
FILES, STREAMS, AND PROTECTION

From our investigations of requirements in the previous section, we concluded that we
required some means of saving data in our computer system, and we have now invented
files to satisfy this requirement, and streams to move the data around. A second
requirement was that there should be provision to guard the safety of our data, so we now
discuss how this can be put into practice.

We emphasise that the rather late appearance of this discussion in our description of
files and streams does not indicate unimportance; we have deferred it only because we
require a good understanding of the structures which support data management before we
can discuss how they can best be kept safe. Safety considerations should certainly be
given a high priority when designing the data management parts of an operating system.

PROTECTION CODES AND ACCESS CONTROL LISTS.

Both of these are now seen as file attributes of a sort. Protection codes are simple in form,
constant in size, and easy to handle. Access control lists might be more complicated, are
commonly unrestricted in size, and a bit less neat, but provided that they are accessible
from the file descriptor and themselves kept safe from interference pose no special
problems.

PROTECTION AGAINST ACCIDENT AND ERROR.

Access protection, as offered by protection codes and access control lists, is only part of
the story. Another requirement which became clear in our discussion of protection was
that for an undo operation, so that operations performed on the files could, in effect, be
reversed. It was also clear that the only way to satisfy this requirement was to keep copies
of anything valuable. In the next two chapters, we give examples of two such methods.

The first mechanism is intended to provide comparatively short-term protection by
keeping several generations of a file, which record its history of changes over some time.
The older copies need not be visible under ordinary circumstances, but can be restored by
some variant of an undo instruction. (A common name for the operation is recover.)
Two methods are described.

The second mechanism we describe is more concerned with long-term protection.
This is the technique of archiving files, where files are copied or transferred to permanent
storage media, ideally kept at a remote site to guard against accidents which might destroy
the parent computer system. Again, there are two approaches, with rather different
properties, and both are described in the chapter.

PROTECTION AGAINST FILE TABLE FAILURE.

What happens to your files if some accident befalls the system's file table ? In the worst
case, they could be lost beyond retrieval, for if the only way to reach the files is through
the file table, and there is no information elsewhere which can be used to reconstruct the
table, then the files are gone. Archive and backup systems might offer some insurance,
but archives only work if you use them, and in either case changes to the files since the
most recent copy was saved are lost.

We have seen that the only sure way to guard against loss of information is to keep
a copy somewhere, but the obvious way to maintain a copy of the file table is to keep a
duplicate table. This would have to be kept up to date in just the same way as the main
table, so, while it would give protection against physical failure of one of the copies, it
would give no protection against erroneous instructions. How can we keep a copy of the
information is such a way that it will survive the entry of wrong instructions ?

One way is to keep the information in the file. If each unit of the disc used for a file
carries something equivalent to the file's pathname, then all units used for a particular file
can be found simply by reading through the disc, and the directory can be reconstructed.
A less thorough, but still useful, variant of that method is implemented in the Macintosh
file system, where each file on a disc is allocated a unique identification number, which is

recorded on every unit of disc storage occupied by the file. If the file table is lost, it
cannot be reconstructed, but the files themselves can be reconstructed, and – all being
well – we will be able to recognise the useful ones by inspection. (Just how well that
will work when you lose the directory of your gigabyte disc and are left with fragments
of, say, 10000 files is another matter, but it's better than nothing.)

A property of these methods which is perhaps just as valuable as the protection
which they offer against file table failure is their potential as an undelete operation; if
you accidentally delete a file, these techniques should be able to patch it together again
even in the absence of any multiple generations, archive, or backup, provided that the disc
area released has not been allocated to any other file. A disc allocation strategy which
avoids reallocating areas for as long as possible can help to preserve such fossilised files
for quite long periods.

WHAT ABOUT STREAMS ?

The notion of file protection is easy to grasp; we have a well defined collection of data and
certain associated system structures which we wish to guard against damage from any
source. The nature of stream protection is rather more elusive, as there is no permanent
object around which we can build a fence, so to speak. Nevertheless, it is clear that we
have certain expectations of streams, generally associated with the principle that what we
put into one end of a stream we expect to get out, unchanged apart from such stream
operations as we might have defined, at the other end.

As with static data, there are techniques which can be used to provide both
protection and security for streams. Protection is offered by schemes which add
information to a stream in such a way that disturbances can be identified. Simple
examples are the use of parity bits and checksums, but the same techniques can be
elaborated to guarantee detection and even automatic correction of damage from transition
faults of considerable extent. Of course, the greater the protection, the more information
must be carried, so transmission becomes more expensive. Security techniques are based
on encryption, which we discussed briefly in the earlier treatment of security.

These methods are usually regarded as in the province of data communications
rather than operating systems. While we are by no means averse to extending the range of
operating systems if it suits us, in this instance the topic is adequately covered in the
department's Data Communications courses, so we won't discuss it any further here.
Nevertheless, we thought it important to mention the topic here because of its real
importance in the design of systems, particularly with the growing importance of
distributed systems where the significance of streams in carrying data of many sorts
between different, and possibly widely separated, computers is so great.

COMPARE :

Silberschatz and GalvinINT4 : Section 10.4.

–––

QUESTIONS.

Can you think of any hazards to files which are not covered by these
techniques ?

–––

