
IN THE BEGINNING …

Once upon a time, when the world and computers were young, there was no operating
system. Indeed, there was no operating assistance at all : when you bought your
computer, you might also receive a few utility programmes to do standard jobs like
printing from card decks, copying files, and so on. Apart from that, you would have an
assembler, and perhaps a compiler, and the rest was up to you. And that included the
operating. (And if you built your own computer you were really on your own. This was
not as unusual as you might imagine; one of the early leaders of the British computer
industry was the Lyons catering group, famed for its chain of tea shops. The Lyons
Electronic Office built a computer, and it worked well enough that LEO computers were
constructed and sold in significant numbers.)

People's expectations of computers were, by modern standards, very limited. A
book published in 1959 for commercial programmersHIS1 was mainly about assembly
language programming, though it grudgingly admitted the existence of a thing called
Flow-Matic (an ancestor of Cobol), and Fortran.

To illustrate what was involved, here are some excerpts from a programming
manual HIS2 which tell you how to compile and run a Fortran programme on an IBM 1620
computer with paper tape input and output. We've extracted these instructions from a
composite set covering both a paper-tape system and a punched-card system, so ignore
occasional references to "decks" and other card-related objects. Also ignore the reference
to step 7 – we've left that part out because it adds nothing new to the description.
(NOTICE that this is a manual for programmers, not for operators.)

Producing the Object Program

The FORTRAN program is available in two forms, card or paper
tape. Both forms are divided into two sections; the processor and
the subroutines. The sequence of operations that follows is written
for both card and paper tape systems.

Eight basic steps are required for producing the object
program. These eight steps are summarized below, followed by
additional detailed information for steps l, 2, 6, 7, and 8.

1. Clear core storage to zeros.
2. Set the console program switches for compilation.
3. Set the overflow check switch to PROGRAM. and all other

check switches to STOP.
4. Press the reset key.
5. For the card system, prepare the card punch for operation

by loading blank cards into the punch hopper and by
pressing the punch start key.
For the paper tape system, prepare the paper tape for
operation.

6. Load the compiler program deck or tape.
7. Enter the source program statements. These may be read in

through the card reader, the paper tape reader, or typed in at
the console typewriter.

8. If required, load the subroutine deck or tape.

(Step l)

Clearing Core A suggested method for clearing core storage to zeros is:
Storage to Zero 1. Press the reset key.

2. Press the insert key.
3. Type the instruction 16 00010 00000.
4. Press the release key.
5. Press the start key.
6. After all storage positions have been cleared, press the

instant stop key.

(Step 2)

Switch Settings During compilation of the source program, the console program
switches perform the following functions:

ON OFF

Switch 1 Causes the source statements to be
typed on the console typewriter as
they are processed. The first 5-
digit field is the object program
address of the first instruction
compiled for the source statement.

Source
statements are
not listed.

Switch 2 Causes trace instructions to be
compiled.

Trace
instructions
are not
compiled

Switch3 Input to the compiler (source
statements) is being entered via the
console typewriter.

Source
program
entered from
card reader or
paper tape
reader.

Switch 4 This switch is used in conjunction with switch 3
when switch 3 is ON. It provides the ability to restart
the typing of a statement if you have made an error.
Switch 4 is normally OFF. When a typing error is
made in a source statement and it is to be corrected,
this switch is turned ON, the release and start keys
are pressed, and then switch 4 turned OFF. The
statement can now be retyped.

Loading the Compiler (Step 6)

Paper Tape System To load the compiler tape, the following procedure must be
followed:

1. Mount the compiler tape on the paper tape reader.
2. Press the insert key.
3. Type the instruction 36 00000 00300.
4. Press the release key.
5. Press the start key.

(Step 7)

When the compiler has been successfully loaded, the following
instructions are typed on the console typewriter:

ENTER SOURCE PROGRAM, PUSH START

Compilation of the
Source Program

To begin compilation after the compiler has been loaded, either
press the start key or manually insert the instruction 49 00402.

Two methods of source program input may be used under
control of program switch 3, as follows:

1. If input is in cards (switch 3 off), place the source program
deck in the read hopper and press the reader start key. If
input is in paper tape mount the source program tape on the
paper tape reader.

2. If the source program is to be entered from the typewriter
(switch 3 on), the compiler will transfer control to the
console to await the first statement. After a statement has
been typed, press the record mark key and then press the
release and start keys to continue compilation. The carriage
will return after each statement has been processed, to await
the entry of the next statement until an END statement is
entered.

After an END statement is processed, the following
instruction message is typed on the console typewriter:

SWl ON FOR SYMBOL TABLE, PUSH START

If a typed listing of the symbol table, that was developed
during compilation, is not desired, turn off program switch 1. If
the listing is required, turn on switch 1.

To continue processing, press the start key.
The following message is typed next, whether the symbol

table has been typed or not.

SWl OFF TO IGNORE SUBROUTINES, PUSH START

If the subroutines are to be included in the object program
deck or tape, turn on program switch 1, load the subroutine deck
or tape, and press the start key. If the subroutine deck or tape is to
be read in when the object program is run, switch 1 must be
turned off.

