
VIRTUAL MEMORY

WHAT IS VIRTUAL MEMORY FOR ?

There is strong anecdotal evidence for the existence of some law of nature which
guarantees that whatever is currently deemed to be a useful programme will require rather
more memory than is in your computer. The only known exceptions to this law are
observed in multiprogramming systems, but here the law applies in modified form : the
total memory requirement of all the programmes running at any moment is rather greater
than the memory available.

That's a nuisance, but if our programme is too big we can grin and bear it if we
have to. More seriously, the same constraints lead to interference between programmes
which can destroy our functional system. This takes the form of a phenomenon called
deadlock. If each of two programmes running concurrently owns 0.4 of the system
memory, and then both request an additional 0.3 of the total, what can the system do ?
We deal with deadlock in more detail later, but for the moment observe that it is a serious
problem in any system in which a finite resource is allocated.

We have a sort of solution for single-programme systems, and we have already met
the overlay methods which were used to overcome the phenomenon, but these can hardly
be seen as a satisfactory answer, as they require a lot of careful planning by the
programmer, which doesn't fit in with our aims. Further, they don't extend at all to
multiprogramming systems. Therefore, we assert that it is the operating system's job to
provide whatever support is needed to make it easy to get work done on a computer, even
if the support needed is a bigger memory. It is therefore a fortunate and happy fact that we
can use our new memory management skills, not to mention hardware, to construct a new
and completely automatic solution, which we call virtual memory. In principle, this is a
simple extension of the addressing techniques which make it possible for a programme to
be scattered piecemeal throughout memory. We merely allow the scattering to extend over
both internal memory and disc. In practice, we have to do a few additional tricks in the
hardware and software to make it work effectively, but the idea is just as we have stated.

We also add a new word to our vocabulary : swapping . We use it to describe the
virtual memory system's movement of information to and fro between memory and disc.
We speak of "swapping in" and "swapping out" when discussing the copying operations,
and say that an area of a process's memory is "swapped out" if there is currently no copy
of the area in memory, but a copy is available on the disc. We emphasise that swapping is
an activity of the operating system only; it is quite imperceptible to the process, which
continues to enjoy whatever memory model it thought it was using. The ideal of a
functional system is therefore preserved.

It is also tested a bit, not in itself but as an adequate
definition of the sort of system we want. We

assumed that the aim of the system could reasonably
be expressed as the satisfactory execution of

functions, which by definition are independent of
time. That was certainly true for a batch system, and

in practice worked well for interactive systems; a
slow-running system would make people cross, but
wouldn't affect the performance of the programmes.
This is no longer so obvious. As people want to use

computers for activities such as real-time animation,
a slow-running system can be a catastrophe. We shall

address a few of the issues later, but perhaps this
observation suggests that we should take time into
account right from the start. As with security, if you
don't build it in from the beginning, it's hard to bolt

on later.

Before leaving this introduction, it is worth emphasising that the virtual memory
which we are discussing is primary memory. We saw at the beginning of the WHY
MEMORY ? chapter that the major reason for having primary memory is that it's fast; the
other reason (which follows from the first) is that the processor is designed to work to
and from primary memory, so we have to get code and data into memory before we use
them. Typically, though, the code and data come from a disc, so, if the code contains few
loops and branches, the material might merely be copied into memory, used once, and
then discarded. If that's so, then the speed of the memory is ineffective, as the speed is
likely to be governed by the rate of transfer from the disc. In such circumstances, we're
really only using primary memory for the second reason, which is an accident of design.
The advantage of having memory is only realised if we want to use an item in memory
repeatedly.

We make this comment to point out that virtual memory is often used
inappropriately. Suppose that we wish to make a few changes to a large file. By the
wonders of virtual memory, we have an addressing space of 64 megabytes, so we copy
the file into memory. Of course, most of it is virtual memory, so most of the file is copied
into memory by the programme which reads the file, and then, as the copying continues,
swapped out to the disc by the virtual memory manager. We execute the programme, and
make changes to perhaps a few hundred positions in the file, for each of which a sector
must be read from the disc, changed, and put back again. Then we rewrite the file from
"memory" to disc, by fetching all the data from disc into primary memory, and writing it
to disc again.

We have (or, rather, the computer has) done a lot of fairly unproductive work.
We (now the programmers) haven't necessarily done it frivolously; we have written the
programme as simply, quickly, and reliably as possible, and relied on the operating
system's designer's claims that the system is there to do things efficiently for us. What
went wrong ?

