
STREAMS IN PROGRAMMES

Streams ? Why not files ? – because, according to our argument in the STREAMS
chapter, programmes are stream operators. A programme might have to refer to a file to
identify it, but once the file is open and in use the programme deals with the stream of
data produced from the file (or to be directed into the file) by the operating system, and
this stream is at the lowest level quite indistinguishable from a stream coming from or
going to a device like a keyboard or screen. In fact, we shall find it necessary to discuss
both files and streams in this chapter, but within the programme streams are the important
data structure – though we usually call them files anyway.

This is still true even if the stream is associated with a random access file. Within
the programme, we are concerned only with the stream of records which come from or go
to the file; it is up to the operating system to provide software to manage the translation
between static file and stream. Of course, the programme will have to provide the
operating system with the information it uses to set up the required sort of translation, and
it might be that the programme will have to do other things to the translation procedures to
make the stream work properly (such as provide record numbers) – but, whatever that
is, it's another sequence of actions, and can always be regarded as a control stream
operating together with the more obvious data stream.

And that's usually true : in any transaction between programme and external world,
we commonly require both data transfer and some exchange of instructions to the device
and information about the device. We can illustrate the system like this :

requests

information

data

Programme Stream

COMPUTER

If we are to use streams in our programmes, the first essential is to provide means
to talk about them in the programmes. A major obstacle to this requirement is that, in most
cases, we don't talk about streams in our programmes; we saw earlier (STREAMS)
that it was usually appropriate for programmes to be expressed in terms of files rather
than streams. More precisely, then, the first essential is to make the compilers (or other
translating software) convert instructions expressed in terms of file operations into actual
stream operations. (Notice that this fits in very well with the analogy between files and
memory made in the STREAMS chapter : in both cases, the compiler must convert
instructions phrased in terms of the static entities into operations which move data
about.) We'll assume in our discussion that the programme is written in terms of files,
which is certainly the common case at present – even when dealing with terminals, which
really are streams.

The programme will contain some instructions which refer to the files which it will
use. Just how this is done is a matter for programming language design, not operating
systems – some languages use names, some numbers, some assumptions – but
whatever the mechanism the instructions for each file must in some way be linked to a
representation of the corresponding stream maintained in memory when the programme
runs.

Now, that might seem obvious, but in practice it's something of an embarrassment,
because we can't use the straightforward method, which is to declare a named variable of
the appropriate structure in the programme and use it as we would any other structure. We
can't do it, because it's unsafe; we've already commented on that in ONWARDS AND
UPWARDS – OPERATING SYSTEMS. The stream representation contains sensitive
information which could lead to unfortunate consequences, accidental or deliberate, if it
were accessible in a programme's ordinary address space. The usual solution is to store

the real representations in a table accessible only to the system, with items of the table
identified in the programme by their indices alone, and communication through supervisor
calls. As the indices are simple integers, they can safely be passed back to the
programme, which must provide them as stream identifiers whenever a stream operation
supervisor call is executed. In a well designed language such as Cobol or Pascal (not
always well designed), the integers will be disguised as file identifiers, so that you can't
do arithmetic on them; in other cases (C, Fortran) they are left as integers.

Not the least inconvenient consequence of this requirement is that we have to find
another name for the index, which is difficult because it has no need to exist which is
obviously connected with its function. In Unix, it's called a "file descriptor", but that
name is commonly associated with something else, which we shall discuss shortly. In
MS-DOS the variable is called a "file handle"; we shall adopt this name henceforth for the
sole reason that it isn't used for any other purpose so far as we know. (We would rather
call it a "stream handle", but we stick with the existing name to avoid yet further
proliferation of terminology.)

The supervisor call gets us out of the programme, but only as far as the local table
of stream information. Less visibly, we must make sure that we can link the file
mentioned in instructions in the programme with an actual stream or file known to the
operating system. We must elaborate the previous picture a little to include a hint of the
software required to implement these links :

Programme

COMPUTER

Terminal

Disc

Communications

ge
ne

ra
l

sp
ec

if
ic

sp
ec

if
ic

sp
ec

if
ic

Notice that, for each sort of channel, there is device-specific software to convert the
specific device signals into a stream, and there is general software to interface the stream
with the programme. The framework for this structure must be provided by the operating
system, but the details can only be established, or at least provided for, when the
programme is set up in memory for execution. The first steps must be taken by the
compiler (or something of the sort); this is an area where the compiler must conform to
conventions established by the operating system, or communication between the two will
be impossible. (Or both compiler and operating system must conform to some externally
defined standard : that's the idea behind standard application programme interfaces.)
This doesn't just happen; to make it happen effectively, there must be careful design
beforehand. Consider what has to be done.

