
Requirements specification : page 1.

DEFINING A SYSTEM INTERFACE

What do we want from a standard interface ? Several things, but the unifying theme is the
need for a picture of the operating system (the system mental model) that's simple and
understandable. We decided that one important factor in achieving this end is consistency.
We also want our system to be comprehensible and helpful, but in some ways
consistency is the most obvious place to start because it's comparatively easy to check.
Though most commonly thought of as attributes of user interfaces, in fact we'd like these
principles to apply everywhere in the system, because all the parts of the system are used
by someone – ordinary user, systems programmer, administrator, or whoever – and the
same criteria apply.

What's implied by this requirement of consistency ? The important characteristic is
sometimes called the principle of least surprise : as far as possible, we'd like things to
work just as we expect them to by analogy with other things we know about. For
example, we want filenames always to have the same form, and to be interpreted in the
same way, we want special key (or mouse, etc.) sequences always to do the same
thing, and so on. Generally, we want to avoid special cases.

Translating this excellent principle into practice in every part of the system turns out
to be very hard indeed. We do not propose to analyse all the possible complications, but
will illustrate the problems with some examples.

CONSISTENCY IN DEVELOPMENT : THE APPLICATION PROGRAMMER
INTERFACE.

Within the operating system, that's largely a matter of design discipline. The same action
must always be done in the same way – which means that we must provide a single
procedure to do it, and insist that it always be used. We could, for example, have a single
procedure to parse file names, which will guarantee consistent treatment throughout the
system. (Notice how this leads to the idea of servers of various sorts, even down to
levels of tiny detail in the system. It's also a good area for object-oriented
implementations.)

Outside the operating system, that won't work. We can't force independent
developers to write their software according to some arbitrary conventions we've dreamed
up – the best we can do is to persuade them that it's in their interests to follow our lead.
We do that by making our interface so attractive that people want to use it, and by making
available to the developers the standard procedures that we use to write the operating
system. The result is commonly called an application programme interface – and more
commonly called an API. The traditional proprietary operating systems never succeeded
particularly well in providing useful APIs (they might not have tried very hard), but
both Unix and the Macintosh system have done much better.

How do you go about deciding what standard procedures you need in your API ?
You have to analyse the tasks to be done, and determine what depends on what, and
which bits would be useful. Then you have to do a lot of thinking.

Suppose, for example, that your system (like most systems) uses a lot of
filenames presented as character sequences. (We use a textual example for the moment
only because it's rather easier to present in written form; some parallel comments on
graphical interfaces appear later.) It would clearly be a good idea to write a standard
filename parser which could be used to guarantee consistent treatment within the system,
and to make it available in the API. Just what you want in such a parser depends on how
the filenames are used, and what's expected in different contexts. Consider a few cases :

print <filename> : We have to look for the file, and find out whether it's there. If it
is, and it's printable (not a directory nor a code file, for example), then it must be
printed. If not, we need to return a plausible error message.

print <filen*> : We have to look for a file with a name which begins with "filen", or
several such files, and return a list of zero or more results.

edit <filename> : Rather like print , but if the file isn't present we can either regard it
as an error or we can assume that we have to make a new file.

open <filename> for reading : We must search for the file, and report an error if it
isn't there.

open <filename> for writing : We must search for the file, and report an error if it
is there – or overwrite the existing file, or append to it, but anyway we need to
know.

To do a proper job, we should study all the places where filenames are used, and analyse
them much more carefully than we have done here, but it is clear that there are several
different ways of using filenames. It also seems that searching for a file name is usually
associated with checking for its existence, so perhaps the two operations should be
combined.

The examples are reassuring in that it doesn't seem that there are going to be any big
surprises in the parsing itself, so we can proceed to design it. It would probably be
sensible to provide a filename parser which could accept a string and identify a filename at
the head of the string. What should it return ? Here are some suggestions :

• something to say how far along the string the filename goes : that seems fairly
uncontroversial, as you have to know where the filename ends so that you can
continue to parse the rest of the text, if there is any. Should the procedure return a
pointer to the end of the filename ? or the original string with the filename
removed ? or is the length of the filename sufficient ? or should it be given a
pointer which it automatically advances past the filename ? An interesting device
used with functional languages but possible in principle with at least some others is
for every such procedure to return a continuation – something amounting to another
procedure, which you use if you want to continue. This is quite a versatile trick –
for example, you could also use it when expanding wildcard characters.