The problem is one which we have already met (in the chapter WHY
MEMORY ?) : we have two quite different ways of providing a very large memory –
virtual memory and the file system – and in the example they clash. The solution, at
present, is for the programmers to take more note of the system constraints and
organisation, and to write their programmes taking account of the fact of the file structure
of the data. This intrusion of accidents of implementation into programming is
unfortunate, but inevitable with current practice. The problem might eventually be solved
by the very large address spaces we mentioned earlier, which in effect mean that we can
leave everything in memory (virtual, of course) permanently; but until then the
integration of secondary memory, virtual memory, and primary memory is likely to be
less than perfectly satisfactory.

OVERLAYS AGAIN, AND LOCALITY OF REFERENCE.

If the programme is too large to fit into the available memory, you might still be able to
run it using overlaying. We described this technique earlier, in the chapter MEMORY
TRICKS; it requires no additional hardware resources, and can be considered as the
private concern of the process, the linker, and the loader. We'll describe it in some detail
because, though so far as we know it isn't used seriously any more, it introduces in a
rather clear way a number of ideas which we'll need later.

The principle behind the overlay technique is that a programme can run if the code
and data areas which it is using at the moment are in memory, and provided that we can
maintain this condition it doesn't matter what happens to the rest of the code and data –
and, in particular, it could just as well be saved on the disc. We can therefore run
programmes which are too big for memory by providing means to exchange the contents
of memory with a copy on the disc in such a way that the active parts are always in
memory. The diagram below shows how this is managed in an overlay system. We use
the programme example we introduced earlier, and a carefully contrived memory which is
rather too small to accommodate the whole programme at once.

B C D

E F G H

Memory

A

A B C D E F G H

A is the main programme, and remains in memory throughout. The rest of the
programme is split into two sections, { B, C, D } and { E, F, G, H } – notice that these
follow the static programme structure shown in the earlier diagrams, so that there are no
procedure calls from one section to the other. Each of these overlay blocks will fit into
memory with A, even though the whole programme is too big. The short grey tail on the
A segment is the administrative software, which intercepts calls to any procedure in the
overlay areas from outside and ensures that the correct overlay block is loaded into
memory before executing the real procedure entry. (Calls within an overlay block to
other procedures in the same block or to procedures permanently resident in memory need
no special treatment.)

In practice, while a tree structure is often a reasonably good approximation to the
static structure of a programme, it must often be extended a little to give a realistic
representation of memory requirements. That is because there are often many service
procedures (input, output, etc.), either within the programme or provided by the
operating system, which are widely used throughout the programme. The structure of our
example might therefore really be closer to a lattice than a tree, like this :

read write

A

B

C D

E

F

G

H

Fortunately, that fits into the overlay method very well, with the main programme and the
service procedures permanently in memory, and the middle parts handled as overlay
blocks.

This structure is set up as a cooperative effort between compiler, linker, and loader,
and, given the structure, the details are fairly obvious. It is much more interesting to
consider why the method works, and an instructive approach is to begin by inspecting a
model of programme execution which doesn't work. To work out what happens in the
overlay system, we must have some idea of the patterns of memory use as it operates.
Perhaps it would not be unreasonable to guess that a passable approximation to the
memory access requirements of the programme would be a random distribution of
references throughout the whole programme chunk, continuing for as long as the
"programme" was supposed to be in "execution".

We can easily apply this model to our overlay example. The areas of the three
programme blocks are in the approximate ratios

area of A : area of { B, C, D } : area of { E, F, G, H } :: 45 : 60 : 100.

Using the random access assumption, the probabilities of references to the three blocks
are about 0.22, 0.29, and 0.49. The probabilities that the two blocks are in memory will
be in the same proportion as the probabilities of reference to the blocks, as at any time the
last block referenced will necessarily be in memory :

probability that { B, C, D } in memory : probability that { E, F, G, H } in memory ::
60 : 100,

so the probabilities themselves are about 0.375 and 0.625 respectively. The probability of
a reference to the block not in memory is therefore

0.29 x (1 – 0.375) + 0.49 x (1 – 0.625) = 0.36, approximately –

which is to say that something like one in every three references to memory will require
that a new block be loaded from the disc. And, yes, we know that this estimate is very
crude indeed, but the order of magnitude is all we need, and the point is that the
assumption of random memory references leads to this conclusion.

The point is also that this conclusion is quite wrong. Recall our comment in WHY
MEMORY ? – "The file stores we usually use now are far too slow to be used directly as
working storage when executing programmes, so we have to invent short-term storage,
which we shall call memory, which we can use for this purpose.". If the random
assumption were true, then executing the programme using the overlay method would
(in this example) require a file store reference approximately once in every three
instructions executed, and that in turn would give us a speed which is only a factor of
three or so better than that we could achieve without any high speed memory ! In
practice, we know that doesn't happen – so the random reference assumption must be
very poor indeed.

