
Requirements specification : page 1.

SAFETY

In the PEOPLE : IMPLICATIONS chapter, we identified two sorts of safety, and
remarked that we wanted a reliable long-term storage device and an effective security
system to provide those. More generally, just what constitutes safety in a computer
system depends on the system; the criteria are different for an aircraft autopilot, a
worldwide communications system, and a word-processor. In this introductory account
we shall concentrate on the word-processor level. This is not in any way to deny the
importance of the other sorts of system, but we have to begin somewhere, and the safety
techniques which we can use for simple tasks which don't threaten life or property will
give us enough to be going on with.

We are discussing the issue of safety very early in our treatment because we believe
it to be very important, and we therefore believe that it should be taken into account right
from the start. It is easier to achieve safety if you design your system to be intrinsically
safe than if you design it to do the work and then try to make it safe afterwards. If you
want a vehicle that will only travel to certain places, it's much more effective to design a
train and build a railway than to design a bus and then seek some foolproof way to
confine it to an arbitrary set of roads. Analogies are not sound arguments, but they can
illuminate a problem, and experience suggests that this analogy is quite good.

As a final preliminary exercise, you might like to consider the curious relationship,
illuminated by that analogy, between safety issues and the normal process of computing.
We have stressed that the function of the operating system is to help people to get their
work done as easily and straightforwardly as we can manage; surely, though, that is more
likely to be achievable by a system modelled on a freely manœuvrable bus than on a
constrained train ? We see that safety concerns might well run counter to our primary
aims in system development.

This is certainly true. Another point of view is that to every activity carried out by a
system there corresponds a danger, or an opportunity for subversion. If we have files,
they can be lost or stolen; if we have communications, they can be affected by noise or
intercepted; and so on. Proceeding with this argument, we see that it is easy to make an
unassailably safe system by removing all the possible activities. That leaves us with a
basic system called the perfectly secure brick.

In practice, we seek a compromise. As with all compromises, it will satisfy few
people. Some will complain that their legitimate activities are being restricted; others will
bewail the vulnerability of their precious files; not a few will do both. We make no
attempt to resolve the dilemma here, but restrict ourselves to describing a selection of
fairly standard techniques which are widely used in practical systems.

WHAT CAN GO WRONG ?

In fact, of course, we're not really discussing safety; we're discussing unsafety. If
everything were safe, we wouldn't need to discuss anything. The trouble arises because
things can go wrong, and do. It's sensible, therefore, to begin by trying to identify the
sources of trouble, and that must be anything which prevents us from doing the
computing job we want to do. We can make a rough classification like this :

WHERE THE
FAULT IS

WHAT HAPPENS CAUSE OF FAULT (see below)

Accident Error Malice
The

computer,
or other
hardware.

Not directly our
problem – but we
can be careful just
in case.

Power failure –
work
disrupted;
device failure;
catastrophe –
system
destroyed.

Tapes or discs
lost or
wrongly
mounted;
communicati
on rates set
wrongly.

Computer stolen;
communications
intercepted.

What's in the
computer.

Should be there, but
isn't.

Lost data Delete files too
soon – or
"rm *".

Unauthorised
destruction of
files; effects of
viruses.

Shouldn't be there,
but is.

Viruses

Should be there, is
there, but is
wrong.

Corrupt files. Files infected with
viruses.

Access to
what's in
the
computer.

Not enough, can't
get in.

Disc fills up. Programme
fault – fills
memory or
disc,
monopolises
processor.

Worms

Too much, can get
other people's
things.

Ineffective
access
control

Security violation

WHAT MAKES IT GO WRONG ?

Safety in the abstract is all very well, but to achieve it in practice we have to know
something about the threats from which we wish to be safe. In computer systems, three
sorts of threat are important – accident, error, and malice. We can describe them briefly :

• ACCIDENT : no one (identifiable) is to blame; accidents can happen at any time,
without anyone noticing. When they happen, there might be no one there – so
protective measures must be automatic. Accidents happen both outside the computer
system (earthquake, fire, flood, etc.), and inside (disc head crashes, dirty
contacts, faulty integrated circuits), but it makes little difference to the problems
they present.

• ERROR : someone has done something wrong, and might reasonably be expected to
cooperate in putting it right. (Though the effects of the mistake might not become
evident for a long time.)

• MALICE : someone has done something wrong, and won't cooperate in protective
measures.

This table illustrates the relationship between the three classes :

Intentional Agent

People Not people

no error accident

yes malice

We'll fill in the blank at the bottom right if we ever find any malicious machines; despite
occasional feelings that our computers are out to get us, we're reasonably confident that it
will stay blank for quite some time. So far, only people are nasty.

We think of PROTECTION against accident and error, but SECURITY against
malicious attack. The distinction between these two categories is that in cases of accident
and error we can reasonably expect people to cooperate in measures which will help to
reduce problems, whereas in cases of malice there is at least one agent with an interest in
opposing safety measures. Yet another table :

Concern : PROTECTION SECURITY

Requirements specification : page 3.

Guards against events
which are :

Accidental Deliberate

Can expect : Cooperation Opposition

Effect on victim : You lose something you
should have.

Various – might be no
obvious change, but you
might have lost a secret.

Effect on attacker : You get something you
shouldn't have.