• an indication of whether or not it found a filename : again, an obvious requirement.
But what if the parser doesn't find a filename ? – should it produce an error
message ? If it does, then the message will always be the same, which is in line
with our aim of consistency – but the absence of a filename might not be an error.
(Perhaps just "edit" without a filename is an instruction to start a new file, or an
absent filename implies that you should use the terminal or screen, as is often
assumed in some contexts in Unix systems.) Further, an error message composed
by such a low level procedure is unlikely to be helpful. It could say "No file name
found" – but if we defer the message production until execution gets back to a
higher level, we could perhaps say "Couldn't find the name of the file to be
copied", which would be much more helpful. Perhaps it would be better to leave the
error message to some other procedure – but that's making the system less simple.

• the filename itself in some form : once more, sensible enough. But how should it
return the filename ? As a string, or a pointer to the original string ? That means
you have to parse it again to find the structure. As some sort of structure, then ?
What sort of structure ? And suppose you want to provide "wildcard" filename
expansion ? Should that be expanded within the parsing procedure ? If not, the
programme will have to deal with it every time a file name is used. But you can't
expand the name if you can't see the directory, so you couldn't use the procedure
with filenames written now but intended to be used in some other context. If you do
expand the wild characters, how are you going to return the list of names ?

• an indication of whether or not it could find the file : not quite so obvious. The
examples suggest that we often want to know, so it would simplify the system to
combine the parsing and the checking, but if it isn't always possible – as with a file
name used out context – then that's that, but again the system becomes more
complicated.

Requirements specification : page 3.

Things are evidently not as simple as we might have hoped – but perhaps that's
because of the rather cumbersome reliance on text input. What about systems which rely
on graphics interfaces ? Well, to begin with, you still have to address many of the same
problems. Files are still likely to be identified by real names somewhere in the software,
so many of the problems are (it seems) inescapable. ("It seems" is just to play safe; so
far we know of no significant system which has escaped ordinary file names altogether,
but perhaps there's a way no one has thought of yet.)

But there are also plenty of problems to do with managing the different style of
interface. Something has to convert the signals from the mouse into a position on the
screen, and move a pointer on the screen accordingly. Something has to know enough
about the screen layout to be able to work out what process currently owns the point on
the screen on which the pointer is resting, and – if it's a file icon or file name in a table –
to associate the position with the correct file. These are the screen equivalents of parsing
file names.

Then something has to know what to do with a click (or a double-click, or
whatever). Should the operating system do anything, or just pass on the event to some
other process ? If the operating system has to take action, what is it ? Is it purely
internal, or does it require some change to the display ? These are the screen equivalents
of interpreting the instructions.

There is no escape. The process is governed by no laws of nature, so everything is
artificial, and must therefore be designed. Typically, there is no right answer (though
there might well be a lot of wrong answers), so you have to select one set of
conventions and operations which you believe will do the job. Whichever way you do it,
it is difficult to design a satisfactory set of procedures for universal use. You can try to
minimise the number of procedures in the hope of simplifying the API, but then to ensure
that you get a flexible system each procedure will have to cover a lot of actions, and will
have to be provided with many parameters (or something equivalent) to select the right
one. Alternatively, you can try to minimise the numbers of parameters to procedures,
again in the hope of simplifying the API, but then you'll probably have to provide many
more procedures. Comprehensibility suffers either way. There are lots of decisions to
make, and the whole package has to be reasonably easy to use if people aren't to give it
up as not worth the effort.

And that in turn means documentation. If people don't like your system, they may
choose not to use it; but if you don't tell them how to, they can't use it. Complete,
effective, and comprehensible documentation is essential if you want your interface to be
accepted.

CONSISTENCY IN USE : THE USER INTERFACE.

The user interface has evolved over the years from nothing at all, through a necessary evil
hardly worthy of serious design, into the most intensively designed part of the system.
That's not to say that it's necessarily the best designed part of the system – just that it's
still not very well understood, and a powerful selling point.