Fortunately for the overlay methods, and for other important methods we shall
discuss later, the random reference assumption is indeed very bad. That's because we
don't write random code, and we don't scatter our data randomly through memory.
Instead, we use various code and data structures which we have found by experience to
be effective in composing good programmes, and which by their very natures collect
together related material into localised areas of memory. The aim of any computer
programme is to convert some collection of data items into some defined set of results,
but the incoming and outgoing items are usually represented by fairly compact data
structures. Similarly, we group the code for a particular operation into one or a few well
defined procedures, which can be used by other well defined and compact procedures as
required. Over any short period, then, the memory references required by a programme
are likely to be restricted to a few quite localised areas of code and data.

Here's a possible memory reference pattern for our example programme. To draw
the diagram, we've had to assumed a specific programme, and we've used an
unrealistically simple example. With a more realistic programme, the density of use within
the various sections would be increased, but the division into sections would remain –
and could even become more pronounced if the more detailed programme structure
corresponded to more persistent activities.

A B C D E F G H

Time

This phenomenon is called locality of reference. It is clear that the assumption of
randomly distributed memory reference is quite wrong, and, because of the localisation
which occurs in practice, the overlay method is effective. Most programmes settle down
to operate smoothly with only a comparatively small demand for real memory : over any
short interval, they are only using a small proportion of their code and data, not making
memory references randomly over their whole address spaces. This phenomenon is called
locality of reference, and the set of areas currently in use is known as the programme's
working set. The size of the working set is determined by the programme structure, and
the way in which data are used. It is probably rather obvious that we've worked out the
diagram by hand and guesswork, but it's possible to measure them experimentally by
recording the signals on the processor address bus and plotting them against time.
Examples from several programmes have been measuredEXE23, sometimes with recording
times covering 109 memory references, and shown together with computed working set
size. The results are interesting, and in accord with our discussion here.

Though our example doesn't demonstrate it, it is found experimentally that locality
of reference works for both code and data, and you can follow through a similar argument
for the data based on the pattern of data use in a programme : typically, transformations
are carried out by a succession of operations between structures P and Q, then structures
Q and R, and so on, and only the structures currently in use must be held in memory. The
arguments for data are not quite as good as those for code, because adjacency is much
less significant for data than for code. Adjacent code words are very likely to be used at
about the same time, because of the machinery of the computer hardware, but adjacent
data words are not so constrained. A classic problem data structure is the two-dimensional
array, which is sometimes used row by row, and sometimes column by column; there is
no way to store it which will preserve a small working set in both cases.

What are the neighbourhoods within which memory references are likely to be
collected ? They are areas of code or data which are related in the programme by being
concerned with some common task. They are, in other words, the segments we defined
earlier. The diagram above demonstrates this, given goodwill and a little imagination, but
it's much clearer if you look at a real memory trace. We'd therefore expect the working
set to be a collection of related segments of the programme.

Of course, locality of reference didn't just happen when overlay systems came
along. So far as the code is concerned, it's an immediate consequence of the processor
architecture, in which the instruction address is automatically advanced by 1 after each
instruction, and the common use of loops in programmes; and we usually keep related
data close together because it would be stupid to do otherwise. These natural patterns
were formalised and accentuated in structured programming techniques, where an
essential notion is that you use different pieces of code to perform different tasks; it
follows immediately that while you are performing a particular task, only the code for that
task is active.

We've assumed throughout that we have a truly
random-access memory. Just to illustrate the

importance of that assumption, consider the IBM
650. This was one of the very early commercially
available machines, and it was designed before
anything now recognisable as fast memory was

available at affordable prices. Instead, it had a set of
forty electronic registers, with its main memory

provided by a rotating magnetic drum. Because of
this architecture, only a limited portion of the main

memory – that just about to come under the read
heads (one per memory track on the magnetic

surface) – was available at any moment. In this
case, the optimum layout for a programme was such
that the next instruction for execution was always

just about to become available from the drum, which
meant that instructions had to be scattered about the
memory. This was managed automatically by SOAP –

a Symbolic Optimising Assembly Programme.

HOW TO DO IT.

The next task is to use our knowledge of locality of reference to develop an automatic
method for getting the working set into memory, rather than relying on the cumbersome
manual organisation of overlays. This turns out to be almost embarrassingly easy. The
principle of locality of reference implies that if we refer to some memory address, then it's
pretty likely that we'll want to refer to others in the close vicinity quite often in the near
future, and we related this to the programme's segment structure above. We would
therefore expect good performance from a policy which would bring into memory any
segment referred to during the execution, because that would automatically load addresses
which would be required in the near future.