DESIGNING THE APPLICATION PROGRAMMER INTERFACE.

The details of the API will depend on what you (in your capacity as system designer)
want your file system to do for you. At the very least, though, the first diagram in this
chapter suggests that there must be provision for two sorts of stream, one for data and
one for control operations. From the programming point of view, experience suggests
that data and control operations are dealt with separately, so it is reasonable to separate
them in the API. A programmer can then write procedures to combine them together if
required (as in a random file access operation, which includes both a positioning
operation – control – and a data transfer), while the separate operations are available if
required.

We shall therefore require some structure somewhere to implement the "requests
and information" side of the communication. This structure contains information about the
stream which is needed while the stream is being used – such as the stream's current
state, where to put material coming from or going to the stream, and so on. This

repository of active information passes under different names in different systems; to
compound the confusion we shall call it the file information block. (Once again, we aim
to avoid proliferating terminology, but in this case the structure might well contain
information about a file.)

The file information block is to be distinguished from the information held in the
system's file table, which describes the static properties of the file : where it is, how big
it is, its protection codes, etc. We shall call such a collection of static information about a
file its file descriptor. Observe that the file table and its file descriptors are properly so
called; they are concerned with real static files. Because of their transient nature, streams
need no such persistent structures.

The file information block could be thought of as a part of the programme, or it
could belong to the operating system; where should it be kept ? Logically, it goes with
the programme – when you change the programme, you want to change the file
information blocks. Administratively, though, it is much more the concern of the
operating system, and in the interests of safety should not be vulnerable to accidental (or
deliberate) change by the programme without some sort of check. Early systems
associated it with the programme, but nowadays it is more common to regard it as part of
the system. The change was associated with the general movement of control towards the
operating system, and as more and more stream operations move into the province of the
operating system, it becomes more sensible to keep the stream information – or, at least,
some of it – there too. It is interesting, though, that the movement of the file information
block towards the operating system has been accompanied by a contrary movement into
the programme of responsibility for maintaining the block, with the provision of
appropriate management facilities in the application programmers' interface.

For the data side of the operation, other system structures are likely to be necessary.
Generally, some sort of buffering is provided, and buffer areas must be reserved for use
by the stream. In principle, these are rather uncontroversial, so we shall say little more
about them here (there's a short discussion after this part); at the implementation level,
though, it can be difficult to handle them efficiently, and we shall have more to say about
that question in the IMPLEMENTATION section.

A third component of the API must be provided for administration – particularly,
for setting up and taking down the links between programme and system. At some point,
the structures we have just described must be set up, and links established between the
programme code and the devices which will be used when it runs. We shall suppose that
a compiler deals with the details, and consider what it has to do to establish the
communication, which in turn defines the API functions which must be provided.

The compiler first hears of the stream when reading a source programme. It finds
that some identifier is declared as the name of a stream, and that the programme describes
certain operations – open, close, read, write, seek, etc. – on the stream. From the
compiler's point of view, the stream itself remains a free variable, which must be bound
to some system component when the programme is run. The compiler must produce code
that will, first, set up the binding between the stream identifier in the programme and a
physical stream in the system, and then cause the required stream operations to happen
when the programme is executed. The API must therefore contain a library of procedures
which the programme can call to request the establishment of the file information block
and such buffers as might be needed to link it to a particular device, which must itself be
described, somewhere, in more or less detail. What the API procedures do is determined
by the design of the system's structures for stream management.

How the file information block is managed does have a noticeable effect on how
you use the system. As an example, consider the different ways in which one might wish
to bind the file information. In some case, one might know the required information (for
example, the name of the disc file to be associated with a stream) when the programme is
written, so very early binding is possible. In other cases, it is more useful to define the
file name when the programme is executed, while even later binding might be required if
the file name is to be determined through dialogue after the programme has been started.
Two examples illustrate the difference :

• If the operating system is primarily responsible for maintaining the file information
block, the first case can be handled as part of the programme starting procedure,
with the file name provided by the programme code through an API procedure
(typically as part of a data structure including other initial properties as well).
Given appropriate syntax in the programme execution instruction, the operating
system can deal with the second case directly, without requiring any programme
code; while the third case requires an API call to change the file name in the file
information block. Provided that the required data are all bound when the stream is
opened, all is well.

