
Introduction to Algorithms,
Data Structures and
Formal Languages

Second Edition

About the book

Introduction to Algorithms, Data Structures and Formal Languages
provides a concise, straightforward, yet rigorous introduction to the
key ideas, techniques, and results in three areas essential to the
education of every computer scientist.

The textbook is closely based on the syllabus of the course COMPSCI220,
which the authors and their colleagues have taught at the University of
Auckland for several years. The book could also be used for self-study.
Many exercises are provided, a substantial proportion of them with
detailed solutions. Numerous figures aid understanding.

To benefit from the book, the reader should have had prior exposure to
programming in a structured language such as Java or C++, at a level
similar to a typical two-semester first-year university computer science
sequence. However, no knowledge of any particular such language is
necessary. Mathematical prerequisites are modest. Several appendices can
be used to fill minor gaps in background knowledge.

After finishing this book, students should be well prepared for more
advanced study of the three topics, either for their own sake or as they
arise in a multitude of application areas.

About the authors

Michael J. Dinneen received his PhD in 1996 from the University of
Victoria in Canada. He is currently a Senior Lecturer in the
Department of Computer Science at the University of Auckland. His
research interests are in combinatorial algorithms, graph algorithms
and network design.

Georgy Gimel'farb received his PhD in 1969 from the Institute of
Cybernetics, National Academy of Sciences, Ukraine. He received a
DSc in 1991. He is currently an Associate Professor of Computer
Science at the University of Auckland. His research interests are
in pattern recognition, computer vision, and image processing
algorithms.

Mark C. Wilson received his PhD in 1995 from the University of
Wisconsin-Madison. He is currently a Senior Lecturer in the Department
of Computer Science at the University of Auckland. His main research
interests are in analysis of algorithms, computational social choice,
and combinatorial applications of generating functions.

Contents

Contents i

List of Figures iv

List of Tables vi

I Introduction to Algorithm Analysis 5

1 What is Algorithm Analysis? 7
1.1 Efficiency of algorithms: first examples 8
1.2 Running time for loops and other computations 11
1.3 “Big-Oh”, “Big-Theta”, and “Big-Omega” tools 12
1.4 Time complexity of algorithms . 17
1.5 Basic recurrence relations . 20
1.6 Capabilities and limitations of algorithm analysis 24
1.7 Notes . 26

2 Efficiency of Sorting 27
2.1 The problem of sorting . 27
2.2 Insertion sort . 29
2.3 Mergesort . 32
2.4 Quicksort . 36
2.5 Heapsort . 41
2.6 Data selection . 47
2.7 Lower complexity bound for sorting . 49
2.8 Notes . 51

3 Efficiency of Searching 53
3.1 The problem of searching . 53
3.2 Sorted lists and binary search . 55
3.3 Binary search trees . 59
3.4 Self-balancing binary and multiway search trees 64
3.5 Hash tables . 69
3.6 Notes . 79

II Introduction to Graph Algorithms 81

4 The Graph Abstract Data Type 83
4.1 Basic definitions . 83

ii Contents

4.2 Digraphs and data structures . 88
4.3 Implementation of digraph ADT operations 90
4.4 Notes . 92

5 Graph Traversals and Applications 93
5.1 Generalities on graph traversal . 93
5.2 DFS and BFS . 97
5.3 Additional properties of depth-first search 99
5.4 Additional properties of breadth-first search 103
5.5 Priority-first search . 106
5.6 Acyclic digraphs and topological ordering 106
5.7 Connectivity . 110
5.8 Cycles . 114
5.9 Maximum matchings . 116
5.10 Notes . 120

6 Weighted Digraphs and Optimization Problems 121
6.1 Weighted digraphs . 121
6.2 Distance and diameter in the unweighted case 122
6.3 Single-source shortest path problem . 123
6.4 All-pairs shortest path problem . 129
6.5 Minimum spanning tree problem . 132
6.6 Hard graph problems . 135
6.7 Notes . 136