Consider, then, what must be done to make the virtual memory work as we want it
to. As our programme is executed, it continually generates memory addresses for both
instructions and data. Each of these is presented to the memory management hardware.
The hardware resolves the virtual address as we described earlier, and identifies the
correct memory area's details. Under normal circumstances, it now expects to find the
actual address of the memory area in real memory, and to proceed with the address
calculation as we have already discussed. With virtual memory, it might be that some of
the addresses turn out to be in areas which are swapped out. In a paged system, we can
see this as a straightforward extension of the memory mapping ideas we introduced
earlier. Consider this modified version of the paged memory diagram we presented :

Selector

Displacement

Paged memory

Disc

Now certain selectors identify areas on the disc, not in primary memory.

But in that case the system can no longer function as we specified in the earlier
discussion : it cannot respond as though it were fast memory, because it is physically
impossible to retrieve the required data from the disc at sufficient speed. (If it were, we

wouldn't need fast memory.) It is therefore necessary to suspend execution of the
process – and this leads to the idea of the page fault, which we shall shortly describe.
Essentially analogous ideas apply to segments, though the neat "memory mapping"
analogy doesn’t work quite as well.

In order to make all this work, we therefore require that there should be additional
information in the process's address table :

• The present bit : means "this area (page or segment) is present in memory";
• The disc address : where the area will be found on the disc if it isn't present. (The

address is allocated either when the programme first defines the memory area, or at
the first demand for swapping out.) Some systems keep either the disc address or
the memory address; this saves memory, but you have to allocate a new vacant disc
address if the area is swapped out (very fast for pages), and you can't save time
on unaltered areas as described below.

If the area isn't present, then the system has to make it present. If there's a copy on the
disc, it must be fetched; if this is the first reference to a data area, there might be no
existing copy, so the system need only find space in memory. The system then proceeds
with an appropriate set of these operations :

• Stop the current process until the copy is done (so the user isn't charged for the
overhead);

• Find a place in memory for the area;
• Find its position on the disc (from the address table);
• Request the copy from the disc managing software;
• When the area is copied, change the address tables;
• Restart the process.

That's a page fault or segment fault. We shall use the term addressing fault if we wish
to avoid committing ourselves. There is obviously a lot of work involved, and indeed an
addressing fault at best causes a significant interruption in the smooth running of the
system. While there are clear benefits to be gained from virtual memory, it is in our
interests to reduce the number of addressing faults to the minimum consistent with getting
the necessary work done in an acceptable manner.

FINDING SPACE IN MEMORY.

This is the second item on the list of actions above, and it might be by far the most
complicated. It's only easy in the simplest case, which is when there's already a free area
of memory which can be used to satisfy the request.

With a segmented memory, even that isn't straightforward, for we have to select
which available segment to use. (In a paged system, all pages are the same size, so any
vacant page will do.) This is the allocation strategy, which we discussed earlier, in
MEMORY MANAGEMENT – THE SYSTEM'S VIEW.

Swapping is the next step. The system must choose a victim page or segment to
banish to the disc; to do so, it uses a replacement strategy. The ideal replacement
strategy is to swap out the area for which the time until the next demand is the maximum;
unfortunately, there is no way to determine the time until the next demand, so we have to
guess. There are several criteria which we can use for guessing :

• size – important only in a segmented system. It is difficult to devise a fair strategy
which takes account of size; the obvious "swap out the first segment you find which
is at least as big as the space required" is unduly hard on any big segments, which
are at risk of being banished to disc on almost all requests, but to restrict swapping
to segments of close to the required size leaves very large or very small segments
almost undisturbed.

• usefulness – ideal, but unattainable. There are several ways to guess the
uselessness of areas, some of which are :

- Cyclic replacement : This strategy is extremely easy to implement. We
assume that simply working through memory page by page, or segment by
segment, will be likely to pick old areas for replacement. If this were the only
thing that happened in memory, it would work some of the time, but it isn't,
and doesn't. Its main virtue (apart from easy implementation) is a sort of
fairness : being quite unselective, it has no bias.

- Least Recently Used : While there is still no guarantee that the area
which has not been used for the longest time won't be needed in the next few
microseconds, the argument works the other way round : if an area will
never be used again, then the time since its last use will go on increasing, so
under ordinary circumstances (which don't include thrashing – see the
chapter on that topic) the method is more likely to choose the areas we
would like to swap out. Unfortunately, identifying the least recently used
page takes a lot of work, and – as every reference to an area must be taken
into account – at least some of the work must be done by the hardware. We'll
describe two procedures which work.

