this
demonstrably foolhardy technique, and high-level languages won't let me". We do not
believe that either of these arguments has any discernible merit.

Here are a few examples. If you think you have a better one, you are welcome to
offer it to us for an opinion. Who knows ? – you might convert us.

Compilers cannot produce efficient code, and efficiency is essential in an operating
system.

We concur with the second assertion, but flatly deny the first. A good optimising
compiler can produce excellent code, at least up to human standards. It is true that
cheap compilers usually generate deplorable code; they cash in on the cheapness of
memory and the uncritical attitude of most programmers, nowadays thoroughly
trained to ignore considerations of efficiency.

Support for execution : page 7.

Operating systems might need to refer to specific memory addresses, for interrupt
handling and input-output operations.

So ? It is true that few high-level languages provide such facilities, but that's
because the work for which they were designed doesn't need them. The point of a
high-level language isn't that it necessarily hides everything to do with the
computer; its job is to provide you with the things you need, and then to look after
the details of handling them safely and reliably. If specific memory addresses must
be used, then we should work out just how they are used, and provide for the
requirements in the language. We will accept this argument as suggesting that
extended or specially designed languages are potentially better suited to the task than
existing languages. (We will also accept it as an excuse for not using a high-level
language in a specific project, because you don't usually have time to construct a
new language and a compiler in a project, but that isn't an argument against high-
level languages in principle.)

Languages designed to produce programmes which are easy (or at least easier) to
prove correct usually prohibit such constructs as gotos and pointers. These are
essential for writing an operating system.

Nonsense. If you know what you're doing, you should be able to specify it clearly
enough to be implemented by a compiler in a controlled and checkable way. Of
course, this argument doesn't carry much weight if you don't know what you're
doing.

C.

In any discussion of operating system programming languages, CIMP5 must be mentioned.
It was developed as a vehicle for the Unix operating system, and is undoubtedly the most
influential of our examples. It is rather unfortunate that its strongest characteristic is that
of the high-level assembler, which we have roundly condemned. It is undoubtedly
powerful, and can be used to good effect; but the C syntax seems peculiarly well adapted
to obfuscation and misinterpretation, and the power is just as effective in wrong
programmes as in correct ones.

C, and its descendant C++IMP6, will undoubtedly be with us for a long time. The
appearance of ANSI standard C has gone some way to taming some of the worst
excesses, but the language cannot yet be said to have been domesticated. We therefore
think it appropriate to add one more prop to our hate campaign.

Suppose you were a civil engineer, considering a new technique for building
bridges. It is claimed that the new technique works very well in experienced hands almost
all the time. It does not introduce any new and precise methods, but gives its operator
control over a large number of hammers and saws, working very quickly. It is
recommended that the operator should work from a plan, but there is no way to tell
whether the completed bridge follows the plan.

We hope that you, the civil engineer, would not adopt that technique. It is true that
the engineer probably has a rather wider choice of reliable design methods than does the
operating system programmer, but it is also true that today's average programmer has less
concern for the reliability of the product than does the engineer. C, like other languages
which share the same characteristics, is a consequence of this irresponsible attitude. For
building well constructed and guaranteed reliable software, C is not the language of
choice.

Why is C++ called C++ ? In C, that means "Use C,
and increase it afterwards". C++ is C which has

already been increased in some sense, so ++C is a
better name. We pass no comment on the further

implication that it gets better every time you use it.

In practice, most operating systems seem to be written in C – or, nowadays, C++.
We get the operating systems we deserve.

A LITERARY CURIOSITY.

It is an odd fact that the name C was associated with a language long before the
programming language was invented; unless the inventors of the programming
language were familiar with George Orwell's work, it must be a coincidence.
Certainly there is no indication in any of the programming language literature we've
seen that any connection with Orwell's work is intended. The official derivation of
the name C for the programming language is from an earlier language called B, and a
development therefrom called BCPL; it's plausible enough. The literary C is
noteworthy for being very rigidly defined, limited to a small circle of speakers, and
gibberish to anyone else.

"The C vocabulary. The C vocabulary was supplementary to the others and consisted entirely of scientific and
technical terms in use to-day, and were constructed from the same roots, but the usual care was taken to define them
rigidly and strip them of undesirable meanings. They followed the same grammatical rules as the words in the
other two vocabularies. Very few of the C words had any currency either in everyday speech or in political speech.
Any scientific worker or technician could find all the words he needed in the list devoted to his own speciality, but he
seldom had more than a smattering of the words occurring in the other lists. Only a very few words were common
to all lists, and there was no vocabulary expressing the function of Science as a habit of mind, or a method of
thought, irrespective of its particular branches. There was, indeed, no word for 'Science', any meaning that it could
possibly bear being already covered by the word Ingsoc."

For the full story, read Nineteen Eighty FourIMP7, which is about thought control in a
totalitarian state; the passage above is taken from the appendix on "The principles
of Newspeak". A major tool in this control is the language Newspeak, derived from
English by eliminating all means of formulating statements which are not politically
correct. This is exactly what we want to do in programming languages, but the book
shows very clearly that the attempt to impose political correctness by human
language engineering is very dangerous.

COMPARE :

Lane and MooneyINT3 : Appendix A, sections 8 and 9.

REFERENCES.

IMP1 : H.A. Schutz : "On the design of a language for programming real-time
concurrent processes", IEEE Transactions on Software Engineering
5 , 248 (1979)

IMP2 : P. Levy, S. Hanson, P. Jackson, R. Jullig, T. Pittman : "Summary of the
characteristics of several 'modern' programming languages", Sigplan
Notices 14#5, 54 (May, 1979)

IMP3 : N. Wirth : "A plea for lean software", IEEE Computer 28#2, 64 (February,
1995).

IMP4 : E. Nather : The Story of Mel, a Real Programmer,
http://www.datamation.com/PlugIn/humor/jargon/jargon_48.html
(May 21, 1983).

IMP5 : B.W. Kernighan, D.M. Ritchie : The C programming language (Prentice-Hall,
1978).

IMP6 : B. Stroustrup : The C++ programming language (Addison-Wesley, 2nd ed.,
1991).

Support for execution : page 9.

IMP7 : G. Orwell : Nineteen Eighty Four (Penguin Books, 1954).

IMP35 : R.C. Holt : Concurrent Euclid, the Unix system, and Tunis (Addison-
Wesley, 1983).

––_______________