III Introduction to Formal Languages 137

7 An Introduction to Automata 139
7.1 Deterministic finite-state machines . 139
7.2 Nondeterministic finite-state machines 143
7.3 Recognition capabilities of NFAs and DFAs 146
7.4 Regular expressions . 148
7.5 Regular sets and finite-state automata 150
7.6 Minimizing deterministic finite-state machines 154
7.7 String searching algorithms . 157
7.8 Notes . 162

8 An Introduction to Grammars and Parsing 163
8.1 A grammar for arithmetic expressions 163
8.2 A grammar for Java statements . 165
8.3 Parse trees . 166
8.4 Ambiguity and the design of grammars 168
8.5 Constructing parse trees . 170
8.6 Template for building recursive descent parsers 172
8.7 Computational power of grammars . 175
8.8 Notes . 177

A Java code for Searching and Sorting 181
A.1 Sorting and selection . 181
A.2 Search methods . 186

B Java graph ADT 189

Contents iii

B.1 Java adjacency matrix implementation 191
B.2 Java adjacency lists implementation . 196
B.3 Standardized Java graph class . 199
B.4 Extended graph classes: weighted edges 200

C Recursive Descent Parsing 209
C.1 Templated parsing code for balanced parentheses grammar 209
C.2 Java implementation for balanced parentheses grammar 209

D Background on Data Structures 217
D.1 Informal discussion of ADTs . 217
D.2 Notes on a more formal approach . 219

E Mathematical Background 221
E.1 Sets . 221
E.2 Mathematical induction . 221
E.3 Relations . 222
E.4 Basic rules of logarithms . 223
E.5 L’Hôpital’s rule . 223
E.6 Arithmetic, geometric, and other series 223
E.7 Trees . 225

F Solutions to Selected Exercises 227

Bibliography 249

Index 251

List of Figures

1.1 Linear-time algorithm to sum an array. 9
1.2 Quadratic time algorithm to compute sums of an array. 10
1.3 Linear-time algorithm to compute sums of an array. 10
1.4 “Big Oh” property: g(n) is O(n). 14
1.5 Telescoping as a recursive substitution. 22

2.1 Insertion sort for arrays. 32
2.2 Recursive mergesort for arrays . 34
2.3 Linear time merge for arrays . 35
2.4 Basic array-based quicksort. 40
2.5 Complete binary tree and its array representation. 41
2.6 Maximum heap and its array representation. 42
2.7 Heapsort. 46
2.8 Basic array-based quickselect. 49
2.9 Decision tree for n= 3. 49

3.1 A sequential search algorithm. 55
3.2 Binary search for the key 42. 56
3.3 Binary tree representation of a sorted array. 58
3.4 Binary search with three-way comparisons. 58
3.5 Faster binary search with two-way comparisons. 59
3.6 Binary trees: only the leftmost tree is a binary search tree. 60
3.7 Search and insertion in the binary search tree. 60
3.8 Removal of the node with key 10 from the binary search tree. 61
3.9 Binary search trees obtained by permutations of 1,2,3,4. 62
3.10 Binary search trees of height about logn. 63
3.11 Binary search trees of height about n. 63
3.12 Left and right rotations of a BST. 65
3.13 Multiway search tree of order m= 4. 66
3.14 2–4 B-tree with the leaf storage size 7. 67
3.15 Birthday paradox: Pr365(n). 74

4.1 A graph G1 and a digraph G2. 84
4.2 A subdigraph and a spanning subdigraph of G2. 86
4.3 The subdigraph of G2 induced by {1,2,3}. 87
4.4 The reverse of digraph G2. 87
4.5 The underlying graph of G2. 88

5.1 Graph traversal schema. 94
5.2 Node states in the middle of a digraph traversal. 94
5.3 Decomposition of a digraph in terms of search trees. 96