Perhaps the obvious way is to maintain a queue of areas which is
reordered at every memory reference so that the most recently used area goes
to the tail of the queue. The operation on the queue is quite simple and
standard, operating on the page map or segment list, and involving no
arithmetic. The list must be linked in both directions to eliminate time-
consuming list traversals. The least recently used area is always instantly
available from the head of the queue.

An alternative is to number the references. The processor maintains an
instruction counter (that is, a real counter which counts instructions
executed, not the instruction address register), and stores the current value in
a field reserved for the purpose in the page descriptor or segment header at
every memory reference. That's much easier than reordering lists; but now
each time the replacement strategy is used it's necessary to search through all
the entries to find that with the smallest number.

Clearly, both of these algorithms will work; equally clearly, both
involve additional work for which special hardware is essential, and both use
memory to maintain the ordering information. We shall see in the next chapter
that the additional memory required can be of concern; it amounts to enough
memory to hold a memory address to hold the backward link (for the first
method) or an instruction counter value (for the second method) for each
area. The instruction counter must be big enough not to overflow between
system restarts – which means, for a system with one instruction each
microsecond and providing for a ten-year run, around 48 bits.

- Not Recently Used : The complexity and expense of the least-recently-
used strategy makes it unpopular, even though the idea behind it is perhaps
the closest we can get to the ideal strategy. It's possible to make one step
from the cyclic replacement strategy towards the least-recently-used strategy
comparatively cheaply, and it seems to make a significant, and welcome,
difference. This also requires additional space, but only to the extent of one
bit per area, which we shall call the used bit. This bit is initially set (to
ensure that areas are not swapped out immediately they are allocated); all the
used bits are cleared from time to time, and set whenever the area is
addressed. The strategy is to swap out an area with the used bit clear. While
that is obviously far from perfect, particularly just after the bits have been
reset, it introduces a bias towards swapping out areas which have not been
used for a while which seems to be effective in practice.

- Oldest Inhabitant (or FIFO – First In, First Out) : This strategy is
fairly easy to implement. As each area is brought into memory it is attached to
the tail of a queue, and candidates for swapping are taken from the head of the
queue. There is some overhead for queue insertion and removal (both on
swapping out again and on releasing the area), but this is small in

comparison with the cost of the associated action. Unfortunately, it isn't a
very good method, for any area which is very useful will be likely to remain
in memory for a long time and eventually, useful or not, be swapped out.

By juggling used bits, counters, shift registers, and lists, you can evolve a large
number of variations on these strategies. Our examples have covered guesswork
(Cyclic), cheap first approximation (FIFO), good but expensive (LRU), and
compromise (NRU) techniques; the others fall at various points around the
compromise level.

• whether changed – if an area hasn't been changed since it was last read from the
disc, we don't need to write it back again. To use this as part of the replacement
strategy is not necessarily a good idea; it might save a little time in the addressing
fault, but it says nothing about how useful the area is. It is more useful to avoid
wasting time wherever possible once a selection has been made by some other
means. To implement this, the page or segment descriptor must contain a marker
(often called a "dirty bit") which is reset when the area is newly fetched from
memory and set by hardware whenever anything is written into the area. It is also
necessary to keep both memory address and disc address in the table; you can't
economise by keeping only one.

• whether locked in memory – many systems provide means to mark selected areas
as "locked in memory", which mean that they are exempt from swapping. This is
sensible if the areas are known to be very frequently used, or their contents must be
accessible very quickly. Addressing tables may be (though they are not
necessarily) locked in memory; file buffers are also sometimes locked, on the
grounds that it's silly to read something from the disc and then swap it out again.
This requires a "locked bit" in the area descriptor.

None of them is perfect; some – particularly the uselessness guesses – require additional
administrative overhead in normal running. They also need more information in the
process's addressing table; the table entry might include some selection of a dirty bit, a
used bit, a locked bit, a link for the list of pages or a 48-bit number, and others we
haven't discussed. While it's impossible to guarantee the best choice of an area to swap
out, it does seem that even fairly simple techniques can improve performance significantly
above random choice – and even random choice will keep the system going !

IS IT REALLY AS EASY AS THAT ?

Sometimes. If you run just one process at a time and have a single processor, a system
based on those ideas will work well. On the other hand, descriptions of the memory
management algorithms are all very well, but it's far from easy to understand how they
work without direct experience. It is particularly difficult to imagine how they work in a
system where several processes might be operating simultaneously, and competing for the
available memory. We therefore present a very contrived example (because a more
realistic one would have to be run through many more cycles before anything interesting
happened) which shows something of the possible interactions.

