
THRASHING

Virtual memory is good when it works, but can be catastrophically bad when it doesn't.
One important type of failure, called thrashing, might happen in a system perfectly
designed and implemented to execute any straightforward memory management
algorithm, as it can be caused purely by the behaviour of the running processes. It can
happen when the sum of the sizes of the processes' working sets exceeds the size of
available memory.

The principle can be illustrated by a very simple example. Consider a single process
which makes reference cyclically, and rather quickly, to m different pages of memory.
(Exactly analogous arguments work with segments, but pages, being more regular in
size, are rather easier to think about.) Then its working set will be something like m
pages. The computing required for each page takes time t, and the virtual memory system
takes time T to fetch a page. Suppose that this process is executed in a computer with M
pages of memory available. Then provided that m ≤ M all will be well, and, after an initial
spurt of memory activity while the working set is established by setting up the m pages in
memory, the process can run as quickly as the processor will let it. During the initial
period, it will require time T + t to complete the work on each page, but once all pages
are present in memory only time t will be needed, so the complete cycle through the
working set takes time mt . But what happens if m > M ?

Suppose that m = M + 1. The execution begins slowly as with the smaller working
set, with each page fetched from disc on request, taking time T + t for each page. But
now when M pages have been fetched, the last page is still not in memory. To fetch that
page, it is necessary to swap out one of the resident pages – and the same necessity will
arise at least once every cycle through the working set. The cycle now takes time mt + rT,
where r is the number of page replacements which must be handled by the virtual
memory, and depends on the page replacement strategy. The common least-recently-used
strategy gives the worst possible result : m(t + T). The best possible result is mt + T,
which would be achieved by using the normally absurd "most-recently-used" strategy.

Obviously, the seriousness of the phenomenon depends on the ratio of t to T. If t »
T, which would be so if a lot of computation happened within each page, then the
problem would be negligible – but in that case we would regard the working set as a
single page. By including the whole cycle in the working set, we have in effect declared
that t « T, in which case even the best possible result is serious.

There is a very easy way to achieve such dreadful performance; it is the two-
dimensional array example which we've already mentioned. You might have to adapt the
details slightly to make it work with your language and compiler, but in general it goes
something like this :

var matrix : array[1 : M, 1 : p] of char; { p is the page size.
}

for index := 1, p
for page := 1, M

matrix[page, index] := matrix[page, index] + 1;
end;

end;

If it runs too quickly, try interchanging the two for lines.

Unfortunately, the example isn't a joke; many mathematical operations on large
arrays scan the arrays in both directions at some time or another, and if you encode them
in the obvious way it can take a very long time to get your answer. People who compose
mathematical software worry about such behaviour, and develop techniques better suited
to the behaviour of real memories. And it doesn't necessarily help just to buy another few
megabytes of memory; memory might be cheap, but finding ways to soak it up is even
cheaper.

That example shows how a single process running on a single processor can
commit suicide, or something close to it. (Commit lethargy ?) That's fair enough : if
you write silly programmes, you deserve to suffer. The really unfortunate fact is that, in a
multiprogrammed system, other innocent people can suffer too.

Suppose we add to the system another process which is contained completely
within one page. We shall call this the nice process. Just what happens now depends on
details of timeslice length (see the next section) as well as the properties of the
processes and memory which we've already used, so the behaviour becomes more
complicated, but it's easy to see that thrashing is to some extent infectious. At the simplest
level, in any system which uses a cyclic-replacement paging strategy, the nice process
will be forced out of memory from time to time through no fault of its own. Even with a
least-recently-used strategy, the nice process will be forced out any time that the nasty
process happens to refer to each of its resident pages within a time slice before requiring
an absent page. A quite nice process which uses just two or three pages in its working set
is more vulnerable; and the situation becomes worse as more and more processes execute
concurrently. Perhaps the worst case is that in which no process is identifiably at fault; all
processes are reasonably nice, but there are simply too many of them.

The result of this sort of interference in the general case is shown in the diagram
below. The experimental points (redrawn on this diagram) were determinedEXE21 from a
simulator using two different models of the processing behaviour; clearly, they agree
reasonably well, suggesting that the phenomenon is to some degree independent of details
of the model. Notice that the maximum achievable processor performance is in the range
70% to 80%.

% CPU
utilization

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9

Number of jobs

The infectious nature of swapping can be limited by imposing an upper limit of
memory use on each process, and requiring that any additional demand be met by
choosing the area to be replaced from the process's own memory. This works in
principle, but is not very easy to implement sensibly in practice. It is necessary either to
include ownership information in the memory map or to make provision for the
replacement strategy to use the process's addressing table rather than the memory map.
This becomes quite complex if there is to be any hardware component in maintaining lists
used for the replacement algorithm; providing operations on a single predefined memory
map is much easier than providing corresponding operations on addressing tables which
might be of different sizes and might be anywhere in memory. A further complication is
in finding a good way to fix the memory limit; it is clearly silly to fix a value, as that
would force a process to swap against itself even in an otherwise empty memory, but to
estimate reasonable values as the system operates is difficult.

AN EXAMPLE.

The University's first interactive computer service was based on a Prime P400 computer,
with not enough memory or disc for the job it was expected to do. (We couldn't afford
any more.) Thrashing was therefore common whenever a few people tried to run a big
programme – such as a compiler – simultaneously.

The diagrams show how the performance of the system could be improved by
constraining the compiler so that only one process could use it at any moment. The five
jobs run in each case were identical : a typical file copy – edit – compile – load – run
sequence. The timing information is all real; it was taken from a log file associated with
each job. For reasons connected with the operation of the system, now lost in history, the
times are accurate only to about the nearest minute at best.

When the jobs were simply permitted to run together with no constraints, each job
took about an hour, with the compiling step occupying most of the time :

62 minutes

When the system was changed so that only a single job could use the compiler at any
moment, though, the pattern observed was quite different; the diagram below is typical. It
is interesting that forcing jobs to do nothing for a while should get them all finished
sooner !

11 minutes

The key for both figures is :

Filing Editing Waiting

Compiling Loading Running

COMPARE :

Lane and MooneyINT3 : Chapter 11; Silberschatz and GalvinINT4 : Chapter 9.

REFERENCES.

SUP21 : S.E. Madnick, J.J. Donovan : Operating Systems (McGraw-Hill, 1974),
page 505.

–––

