
Requirements specification : page 1.

IMPLEMENTING CAPABILITIES

Why single out capabilities for special attention ? It isn't that they're uniquely important,
or overwhelmingly popular; both capabilities and access control lists are quite widely
used. It's more because, though there is a strong family resemblance between passwords
and capabilities, the upward step brings in new ideas in a way that the corresponding
steps to access control lists and protection rings don't. The requirement to implement
unforgeable tokens is difficult to satisfy adequately with traditional resources, so new
techniques must be introduced.

WHAT DO WE NEED ?

Suppose we use a password to control access to a file – say, to give read access to a file
called ABC. How does it work ?

• First, we have a password, which could be GRXXXXXX25. Or, of course, it
could be practically anything else, except something sensible and obvious like
{ permission to read ABC }.

• Second, we have a file, attached to which somewhere there must be a record of the
password – and there must be similar records of any other passwords which stand
for different sets of access privileges.

• Third, we make a request, which must say something like { read, ABC,
GRXXXXXX25 }.

• Fourth, the file access software must receive the request, go to the file attributes,
retrieve the actual passwords (or something equivalent), and compare them one
by one until it finds GRXXXXXX25; then it can open the file with the permitted
access mode, provided that includes read.

That's a lot of work – and most of it could have been avoided if we had been able to use
a password more like { permission to read ABC }, directly including a lot of the
information which the system had to store in the file directory and check when it opened
the file. Why can't we use such a simple password ? – obviously, because it can too
easily be forged. What we want, then, is something which includes the information of
{ permission to read ABC }, but which can't be forged. That's the capability. Once we
have it, it includes both the file name and the password, so we can just use an instruction
like { read, capability }; that's why capabilities are sometimes called unforgeable object
names.

CAPABILITIES IN ACTION.

A capability is a token of permission to use some resource with some defined level of
access. Several operations on capabilities must be available to subjects. It must be
possible to copy a capability, to reduce its privileges, and to transfer it from one subject to
another without restriction. It should also be possible to withdraw a capability which has
been issued. It must not be possible to forge a capability : only the operating system may
make new capabilities, and any other attempt to make a capability must start from an
existing capability. Neither must it be possible to increase a capability's privileges, or it
would be impossible to give different levels of access to different subjects. Finally, the
system – though not necessarily individual subjects – must be able to test a capability in
order to determine the level of access to a specified object which it permits.

It is by no means easy to implement something which behaves according to those
specifications using the resources of a conventional computer. In this chapter we describe
three approaches, all of which have been used in practice.

Everything hinges on the requirement that we must eliminate the possibility of
forgery. What does this requirement of unforgeability imply ? It certainly means that the
capability must be something which we can't write down for ourselves, because if we

could write it then so could someone else. This in turn means that we must make it
physically impossible for any subject except the operating system to construct, or
otherwise to tamper with, the capabilities, or we must make sure that we can detect that
tampering has occurred. Therefore, either subjects must never be able to get hold of the
capabilities themselves, or the system must give them to the subjects in such a way that
they can't make their own instead. The methods we describe below use different means to
achieve these ends. Briefly, capabilities might "float free", like other variables (hard),
or be kept in a "subject table", accessible only to the system (easier), or they might be
protected by cryptographic means and expressed in a form in which they can safely be
transmitted from computer to computer (different).

THE VARIABLE MODEL.

In this type of implementation, the system manufactures a capability for an object when
the object is first made, and provides appropriate operations by which capabilities can be
changed on request. Capabilities are handled as variables of capability type. To show you
are permitted access to some protected operation or data, you must submit an appropriate
capability – for example, as an additional parameter to the request for access. It must be
possible to pass these variables around like any other variables, but they must not be
forgeable or modifiable in unauthorised ways. (Because capabilities are intended to be
transferable, there's not a lot you can do about it if someone manages to steal one.) The
system must therefore either be able to prevent illegal operations on capabilities, or
identify the results of such illegal operations. Two ways of providing the required level of
security are the use of tagged architecture and application of cryptographic methods.

Tagged architecture.

Hardware assistance is necessary to prevent changes to capability variables by ordinary
programming methods; the processor must be able to recognise a capability variable, and
reject any attempt to operate upon it except in carefully guarded ways. Here is a
description of a possible implementation.

• To identify the capability variables, we provide every word in the computer system
(including processor, memory, disc, anything else) with a capability bit which is
on for capability variables but otherwise off. The variable might look like this :

file ABC readC

Apart from the capability bit, that's just an ordinary machine word, which can be
manipulated just like any other.

• We provide a single hardware operator to construct a capability variable, and ensure
that it cannot be used in any processor state accessible to unprivileged software.
This guarantees that capabilities can only be generated by appropriate operating
system procedures. This operator is used by the system whenever any new object is
constructed or registered; a master capability with full access privileges must be
constructed for the new object, and returned to the subject which requested the
construction or registration. It is then up to the subject to administer the capability in
whatever way is appropriate.