List of Figures v

5.4 A graph G1 and a digraph G2. 98
5.5 BFS trees for G1 and G2, rooted at 0. 98
5.6 DFS trees for G1 and G2, rooted at 0. 99
5.7 Depth-first search algorithm. 100
5.8 Recursive DFS visit algorithm. 101
5.9 Breadth-first search algorithm. 104
5.10 Priority-first search algorithm (first kind). 107
5.11 Digraph describing structure of an arithmetic expression. 107
5.12 Topological orders of some DAGs. 108
5.13 A digraph and its strongly connected components. 112
5.14 Structure of a digraph in terms of its strong components. 112
5.15 Some (di)graphs with different cycle behaviour. 114
5.16 A bipartite graph. 115
5.17 A maximal and maximum matching in a bipartite graph. 117
5.18 An algorithm to find an augmenting path. 118
5.19 Structure of the graph traversal tree for finding augmenting paths. 119

6.1 Some weighted (di)graphs. 122
6.2 Dijkstra’s algorithm, first version. 124
6.3 Picture for proof of Dijkstra’s algorithm. 126
6.4 Dijkstra’s algorithm, PFS version. 127
6.5 Bellman–Ford algorithm. 128
6.6 Floyd’s algorithm. 130
6.7 Prim’s algorithm. 134
6.8 Kruskal’s algorithm. 135

7.1 An algorithm to convert an NFA to a DFA. 147
7.2 An algorithm to minimize a DFA. 155
7.3 A simple string searching algorithm. 159

8.1 A correct parse tree and an incorrect parse tree. 168
8.2 Sample entry algorithm for a recursive descent parser. 173
8.3 How to design a parse code to handle nonterminals. 173
8.4 How to design a parse code to handle productions. 174

B.1 Sample output of the graph test program. 201

C.1 A recursive descent parser for a simple grammar. 210
C.2 Sample parse trees obtained from our program parseBP. 215

E.1 Approximation of an integral by lower rectangles. 225

List of Tables

1.1 Relative growth of linear and quadratic terms in an expression. 9
1.2 Relative growth of running time T (n) when the input size increases from

n= 8 to n= 1024 provided that T (8) = 1. 17
1.3 The largest data sizes n that can be processed by an algorithm with time

complexity f (n) provided that T (10) = 1 minute. 18

2.1 Sample execution of insertion sort. 29
2.2 Number of inversions Ii, comparisons Ci and data moves Mi for each ele-

ment a[i] in sample list. 31
2.3 Partitioning in quicksort with pivot p= 31. 39
2.4 Inserting a new node with the key 75 in the heap in Figure 2.6. 43
2.5 Deletion of the maximum key from the heap in Figure 2.6. 44
2.6 Successive steps of heapsort. 46

3.1 A map between airport codes and locations. 54
3.2 Height of the optimal m-ary search tree with n nodes. 66
3.3 Open addressing with linear probing (OALP). 71
3.4 Open addressing with double hashing (OADH). 71
3.5 Birthday paradox: Pr365(n). 73
3.6 Average search time bounds in hash tables with load factor λ. 76

4.1 Digraph operations in terms of data structures. 91
4.2 Comparative worst-case performance of adjacency lists and matrices. . . . 92

6.1 Illustrating Dijkstra’s algorithm. 125

7.1 Sample regular expressions and their corresponding languages. 149
7.2 Some common string searching algorithms and their running times. . . . 158

Introduction to the Second Edition

Writing a second edition is a thankless task, as is well known to authors. Much of the
time is spent on small improvements that are not obvious to readers. We have taken
considerable efforts to correct a large number of errors found in the first edition, and
to improve explanation and presentation throughout the book, while retaining the
philosophy behind the original. As far as material goes, the main changes are:

• more exercises and solutions to many of them;
• a new section on maximum matching (Section 5.9);
• a new section on string searching (Section 7.7);
• a Java graph library updated to Java 1.6 and freely available for download.

The web site http://www.cs.auckland.ac.nz/textbookCS220/ for the book pro-
vides additional material including source code. Readers finding errors are encour-
aged to contact us after viewing the errata page at this web site.

In addition to the acknowledgments in the first edition, we thank Sonny Datt for
help with updating the Java graph library, Andrew Hay for help with exercise solu-
tions and Cris Calude for comments. Rob Randtoul (PlasmaDesign.co.uk) kindly
allowed us to use his cube artwork for the book’s cover. Finally, we thank

MJD all students who have struggled to learn from the first edition and have given
us feedback, either positive or negative;

GLG my wife Natasha and all the family for their permanent help and support;

MCW my wife Golbon and sons Yusef and Yahya, for their sacrifices during the writ-
ing of this book, and the joy they bring to my life even in the toughest times.