To complete the processing, press the start key.
If program switch 1 is off, the following message will be

typed:

PROCESSING COMPLETE

(Step 8)

Loading the Subroutines Under control of program switch 1, as previously described, the
subroutine deck or tape may be loaded immediately after
compilation, or loaded when the object program is loaded.

Paper Tape System When operating with the paper tape system, mount the subroutine
tape, and load it by pressing the start key. (When restarting, you
may insert the instruction 36 00000 00300, press the release key,
and then press the start key.) If the source program has used any
of the relocatable subroutines, they will either be punched out into
the object program if the subroutines are read in immediately after
compilation, or they will be loaded into core storage if the
subroutines are processed at object time.

After the subroutines have been processed, the following
message will be typed on the console typewriter

PROCESSING COMPLETE

Execution of the Object Program

Paper Tape System When operating with the paper tape system, the object program
may be processed immediately after compilation by mounting the
object tape and pressing the start key.

The object tape may also be entered by pressing the insert
key, typing the instruction 36 00000 00300, and pressing the
release and start keys.

If the subroutines are already contained in the object deck or
tape, the following message will be typed after the object program
has been loaded, and the machine will halt:

LOAD DATA

To initiate the execution of the object program, press the
start key on the 1620 console, or manually insert the instruction
49 08300.

SO WHAT'S ALL THAT ABOUT ?

Not many people use their computers like that any more, but it's interesting to look at
what was going on throughout that sequence of operations, if only because most of it still
happens. The details have changed, but the principles are the same, and in some ways this
very low-level description gives a clearer picture of what goes on than does the much
more automatic operation of modern machines.

Look first at the description as a whole. It is very clearly written as a sequential
programme, with the first section as the main programme, and step 1, step 2, and so on as
subroutines. There are frequent conditional instructions, commonly associated with the
"console program switches", and at least two examples of iteration – item 6 of step 1, and
item 2 of "Compilation of the Source Program". That makes it a reasonably ambitious
high-level programming language ! It's written fairly informally, but that's simply
because it runs on a comparatively intelligent processor – someone who wants to run a
Fortran programme. Nevertheless, the sophistication of the processor doesn't change the
essentially mechanical nature of the operation.

The user interface is noteworthy. The big difference between the 1620 interface and
modern versions is the absence of a screen – mainly on the grounds of expense. To
convey information to the computer, one used a typewriter keyboard, the "console
program switches" which could be read by programmes, and several special-purpose
keys – which is a good deal more than was available on most time-sharing terminals.
Output came mainly through the console typewriter, augmented by a display of certain
machine registers; item 6 of step 1 worked because the contents of a memory address
register were displayed, and you could see it return to address zero when all memory had
been cleared. (Incidentally, the typewriter was a real typewriter, operated by solenoids,
and you could see the keys bounce, apparently driven by invisible fingers, when the
computer was typing messages.)

The paper-tape reader and punch were not used for operating details, but only as
channels for comparatively large volumes of information. Another important part of the
user interface was therefore off-line in the form of equipment for preparing paper tape
from a keyboard and for transcribing it onto paper.

Just to make the point, consider the input side of the user interface as it appeared to many
people in the early days. It was called a coding form; it was a piece of paper on which was
printed a N × 80 grid (where N was often some curious number like 23), on which you

wrote what you wanted to be punched onto N punched cards. We emphasise that this isn't
a joke. The coding form worked as a user interface for a long time, and you can discuss it
in the same way as other, more direct, interfaces. It's still widely used : every time you
fill in a form where have to enter items in little boxes, you are probably using a variant of
the same interface.

As a final comment, it will perhaps be clear that using computers in this way was
real interactive computing. You went to the computer to run your programme, and you
knew all about it, and you did everything. It was very rewarding, and enormous fun, and
took a lot of time. We shall see that it was the time – or, rather, the comparative idleness
of the expensive machinery during that time – which led to the developments we shall be
concerned with throughout the course.

HOW IT FITS IN.

The IBM1620 wasn't the first comparatively widespread computer, but it illustrates an
important stage in development. It was one of the first (comparatively) cheap
computers, which opened up the possibility of computing to organisations with
(comparatively) modest budgets. Earlier machines had been more expensive, requiring
elaborate facilities and permanent extensive programming and engineering support, or
they were frankly experimental. Machines like the IBM1620 initiated the spread of
computing which has continued ever since. It is not too far from the mark to suggest that
the subsequent history of computing has been dominated by the need to find more
profitable ways of using the IBM1620 and its descendants. Certainly, this requirement
motivated the development of operating systems, so it will direct the story of the next few
chapters.

REFERENCES.

HIS1 : D.D. McCracken, H. Weiss, T.-H. Lee : Programming Business Computers
(Wiley, 1959).

HIS2 : Reference Manual, IBM 1620 Fortran (IBM, 1962).

–––

QUESTIONS.

What's wrong with that mode of working ? Be specific.

What facilities do we need to make it better ?

Would you have recognised those needs at the time ? as a programmer ? as a
manager ?

–––