We assume that two processes, P and Q, run concurrently, executing programmes
PrP and PrQ. The programme code is locked in memory, and can be ignored for purposes
of memory management. To speed up events and generally simplify the behaviour, we
assume that four pages of memory are available for the data, and data areas are not
shared. Both programmes use the same code :

programme Pr*;

A, B, C : onepageofdata; { Data areas, each occupying exactly one
memory page. }

repeat
use A; { Short operation on variables only in A. }
wait; { Await interrupt. }
use B; { Short operation on variables only in B. }

wait; { Await interrupt. }
use C; { Short operation on variables only in C. }
wait; { Await interrupt. }

forever;

end of programme.

At each wait instruction, a programme waits for an interrupt (so we don't have to worry
about details of instruction execution times); each programme has its own series of
interrupts which never arrive at the same time (so we never have to worry about
conflicts). The period between successive interrupts is much greater than the time taken
for a page fault (so there's plenty of time for the virtual memory system to respond
before another interrupt arrives), which is in turn much greater than the time taken to
execute the use operations (so the speed of the programme is dominated by the page
faults if any happen). We shall finally assume that none of the pages required is initially
in the memory, so all sequences begin with four page faults which fill the memory. After
that, it makes sense to compare the three examples of behaviour.

We shall investigate the frequency of page faults with both LRU and cyclic page
replacement strategies under different conditions, defined by the relative rates of arrival of
interrupts for the two processes.

Case 1 : The frequencies of P and Q interrupts are equal.

The page requests are in this order :

1 2 3 4 5 6 7 8 9 10 11 12

PA PB PC PA PB PC

QA QB QC QA QB QC

The allocations : page faults are in bold characters.

Cyclic LRU

page 1 page 2 page 3 page 4 page 1 page 2 page 3 page 4

1 : PA 2 : QA 3 : PB 4 : QB 1 : PA 2 : QA 3 : PB 4 : QB

5 : PC 6 : QC 7 : PA 8 : QA 5 : PC 6 : QC 7 : PA 8 : QA

9 : PB 10 : QB 11 : PC 12 : QC 9 : PB 10 : QB 11 : PC 12 : QC

The frequency of page faults is the same as the frequency of interrupts for both processes.
It is always necessary to use five other pages between successive uses of the same page,
so neither algorithm can preserve a page long enough for reuse.

Case 2 : P interrupts are twice as frequent as Q interrupts.

The page requests are in this order :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PA PB PC PA PB PC PA PB PC PA PB PC

QA QB QC QA QB QC

The allocations : page faults are in bold characters.

Cyclic LRU

page 1 page 2 page 3 page 4 page 1 page 2 page 3 page 4

1 : PA 2 : PB 3 : QA 4 : PC 1 : PA 2 : PB 3 : QA 4 : PC

5 : PA 7 : PB 8 : PC 5 : PA 8 : PC

6 : QB 9 : QC 10 : PA 11 : PB 6 : QB 7 : PB

14 : PA 16 : PB 11 : PB

12 : QA 13 : PC 15 : QB 18 : QC 9 : QC 10 : PA 12 : QA

17 : PC 14 : PA

13 : PC 15 : QB 16 : PB

17 : PC 18 : QC

For the CYCLIC algorithm : The frequency of Q page faults is the same as the Q interrupt
frequency. Five different pages are required between successive calls, so there is no
chance that a page can be reused. The frequency of P page faults is only one half of its
interrupt frequency. There are alternately three and four other pages required between
successive calls, so half the time the required page is still there.

For the LRU algorithm : The performance is again exactly the same as that of the cyclic
algorithm, though the sequence is different. The rather poor performance of this algorithm
is a consequence of the iterative structure of the process, for which the least recently used
segment is quite likely to be the next required – so several times a page is replaced
immediately before it is required again.

Case 3 : P interrupts are three times as frequent as Q interrupts.

The page requests are in this order :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PA PB PC PA PB PC PA PB PC PA PB PC PA PB PC .

QA QB QC QA QB.

The allocations : page faults are in bold characters.

Cyclic LRU

page 1 page 2 page 3 page 4 page 1 page 2 page 3 page 4

1 : PA 2 : PB 3 : PC 4 : QA 1 : PA 2 : PB 3 : PC 4 : QA

5 : PA 6 : PB 7 : PC 5 : PA 6 : PB 7 : PC 8 : QB

8 : QB 9 : PA 10 : PB 11 : PC 9 : PA 10 : PB 11 : PC 12 : QC

13 : PA 14 : PB 15 : PC 13 : PA 14 : PB 15 : PC 16 : QA

12 : QC 17 : PA 18 : PB 19 : PC 20 : QB

16 : QA 17 : PA 18 : PB

19 : PC 20 : QB

For the CYCLIC algorithm : The frequency of Q page faults is the same as the Q interrupt
frequency. Five different pages are required between successive calls, so there is no
chance that a page can be reused. The frequency of P page faults is again one half of its
interrupt frequency. There are alternately three and four other pages required between
successive calls, so half the time the required page is still there. (The other half of the
time, it has just been overwritten !)