Michael J. Dinneen
Georgy Gimel’farb

Mark C. Wilson

Department of Computer Science
University of Auckland

Auckland, New Zealand

{mjd,georgy,mcw}@cs.auckland.ac.nz

31 October 2008

From Introduction to the First Edition

This book is an expanded, and, we hope, improved version of the coursebook for
the course COMPSCI 220 which we have taught several times in recent years at the
University of Auckland.

We have taken the step of producing this book because there is no single text
available that covers the syllabus of the above course at the level required. Indeed,
we are not aware of any other book that covers all the topics presented here. Our
aim has been to produce a book that is straightforward, concise, and inexpensive,
and suitable for self-study (although a teacher will definitely add value, particularly
where the exercises are concerned). It is an introduction to some key areas at the
theoretical end of computer science, which nevertheless have many practical appli-
cations and are an essential part of any computer science student’s education.

The material in the book is all rather standard. The novelty is in the combina-
tion of topics and some of the presentation. Part I deals with the basics of algorithm
analysis, tools that predict the performance of programs without wasting time im-
plementing them. Part II covers many of the standard fast graph algorithms that
have applications in many different areas of computer science and science in gen-
eral. Part III introduces the theory of formal languages, shifting the focus from what
can be computed quickly to what families of strings can be recognized easily by a
particular type of machine.

The book is designed to be read cover-to-cover. In particular Part I should come
first. However, one can read Part III before Part II with little chance of confusion.

To make best use of the book, one must do the exercises. They vary in difficulty
from routine to tricky. No solutions are provided. This policy may be changed in a
later edition.

The prerequisites for this book are similar to those of the above course, namely
two semesters of programming in a structured language such as Java (currently used
at Auckland). The book contains several appendices which may fill in any gaps in the
reader’s background.

A limited bibliography is given. There are so many texts covering some of the
topics here that to list all of them is pointless. Since we are not claiming novelty
of material, references to research literature are mostly unnecessary and we have
omitted them. More advanced books (some listed in our bibliography) can provide
more references as a student’s knowledge increases.

A few explanatory notes to the reader about this textbook are in order.
We describe algorithms using a pseudocode similar to, but not exactly like, many

structured languages such as Java or C++. Loops and control structures are indented
in fairly traditional fashion. We do not formally define our pseudocode of comment

4 From Introduction to the First Edition

style (this might make an interesting exercise for a reader who has mastered Part III).
We make considerable use of the idea of ADT (abstract data type). An abstract

data type is a mathematically specified collection of objects together with opera-
tions that can be performed on them, subject to certain rules. An ADT is completely
independent of any computer programming implementation and is a mathematical
structure similar to those studied in pure mathematics. Examples in this book in-
clude digraphs and graphs, along with queues, priority queues, stacks, and lists. A
data structure is simply a higher level entity composed of the elementary memory
addresses related in some way. Examples include arrays, arrays of arrays (matrices),
linked lists, doubly linked lists, etc.

The difference between a data structure and an abstract data type is exemplified
by the difference between a standard linear array and what we call a list. An array is
a basic data structure common to most programming languages, consisting of con-
tiguous memory addresses. To find an element in an array, or insert an element, or
delete an element, we directly use the address of the element. There are no secrets
in an array. By contrast, a list is an ADT. A list is specified by a set S of elements from
some universal setU , together with operations insert, delete, size, isEmpty and so
on (the exact definition depends on who is doing the defining). We denote the re-
sult of the operation as S.isEmpty(), for example. The operations must satisfy certain
rules, for example: S.isEmpty() returns a boolean value TRUE or FALSE; S.insert(x,r)
requires that x belong to U and r be an integer between 0 and S.size(), and returns
a list; for any admissible x and r we have S.isEmpty(S.insert(x,r)) = FALSE, etc. We
are not interested in how the operations are to be carried out, only in what they do.
Readers familiar with languages that facilitate object-based and object-oriented pro-
gramming will recognize ADTs as, essentially, what are called classes in Java or C++.