Consistency in the user interface is obviously a good idea, but by no means easy to
achieve. Here are some examples to illustrate the minefield you get into if you aim at a
consistent interface. We begin with a textual interface.

First problem : what does consistency mean in the context ?

First answer : a particular sequence of operations should always have exactly the same
effect.

First comment : impossible. In Unix, rm x totally and irretrievably destroys a file
called x . Your terminal "is" a file called /dev/tty : what should rm /dev/tty do ?
We can change the definition so that rm destroys only a destroyable file (which
also takes account of protection, and some other complications), but after you've

found a few exceptions and patched the definitions to fit you end up with something
so complicated as to be not much use anyway. So let's redefine consistency.

Second answer : a particular sequence of operations should always do much the same
sort of thing.

Second comment : that's better. It gives you a useful guideline for deciding whether
or not the operation does what you want, and if there's any doubt you can always
look up the details. (If you can find the manual; and if you can understand it – but
that's another problem.) It also leaves room for explanatory messages in case you
ask for something impossible. Unix renames files if so directed with the instruction
mv <name1> <name2>. mv might seem to be an odd abbreviation for
“rename”; it's actually an abbreviation for “move”, which is mildly appropriate
because by using extended names for <name1> and <name2> the result appears
to be to move a file from one directory to another. It's still misleading, as it's all
done by shuffling directory entries, and the file doesn't move at all. Because of that,
when a move really is required – which is so if <name1> and <name2> must be
stored on different discs – mv won't work. That hardly conforms to the principle
of least surprise, but at least it can give you an error message, which we can now fit
into our definition of consistency.

Third comment : there is more to mv. Suppose you give the instruction m v A B;
what should happen ? Obviously, if there's a file called A it should be renamed B .
But suppose there's already a file called B : what then is "something quite like" the
basic renaming operation ? Should the system replace the existing B , or should it
report an error ? That depends on the judgment of the operating system's designer.
(If there is one.) Suppose instead that there's an existing directory called B :
again we can ask whether the system should replace it (rather drastic !) or report
it. In fact, Unix does neither of these; instead, it moves the file A into the directory
B , as if you had instructed mv A B/A. Is that consistent behaviour ?

What about a GUI system ? You might expect misbehaviour from Unix, which
was designed before people understood the importance of a consistent interface – but
surely the Macintosh changed all that ? Ha ! The Macintosh has trouble with its
equivalent of mv too. What happens when you drag an icon from one folder to another ?
If the two folders live on the same disc, the icon moves; if they live on different discs, the
file is copied. That certainly gave one of us trouble when he moved up from a smallish
system with floppy disc and RAM disc to a bigger system with a hard disc sufficiently
large that he didn't need a RAM disc any more. The result was that a lot of operations
which had previously been nice safe copies between floppy disc and RAM disc turned
into moves, and he didn't always notice until he came to look for the files again. That is
not consistent behaviour.

ADDITIONAL, RATHER UNFAIR, BUT NOT ENTIRELY POINTLESS COMMENT.

The trouble with some, at least, of these decisions is that there isn't an obviously right
answer. Macintosh and Unix come down on opposite sides of the fence in deciding how
to move a file from one disc to another. That's an arbitrary decision. But it's hard to see
how the Macintosh system could in any way combine its move with a rename instruction,
as Unix does : that's a forced decision, dictated by the nature of the interface itself.

Well, perhaps it's a little hard expecting similar performance from two such
dissimilar systems, but with the current interest in standards which extend over all
systems it illustrates a difficulty. Even with apparently similar interfaces, could there be
characteristics of the underlying systems which made it difficult or impossible to transfer
the same actions without changing the meaning ? We don't know an answer to that
question, but it is one reason to emphasise the separation between the interface software
and the system underneath.

–––

QUESTIONS.

Requirements specification : page 5.

Consider some operations on window interfaces. Do they have the same
meanings in all contexts ?

Why do so few textual systems allow you to correct and resubmit an
instruction ? (Unix provides a way of editing and resubmitting, which
works if you can remember how to do it.)

Is it possible, in principle or in practice, to correct and resubmit an
instruction given with a GUI system ?

–––