• We add to the processor hardware which checks the capability bits of all operands
of normal data manipulations, and causes a processor fault if it finds a capability bit
on. This ensures that people can't try to upgrade capabilities, or direct them towards
different resources.

Check ArithmeticFault if
capability

Requirements specification : page 3.

That's a rather fierce restriction; for example, it also means that people can't look at
the internal structure of capabilities, though that wouldn't matter in itself. A less
restrictive, and rather simpler, alternative is simply to build the hardware so that the
results of all ordinary arithmetic operations have their capability bits turned off –
then you can do as much arithmetic as you want on capabilities, but you won't be
able to make new ones. This system cannot detect attempts to perform arithmetic on
capabilities, but, as nothing dangerous can result, perhaps that's all right.

Arithmetic

0

??

• We provide further hardware operators to implement the permitted capability
operations – to reduce and compare privileges. These need not be specially
protected.

To use the capabilities, each operating system component which grants access to a
resource must be able to accept a capability variable as well as its ordinary parameters.
(You might not want to do this all the time – many resources don't need special
protection.) For example, there might be a procedure for opening a file of the form
open(filename, access mode required, capability). The procedure must then
use the access mode parameter to select a system-defined test which it then applies to the
capability, using the result of the test to decide whether to permit or deny access.

Provided that you buy a computer with the requisite hardware, that's simple,
straightforward, effective, and fast. It also makes sense : if you want a computer to
handle integers or floating point numbers efficiently, you equip it with hardware to do the
job. This is the same approach applied to capabilities.

The system becomes less effective if used in a network, unless the communications
lines are made very secure; once capabilities get outside the processor and the hardware
directly under its control, they're just bits like everything else, and are subject to
tampering by anyone who can manage a wiretap. If the network includes any computers
which don't have hardware capabilities, you don't even need a wiretap. To use capability
variables in such a system, different methods are needed.

A cryptographic technique.

If we can't rely on hardware, then we can no longer prevent attempts at undesirable
operations; but we can hope to identify their results. We have to use software, but we can
still implement capability variables adequately by relying on cryptographic techniques.
The approach is typical of cryptographic methods : we can't strictly prevent people from
cracking the system, but we make it too expensive to be worth the trouble.

The example described is used in the Amœba operating systemREQ15 , specifically
designed for use in distributed systems which link computers of any type.

The basic information in a capability is the identity of the object to be protected, and
the rights over the object which can be exercised by whoever holds the capability. Amœba
leans strongly towards object-oriented methods, so every object in the system is identified
by its name, and the name of the server with which it is associated. (Compare the
Macintosh system.) Each server has a 48-bit systemwide identifying number, and
assigns a 24-bit number to each object under its control. Together, these give a unique 72-

bit name. The rights are encoded into 8 bits, which might be interpreted differently
according to the object protected.

These 80 bits of basic information are protected by appending 48 bits of checking
information. This is generated from the first 80 bits using some sort of "one-way
algorithm" – a computation which is comparatively easy to perform if you know how,
but which is exceedingly difficult to invert even if you can produce examples of the
complete 128-bit capability variables at will. The complete capability variable looks like
this :

SSSSSSSSSSSSSSSSSSSSSSSS OOOOOOOOOOOO RRRR CCCCCCCCCCCCCCCCCCCCCCCC

Server Object Rights Check
48 24 8 48

Now anybody can look at the capabilities, but only some agent with privileged access to
the encoding algorithm can check them – so even though you know all about the
structure, and you can manipulate the rights bits any way you like, you can't work out the
correct check bits, and the checking algorithm will catch you if you try to use your
forgery.

THE PRIVILEGE MODEL.

This approach is quite different. A capability is regarded as a privilege administered by the
operating system. It is held as part of the information which the system has about the
subject, and can never be directly manipulated by the subject. The capabilities owned by a
person who is registered normally by the system are recorded with the userdata
information, and are only accessible to operating system routines. There must be
provision for associating capabilities with any active subject (programme, device, etc.)
and for transferring capabilities when new operations are started. Capability operations –
constructing new capabilities, and transferring them, perhaps with reduced rights, to other
subjects – are handled by operating system procedures.

Using capabilities of this sort is fairly expensive, as system calls, and perhaps also
userdata references, must be executed for every operation. The expense can be reduced by
using the capability system only for objects which are specially sensitive in some way,
leaving the rest to the mercies of the ordinary operating system protection devices. In this
case, objects to be guarded by capabilities must be marked in some recognisable way. If
there is any doubt about the security of the marks, the objects can also be registered with
the operating system. On any attempt at access to a marked object, the system must
inspect the subject's capability list in the obvious way, and take action accordingly.
Notice that this is quite automatic : a subject might even be given a capability and use it
without being aware of its existence. This system is very well suited to administering
resources used by inexperienced people.

COMPARISON.

Apart from questions of efficiency, the big difference between the privilege and variable
models (regarding the cryptographic model as a special implementation of the variable
model) is the centralisation of control in the privilege model. If all the capability
information is held by the operating system, it can all be found if required. With a variable
model, on the other hand, a capability might be hidden away in archived files, quite
inaccessible even if you wanted to look for it – and in any case, in the cryptographic
model, quite unidentifiable even if you could search.