• If the programme is primarily responsible for maintaining the file information block,
the API might be simplified, as there is less need for different sorts of procedure to
define the file information block. The programme code must now assemble all the
required information before the stream is opened, then a single call can be used. In
the first and third cases, this makes little difference, except that it is somewhat less
convenient to incorporate the file name in the stream declaration, but in the second
case it becomes necessary to pass the file name to the programme by some
parameter mechanism, leaving it to the programme code to disentangle the
parameters and insert the file name into the file information block.

The difference is clearly of degree rather than kind; nothing becomes possible or
impossible with the change of method, but actions change in their relative difficulty or
convenience. This should be taken into account in designing the system, though it is not
clear that it gets much attention in practice. In consequence, circumstantial evidence from
systems we have known suggests that system designers have chosen to pass the
responsibility to the programme. It is true that this approach makes life easier for the
operating system designers, as it simply uses the means for passing parameters into
programmes which are likely to be there anyway, but it is not our position that a major
function of an operating system is to make life easier for operating system designers. The
programmer is left with the task of defining some arbitrary notation for giving the
information in the programme's parameters, then retrieving the file information from the
parameter list, probably parsing it, and then using the system calls we've already
mentioned to set up the required file information.

There is no file information block within the
programme in the Unix system; all the administration

is done by system calls. Opening a stream returns a
Unix "file descriptor" (which is in fact a table index

to be associated with a file handle); all other
operations on the stream require this number as an

argument.

The second case of stream information binding is
implemented as the file redirection feature, the
mechanism behind the pipes we discussed in the

STREAMS chapter. This feature in effect identifies
streams in the programme with external streams
when the programme is started; it associates an
external stream with the table index mentioned

above. It is quite general, in that it will work for any
stream – provided that you know the table index.
Unfortunately, except for a few system-defined
streams – notably the standard input and output

steams assumed in the standard pipe and redirection
syntax – you don't know the table index until you

open the file, by which time it's too late. Table slots
are allocated serially, so you can work out the index
if you know the exact sequence in which files are

opened, but that isn't the way we expect to do things
in a modern operating system.

Every stream is always regarded as a stream of
characters, with basic single-character input and

output operations. Even the developers of C realised
that this was a bit restricted, so provided the

standard C library routines which, in effect, construct
an additional file information block within your

programme.

In the Macintosh systemSUP9, the difficulties are
ingeniously evaded by abolishing the instruction to

run a programme – or, at least, by casting it in quite a
different form. If you open a document (a data file),
the system identifies its associated programme (by
finding its "signature" in the document's "creator"

attribute), and sends the identity of the file as
"Finder information" to the programme. As there's no
way to say anything about any other files whatever,
that's the limit of what you, or the system, can do,
and everything else has to be managed from within
the programme. There's a certain amount of support
in the form of standard system procedures, but it's

still fairly hard work.

RECORDS.

In that discussion, we concentrated on the administrative details of using streams, but we
mentioned in passing the question of data movement, and introduced the idea of buffers.
As it is rather important to provide facilities for moving the data to and fro, we now return
to this topic in a little more detail.

So far as the data transfer is concerned, we require that the programme should be
able to request the transfer of some unit quantity of data between stream and memory. We
don't know how big this unit of transfer is, so we shall simply call it a record. The record
usually maintains its identity in the file, either by defining a file attribute which specifies
the length of all records in the file, or by associating a length counter or end marker with
each record. The order of the records in a stream or file is significant, so we might think
of a file as an array of records, while a stream is a sequence of records.

How big is a record ? We have no idea. The record is a logical entity, with its size
determined by the requirements of the programme. The record size used in an operation
must be based on information known to the operating system when it effects the
operation, and this information can come either from the stream (presumably the file
information block) or from the programme. One might hope to derive some guidance
from the way programming languages provide for streams; but they are not much help, as
they typically either provide for input and output instructions of arbitrary complexity
(particularly older languages, such as Fortran and Cobol), or they assume that
everything has to be read a byte at a time (C and Prolog). Pascal contrives a sort of
mixture of the two. Of course, the operating system doesn't have to cater for every tiny
demand of the programming languages – and it would be quite hard to cater for all
possibilities simultaneously. We can reasonably aim to satisfy some compromise
specification, and require the language software to provide whatever machinery is needed
to look after the rest of the administration. We have expressed our compromise in terms
of records.