For the LRU algorithm : We win at last – or, at least, P does. After the initial period, P
needs no page faults at all, because the comparatively infrequent Q interrupts always come
after all the P pages have been used, leaving the single resident Q page as the least
recently used. Q therefore still requires one page fault for each interrupt – but, then, it
always did.

What, if anything, do we conclude ? Not a great deal, because of the artificial
constraints placed on the example – but these were intended as simplifying constraints,
so we might expect that the real behaviour is more complex. What is very clear is that the
simple patterns suggested by the names of the algorithms – cyclic replacement, least
recently used – interact with execution patterns (in this case, the programme loop) and
competition between processes in non-trivial ways, so that the actual performance of the
algorithms is hard to predict.

The consequences of these interactions go further than curious paging behaviour;
they can extend to the design of the page management algorithms themselves. With a
single process running in the system, once an addressing fault occurs not much can
happen until the required memory has been brought from the disc. If other processes run
concurrently, this is no longer true; circumstances can change while the rather slow
machinery of the fault grinds along. For example, consider an attempt by a process to use
a portion of its memory which happens to lie in an area marked by the replacement
strategy for swapping out. The situation is clearly undesirable : the area which the
replacement strategy guessed would be not wanted turns out to be very wanted ! What
should be done ? The one course of action not open to the system is to permit the
reference in the hope that everything will be all right; in a simple system, there is no way
to tell how far the swapping operation has been completed, so the condition of the area of
memory is unknown. On the other hand, if access to the area chosen for swapping out is
blocked by setting its present bit to show the area absent as soon as the selection is made,
a process which could continue is unnecessarily blocked, and it might send its request for
the area to be swapped in from the disc before it has been swapped out. Another
possibility is to abandon the original swap if the area is required in this way, and run the
replacement algorithm again for the original process – but to do that, there must be some
indication in the system that a reference to an area scheduled for swapping out has been
made. The simple present bit is no longer adequate; we require at least the states present,
present but scheduled for swapping out, and absent. (And if segments can be shared
between processes, we also need the state absent but already requested.) (Observe
that some of this information must be visible from the page map, as it affects operations
outside the process.) The problems can be overcome, but the swapping software
becomes more complicated.

WHAT HAPPENS – LOCALITY OF REFERENCE AND THE WORKING SET.

At every memory reference, the hardware checks the present bit; if the area isn't present,
an addressing fault is signalled, typically as some sort of software interrupt. We saw
earlier (in the chapter MEMORY MANAGEMENT : THE PROCESSES' VIEW) that
we could describe the memory demands of processes in terms of locality of reference and
the working set; in the context of virtual memory, the working set is important, as it
establishes the current memory requirement of the process.

We can illustrate this principle by discussing the behaviour of some familiar sorting
algorithms. We emphasise before starting that our comments have nothing whatever to do
with the mathematical complexities of the algorithms, except insofar as they might affect
the proportionality constants; we are concerned only with memory management
questions.

Consider first a bubble sort. We begin with a set of numbers in an ordered list
(usually implemented as an array), and the sort proceeds by successive passes through
the list, with each step comparing the values of a pair of adjacent items and interchanging
them if they are out of order. The diagram (like the two others which follow below)
illustrates the process by identifying the memory references made in four sequential
operations. Passage of time is denoted by the thinning of the markers, so the thick
markers denote the most recent actions in the three diagrams which follow..

Everyone knows that a bubble sort is a very unsatisfactory way to sort items –
everybody, that is, except the memory manager. For memory management, the bubble
sort is close to ideal : the working set for the data is determined by the array references,
and they are always to adjacent memory items. Except when the scan crosses a page
boundary, therefore, the working set is likely to be close to one page in size.

Now consider the Shell sort. Again, we begin with an array of numbers, and the
algorithm makes several passes comparing and perhaps exchanging values. The Shell sort
differs from the bubble sort in that the items compared are not adjacent except in the later
passes.

Now the working set in the early stages of the algorithm might be two pages in size.