That doesn't matter much in itself, but becomes a problem if you want to withdraw
access privileges for some resource. As capabilities can be handed on from one person to
another without constraint, if you are using the variable model you don't know who has
capabilities for any object; all you can do is to make a new capability for the object to be
protected, and start distributing this, amended as required, to people who are entitled to it.
This takes time to diffuse through the system, and until the diffusion is complete, some
people who should have access to the resource might find themselves locked out. Using
the privilege model, though, all capabilities are accessible to the system at all times, so

Requirements specification : page 5.

such modifications are much easier – and you could in principle check on just who was
passing privileges to whom.

Another problem associated with capabilities is their permanence. A capability once
given can lurk in someone's files for years, and then be exercised again when for some
reason or other it's quite inappropriate. (The person has moved to a different job, the
operation guarded by the capability has evolved into something rather different. etc.) The
standard solution is to issue new capabilities as described above, but with the
disadvantages also described above. An alternative possibility has been suggestedREQ16 , in
a rather more ambitious system including both capabilities and access control lists. Here,
every object in the system has "money", and must pay rent. If the money runs out, the
object is removed. Anyone who wishes to retain an object must therefore keep its bank
balance topped up. That doesn't actually guarantee anything, but it does ensure that
people don't just keep things hanging around because they've forgotten about them.

Here's a rather long table, summarising the three methods.

Operation Implementation

Variable model,
hardware
implementation

Variable model,
cryptographic
implementation

Privilege model

New
capability

Any system
component which
constructs or sets
up an object of
protected type
(files, directories,
devices, etc.)
must, while running
in supervisor mode,
construct a
capability variable
including an
identifier for the
object and a
complete set of
privileges. This is
converted into a
capability using a
"make capability"
hardware operator,
and can then be
returned to the
subject performing
the action.

Any system
component which
constructs or sets
up an object of
protected type
(files, directories,
devices, etc.)
must, while running
in supervisor mode,
construct a
capability variable
including an
identifier for the
object and a
complete set of
privileges. This is
converted into a
capability using a
"make capability"
function, and can
then be returned to
the subject
performing the
action.

Whenever a system
component
constructs or sets
up an object of
protected type
(files, directories,
devices, etc.), the
operating system
constructs a new
entry in the
capability list of the
subject performing
the action. The
entry includes an
identifier for the
object and a
complete set of
privileges.

Copy Conventional load
and store operations
may be used; the
hardware must not
change the
capability bit.

Conventional load
and store operations
may be used; the
capability is an
ordinary variable.

No local copying
operation is
required.

Transfer A capability may be
transferred from
subject to subject in
a message, in a file,
through shared
memory, etc.
Transfer through
external
communications
facilities is unsafe,
because there is
unlikely to be any
way to protect the
special nature of the
capability bit, and
forgery is therefore
easy.

A capability may be
transferred from
subject to subject in
a message, in a file,
through shared
memory, etc.
External
communications
raise no additional
difficulties.

A system call is used.
It is given the
identity of the
recipient, the
identity of the object
protected, and a list
of the privileges
which are to be
transferred. Either it
constructs a new
capability in the
recipient's
capability list, or, if
the recipient already
held a capability for
the object, adds any
new privileges
acquired.

Reduction A hardware operator
is required. It must
accept the initial
capability and a
specification of the
privileges to be
removed, and
construct a new
capability
representing the
new set of
privileges.

A supervisor call is
required. It must
accept the initial
capability and a
specification of the
privileges to be
removed, and
construct a new
capability
representing the
new set of
privileges, which it
returns to the caller.

This operation is
included in the
transfer operation.

Validate and
Test

A hardware test
operator is required
for validation.
Ordinary inspection
is not a sensitive
operation, and need
not be protected :
the capability is
disentangled to give
object identity and
privileges, and
obvious tests are
conducted. If the
encoding is
complex, or the
object identities are
difficult to interpret,
a system procedure
can be provided

A supervisor call is
required for
validation. Ordinary
inspection is not a
sensitive operation,
and need not be
protected : the
capability is
disentangled to give
object identity and
privileges, and
obvious tests are
conducted. If the
encoding is
complex, or the
object identities are
difficult to interpret,
a system procedure
can be provided.

A supervisor call can
be provided to
control access to the
capability list, but
there is no reason
why the operation
itself should require
any special
protection.

Requirements specification : page 7.

Withdraw There is no
mechanism for
withdrawal with
capabilities
implemented as
variables.

There is no
mechanism for
withdrawal with
capabilities
implemented as
variables.

A supervisor call can
be used to request
that the system
withdraw specified
privileges from
identified subjects.
The ability to
withdraw privileges
might itself be a
capability, or it
might be restricted
to the original
owner.

REFERENCES.

REQ15 : S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, H. van
Staveren : IEEE Computer 23#5, 44 (May 1990).)

REQ16 : M. Anderson, R.D. Pose, C.S. Wallace : Computer Journal 2 9, 1 (1986).

–––