Strictly speaking, all we need at this stage is the idea of the record, and its transfer
in some sense when read and write operations are performed. In practice, it is also
helpful to introduce the idea of a buffer, which is an area of memory reserved to hold a
stream record. We emphasise that these should really be regarded as implementation
mechanisms, but we are not aware of any practical system which does not use some form
of buffer.

MAKING IT WORK.

These two structures, the file information block and the buffer, are the key to the effective
operation of the system. The programme is concerned primarily with transactions between
executing code, memory, and the standard abstraction of the outside world embodied in
the two data structures. Meanwhile, the operating system must support the abstraction by
making sure that the data structures behave in the required way.

In this chapter, we discuss the characteristics of streams in programmes, so we
shall only go as far back as the data structures; the maintenance of the abstraction is
discussed further in the next chapter. The rest of this chapter is therefore concerned only
with the programmes' interactions with the data structures, and does not address the hard
work of dealing with files and streams. But that is as it should be, because the point of
devising the interface is to make it as easy as possible for the programmer.

Opening the stream.

The idea of opening a stream is common, and we have already used it several times
without defining it. While we know that this practice is less than satisfactory, we have to
do it sometimes – otherwise the HISTORY section would have to come at the end, which
would rather defeat its purpose ! However that might be, here, at last, is a sort of
definition.

Opening a stream is a matter of making the link between the stream as identified in
the programme and the "real" object, which might be a stream associated with an interface
or communications line, or a file which lives on some medium external to the programme.

From our preceding discussion, two operations must be carried out in order to
construct this link :

• Fill in the file information block using data previously supplied – from the OPEN
instruction, defined by convention (maybe implied by the file name), or from a
file table.

• Reserve buffer space.

Reading and writing.

A read operation will make available to the programme a record of information from the
stream; a write operation transfers to the stream a record of information identified by the
programme. Many file systems include the record size, or something equivalent, in the
stream attributes; some devices dictate the size of the records which they handle; in other
cases, we might require the size to be presented (usually as a procedure parameter)
when the operation is requested.

Whatever the local details might be, the read operation requires, first, that
something should happen in the outside world to refill the buffer with the new record,
then (assuming that the process wants to look at this record) that the buffer contents be
copied to some other place so that they will not be overwritten by the next read
instruction. It's also usually necessary to copy the new record because the buffer isn't in
the process's address space, for protection reasons already discussed. The operating
system is usually so organised that the process can accomplish this with a single
supervisor call; we'll discuss the details later. The write operation is accomplished
similarly, but with obvious changes in direction.

Navigation and control.

Another sort of operation on the stream is sometimes important : we might wish to
control the source, destination, or other details of behaviour of the stream from the
programme. There are (almost) as many different possibilities here as there are different
devices – the interaction between a programme and a robot is very different from the
interaction between a programme and a printer. Here we shall restrict our discussion to
conventional data processing devices (which still covers a very wide range) because
they're the most common, but the requirement for both data exchange and control is

widespread. The common feature of the control operations as implemented for different
devices is that such transactions are mediated by the file information block rather than the
buffer.

Perhaps the most common example of this requirement is the random access file,
where the temporal sequence of records in the stream seen by the programme is not the
same as their physical sequence in a permanent file. To deal with this new feature from
the programme end is easy, as all we need do is ensure that the file information block
contains a field for the record number, and that there are ways for the programme to set
the record number (so that we can implement seek functions, or accept record numbers
as part of read and write instructions), and leave the rest for the next chapter.

There is a limit to how far this approach will work. If we (the operating system
designers) provide for random access files in which the programmes specify the record
number, should we also cater for, say, indexed files, where the programme stores and
retrieves a filed record by specifying the contents of a key field in the record ? The
answer to that question is that there isn't one. There is absolutely no reason why we
should or shouldn't do so – we are not bound by moral considerations, there are no
human legal constraints, and no laws of nature which decide one way or the other. It's
obviously possible, as we can just follow the example above and reserve a field in the file
information block for the key, leaving the rest to the implementation (which in fact isn't
particularly hard, unless you want it done efficiently).

We design the system on grounds of expediency. If we expect it to be widely used
in environments in which indexed files are common, we might well wish to extend the
standard input-output facilities to include such files, but we do so at some cost of added
complexity. If we want to extend the system further to cope with tree-structured files,
multiple search keys, approximate key matches, and other useful ways of organising
files, streams, and access thereto, we can – but in practice it usually just isn't worth the
trouble, and a line has to be drawn somewhere. Most operating systems provide a fairly
primitive system which copes reasonably well with most common requirements, and rely
on you to build your own desirable features on top of it.