Finally, consider a simple tree insertion sort. The items to be sorted are presented
one by one, and inserted into the tree as new nodes with the sort order embodied in the
tree structure. A new item is first compared with the root value, then directed to the left or
right subtree according to the result of the comparison; and that procedure is repeated until
a comparison leads to the construction of a new terminal node. The root value, as the first
to be entered, occupies the first position in the storage array; the new nodes are always
entered at the end; and the several probes in between will select intermediate points not
randomly (as the later points, representing nodes lower in the tree, will be visited less
often) but typically with a widespread coverage.

For this algorithm, the working set is likely to be large, as many pages are touched for
each value inserted. This phenomenon is not restricted to sorting algorithms; an
interesting account of its manifestation in various types of event queue, with experimental
measurements, has been publishedEXE19.

HOW TO MINIMISE SWAPPING.

Talking about reducing the number of addressing faults is easy enough; actually doing it
is something else again. Here are some possibilities to explore; only the last even
approaches a generally practicable solution which doesn't make unreasonable demands on
the people who use the system.

• Take care with programme structure.
• Give the programmer control over segmentation.
• Make the compilers cleverer. (In a paged system : make sure that all the material in

a page belongs to the same working set.)
• Buy more memory. (Or run fewer processes.)

WHAT'S HAPPENING TO VIRTUAL MEMORY.

People are less conscious of virtual memory now than they used to be. As the only reason
for them to be conscious of it before was when it misbehaved (see the chapter on
THRASHING later), that means that they are no longer noticing its misbehaviour. There

are a few reasons for this, and it's interesting to explore them briefly if only to speculate
about the future of virtual memory.

The first change is that memory is cheaper, and therefore memories are bigger. That
affects you directly if you're using a personal computer. It means that you can get your
large programme into memory without using virtual memory (or, by the same argument,
overlay methods), and you can get your large data structure into memory all at once.

If you are sharing a computer, you might still benefit from the cheaper memory.
Other things being equal, you are likely to be able to occupy a greater area of primary
memory than used to be common, so you can work with a bigger working set than in
earlier years. So far as code goes, that might not help you very much; unless your
programme is a curious special case, locality of reference still works just as it did before,
and reasonably well structured programmes shouldn't need large code working sets. The
greater freedom might help you with data, though you are only likely to benefit
significantly if there are several areas of data to which you make quite frequent reference.
Once your programme begins to use the virtual memory, you might not be much better off
than in earlier systems.

A second significant change has been the increase in processor speed. If your
programme is reliant on virtual memory, a faster processor might make very little
difference. On the other hand, the faster processors lead people to expect more
processing, which is likely to increase demand for memory.

So the picture remains unclear. Virtual memory systems are now available for
microprocessors, and still in use on shared machines. The first paragraph of this chapter
still seems to be true, and we don't think that virtual memory is on the point of
disappearance. If anything, it might become more important, as it's one way to deal with
the large memory spaces which are becoming available – perhaps the file systems will
disappear instead.

COMPARE :

Lane and MooneyINT3 : Chapter 11; Silberschatz and GalvinINT4 : Chapter 9.

REFERENCE.

EXE19 : D. Naor, C.U. Martel, N.S. Matloff : "Performance of priority queue
structures in a virtual memory environment", Computer Journal 3 4,
428 (1991)

EXE23 : E.P. Markatos : "Visualizing working sets", Op. Sys. Rev. 31#4, 3-11
(October, 1997).

–––

QUESTIONS.

Where can you store information needed to implement (for example) least-
recently-used virtual memory management strategies in paged memories ?
Why can't you take a few bytes from the start of each page, as is common in
segmented systems ?

What happens as a procedure is entered in a system using paged memory
management ? Consider the significance of the segments.

Is there a relationship between the effectiveness of the simple not-recently-
used replacement strategy and the idea of the working set ?

Under what circumstances would it make sense to permit addressing tables
to be swapped out like any other memory area ? What happens when a page
table is swapped out ?

How would you implement the first three suggestions we listed under the
"HOW TO MINIMISE SWAPPING:" heading ?

The algorithm below transposes a matrix A. Suppose that each row of the
matrix (row i includes the elements { A[i, j], 1 ≤ j ≤ N }) is a segment, what
happens if the algorithm is run in a multiprogrammed segmented virtual
memory system ?

var A : array [1 .. N, 1 .. N] of integer;

i, j, t : integer;

for i := 1 to N
do for j := i to N

do begin
t := A[i, j];
A[i, j] := A[j, i];
A[j, i] := t;
end;

(Note that quite different behaviours can be expected for different values of
N.)

Will there be any changes in behaviour if the same algorithm is run in a
system with paged virtual memory ? If so, what ?

What is the programme we've assumed in drawing the diagram for locality
of reference ? Work out what would happen with other programme
structures. What sorts of structure give bad localisation ? Are these likely to
happen in practice ?

–––