DRAMATIS PERSONÆ.

Consider the structure of an action in which some sort of safety mechanism might be
desirable. Generally, something acts upon something else, using the machinery (not
necessarily restricted to the hardware) of the computer – which is not a big surprise, but
identifies three participants in the action :

the subject, which takes the initiative and performs the action;
the object, on which the action is performed; and
the machinery, hardware or software, which does the work.

We use these fairly anonymous terms because participants in an operation may be of
many sorts. Subjects (alternatively called principals) may be people, or programmes, or
command files (or, in the case of accidents, pretty well anything); objects may be files,
programmes, or devices; machines may be computers, devices, or operating systems.
Clearly, there is much overlap between the categories – because in a computer system all
entities at the software level at least are composed of much the same materials. Both a
programme and its data are expressed as arrays of bits.

Subject (principal) Machinery Object

Active Executive Passive

person,

programme,

command file,

client

computer,

device,

operating system

file,

programme,

device,

message,

server

As an example, consider a shared computer system which must maintain
information about all those who use it in its user database. Various protection and security
measures are necessary for the reliable operation of the user database, and these might be
quite different for different items of information recorded. Three sorts of item are the
login password, the search path, and the accounting information. Who or what should
have access to each item, and what sort of access should be permitted ? This table shows
an attempt at an answer.

Object Subject : owner system administrator
Access
type :

write (NOT
read)

check (NOT
read)

write (NOT
read)

Password Reason : Regular changes
are desirable;
only the owner
should know the
password; read
access is not
permitted to
ensure that
people can't find
the owner's
password from
an unattended
terminal.

The login software
must be able to
check on logging
in. Without a
check, the
password is
useless. The
check should not
return the
password, but
merely check a
string.

The user
registration
administrator
must be able to
establish initial
passwords; there
must be some
way to cope with
forgotten
passwords.

Access
type :

read, write read none

Search
path

Reason : There is nothing
particularly
sensitive about
the search path,
but equally
nobody else need
know about it.
The owner must
be able to set it to
suit
requirements.

The file access
software must be
able to read the
search path to
find out where to
look for files;
there is no
reason for the
system to change
the search path.

There is no need
for any access; in
a secure system,
none should be
granted.

Access
type :

read read, write read, write

Accountin
g

informatio
n

Reason : The owner can
reasonably
expect to find out
the state of the
account balance,
but – for
obvious
reasons – should
not be able to
change the
balance.

 As resources are
used, the
accounting
software must
adjust the
balance
accordingly.

The accounts
administrator
must be able to
read the balance
to issue
accounts, and to
change the
balance to reflect
new allocations
of funds.

POSSIBLE DEFENSIVE MEASURES.

How is the desired safety to be implemented ? We can sum up our safety requirements by
constructing a large matrix in which subjects are tabulated against objects. This is called
the access matrix. In the cells of the access matrix we record the sort of access which the
subject may have to the object. The table above is an example of a simple access matrix,
though access restrictions need not be limited to the simple examples shown : for
example, it might be desirable to restrict some subjects' access to certain object to
working hours only, or an object may only be used by a single subject at any instant.
Clearly, a complete access matrix can be a very complex object, but that doesn't matter
very much because there is rarely any reason to construct the matrix as an identifiable
object. It remains a valuable abstraction for thinking about protection and security
systems, but practical techniques rarely require access to more than one or two rows or
columns of the full matrix for any single operation, and the required data can usually be
kept quite compactly.

How can we build safety facilities into a system ? Unless we are going to introduce
some completely new entity, the safety mechanism must be associated with the subject,
object, or machinery – or, in principle, a combination of two or three, but in practice that
doesn't seem to happen.

Requirements specification : page 5.

Methods have been developed based on all three participants. In subject-based
methods, some characteristic associated with the subject must be identified before access
to the object or the operation is granted; in object-based methods, the object is given a
criterion against which it can judge requests for access; while, in machine-based methods,
some properties of subject and object are compared to determine whether access will be
permitted. In each case, methods of different degrees of sophistication are used – simple
methods, useful for protection but not necessarily safe against deliberate attack, and more
complex, and safer, techniques. This table summarises the methods in common use :

Level Focus

Subject Object Machine

Simple
(protection)

Passwords Protection
codes

Supervisor
mode

Complex
(security)

Capabilities Access control
lists

Protection rings

Cryptographic methods don't fit into this neat classification too well, but only
because they don't address quite the same problem. Rather than controlling the access of
subjects to objects, cryptography is focused on the usefulness of the object to the
subject – if you can't understand my file, it doesn't much matter whether or not you can
get it. Cryptographic methods can be used in the obvious way to encode files so that they
can't easily be read by people who don't have the knowledge needed to decode them, and
they can also be used as means of implementing some of the access control methods
mentioned above. They are particularly useful in distributed systems, where it isn't
possible to rely on local security imposed by hardware or operating system.

COMPARE :

Silberschatz and GalvinINT4, Part 4. (Notice that their definitions of protection and
security are similar to, but not quite the same as, ours.)

–––

QUESTIONS.

Would there be any advantage in recovering a file system from incremental
backup tapes by reloading the backup tapes in reverse order ? Give an
algorithm. Would it be possible to stop before getting back to the original
complete backup ?

–––