The difficulty with that policy is that there are times when you can't build the
desirable features from the facilities offered by the operating system. A recent example is
the requirement for dealing with very fast streams in real timeSUP10 – typically streams of
video information which must be displayed very soon after its arrival, and which must be
received fast enough to maintain a continuous moving display. A system which imposes
the overhead of a supervisor call for each byte of input is very unlikely to be able to
handle such a stream at anything approaching the required speed, and, even if it could, the
enormous wastage of time in repetitive, and essentially identical, system calls would be a
ridiculous burden. We shall return to this problem later (REAL-TIME DISC
SYSTEMS); meanwhile, it is an example of the need to identify the system requirements
before designing the details.

We have laboured this point a little because
experience suggests that many people expect to be

able to find the "right" way to construct an operating
system. We repeat that the criterion of a good

operating system is that it should help people to get
the computer to do their work effectively. If we miss
out bits which most people want, that isn't helpful; if
we put in lots of elaboration which very few people

want, it's likely to make the system bigger, more
prone to error, and more expensive, which is also not
helpful. It is, of course, true that though we can't say
what's right in an operating system, we can often say

what's wrong.

There's another sort of navigation which pertains more directly to streams. There is
no direct equivalent of random access, because it is in the nature of a stream that we have
to deal with the records in the order in which they arrive (though it might be appropriate

to provide a buffer which works as a queue and can store a few records). On the other
hand, it is sometimes useful to be able to switch between input streams, or to switch
between, or control the distribution of records to, output streams.

Input examples are the injection of the contents of one file into the stream of records
from another (often possible with compilers – consider the #include directive of the C
compiler), and the switch of system input between terminal and command files. The
most common output example is in cases where it is desired to keep track of the material
which passes along a stream, so each stream record is transmitted to its "real" destination
and also copied to a disc file. Notice that the asymmetry between input and output is real :
it is straightforward to copy an output record to several different destinations, but the
corresponding input operation would be to accept identical input records from several
sources, for which it is hard to imagine an application in which having this under control
of the programme makes sense. Something like this happens in systems designed for high
reliability, where all components are (at least) duplicated, and the performance of
different streams always checked to ensure that they are identical, but that's rather a
different matter.

We have included this sort of stream navigation for completeness, but we know of
no operating system which makes direct provision for it. It isn't particularly difficult to
make it work for a single programme, but can become rather tricky if you want a more
general ability to switch streams. We have implemented versions of it sufficiently often to
wish it were a more popular component of operating systems.

Closing the stream.

When we have finished with the stream, we have to make sure that the state of the
operating system remains consistent with the new state of things.

If the external entity associated with the stream is a real stream, there might be
nothing much to do, as there is usually little reason to record permanent information about
a stream. Once you've finished with your end of a stream, it's just like it was when you
started, and it will be pretty much the same next time you start. (Think of screens and
keyboards.) If there is some device at the far end of the stream, it might be necessary to
go through some sort of protocol to end the connection – just what protocol depends on
what sort of connection, but it's usually a matter of executing some procedure which goes
through a standard routine.

If the stream was linked to a permanent file, there might be more to do to ensure
consistency, because the system does keep permanent information about the file in its file
table. From our lofty position of abstraction, then, we have to check that any file
attributes which might have to be changed are brought into line with the description of the
file we have maintained in the file information block.

In practice, because of the ways we construct file systems, there might be more
active things to do, and we shall mention them later when we talk about implementation.
(If you're worried about tidying up the contents of buffers, that's where it is.)
Generally, though, the same principle holds : the aim is still to make sure that the file is
properly up to date in the outside world, and – for a persistent file – the file table entry
properly represents the state of the file.

COMPARE :

Silberschatz and GalvinINT4 : Section 10.2.

REFERENCES.

SUP9 : Inside Macintosh, volume 2 chapter 2 and volume 3 chapter 1 (Addison-
Wesley, 1985).

SUP10 : P. Druschel : "Operating system support for high-speed communication",
Comm.ACM 39#9, 41-51 (September, 1996).

–––

QUESTIONS.

Consider our brief discussion on the proper home of the file information
block. Would it be sensible to implement this as another "file component",
along with the attribute and data components ?

Think of ways to provide file access without allocating buffers.

In an operating system which records nothing about any internal structure
of files, and provides operations for transferring records only of one byte in
length, consider what additional facilities might usefully be implemented by
the programming language software to make it easier to use files i n
convenient ways. (This question is inspired by the C standard file package.)

–––