A list can be implemented using an array (to be more efficient, we would also
have an extra integer variable recording the array size). The insert operation, for
example, can be achieved by accessing the correct memory address of the r-th ele-
ment of the array, allocating more space at the end of the array, shifting along some
elements by one, and assigning the element to be inserted to the address vacated by
the shifting. We would also update the size variable by 1. These details are unim-
portant in many programming applications. However they are somewhat important
when discussing complexity as we do in Part I. While ADTs allow us to concentrate
on algorithms without worrying about details of programming implementation, we
cannot ignore data structures forever, simply because some implementations of ADT
operations are more efficient than others.

In summary, we use ADTs to sweep programming details under the carpet as long
as we can, but we must face them eventually.

A book of this type, written by three authors with different writing styles under
some time pressure, will inevitably contain mistakes. We have been helped to mini-
mize the number of errors by the student participants in the COMPSCI 220 course-
book error-finding competition, and our colleagues Joshua Arulanandham and An-
dre Nies, to whom we are very grateful.

Our presentation has benefitted from the input of our colleagues who have taught
COMPSCI 220 in the recent and past years, with special acknowledgement due to
John Hamer and the late Michael Lennon.

10 February 2004

Part I

Introduction to Algorithm Analysis

Chapter 1

What is Algorithm Analysis?

Algorithmic problems are of crucial importance in modern life. Loosely speaking,
they are precisely formulated problems that can be solved in a step-by-step, me-
chanical manner.

Definition 1.1 (informal). An algorithm is a list of unambiguous rules that specify
successive steps to solve a problem. A computer program is a clearly specified se-
quence of computer instructions implementing the algorithm.

For example, a sufficiently detailed recipe for making a cake could be thought of
as an algorithm. Problems of this sort are not normally considered as part of com-
puter science. In this book, we deal with algorithms for problems of a more abstract
nature. Important examples, all discussed in this book, and all with a huge number
of practical applications, include: sorting a database, finding an entry in a database,
finding a pattern in a text document, finding the shortest path through a network,
scheduling tasks as efficiently as possible, finding the median of a statistical sample.

Strangely enough, it is very difficult to give simple precise mathematical defini-
tions of algorithms and programs. The existing very deep general definitions are too
complex for our purposes. We trust that the reader of this book will obtain a good
idea of what we mean by algorithm from the examples in this and later chapters.

We often wish to compare different algorithms for the same problem, in order
to select the one best suited to our requirements. The main features of interest are:
whether the algorithm is correct (does it solve the problem for all legal inputs), and
how efficient it is (how much time, memory storage, or other resources it uses).

The same algorithm can be implemented by very different programs written in
different programming languages, by programmers of different levels of skill, and
then run on different computer platforms under different operating systems. In
searching for the best algorithm, general features of algorithms must be isolated
from peculiarities of particular platforms and programs.

To analyse computer algorithms in practice, it is usually sufficient to first specify
elementary operations of a “typical” computer and then represent each algorithm as
a sequence of those operations.

Most modern computers and languages build complex programs from ordinary
arithmetic and logical operations such as standard unary and binary arithmetic op-
erations (negation, addition, subtraction, multiplication, division, modulo opera-

8 Section 1.1: Efficiency of algorithms: first examples

tion, or assignment), Boolean operations, binary comparisons (“equals”, “less than”,
or “greater than”), branching operations, and so on. It is quite natural to use these
basic computer instructions as algorithmic operations, which we will call elemen-
tary operations.

It is not always clear what should count as an elementary operation. For example,
addition of two 64-bit integers should definitely count as elementary, since it can be
done in a fixed time for a given implementation. But for some applications, such as
cryptography, we must deal with much larger integers, which must be represented in
another way. Addition of “big” integers takes a time roughly proportional to the size
of the integers, so it is not reasonable to consider it as elementary. From now on we
shall ignore such problems. For most of the examples in this introductory book they
do not arise. However, they must be considered in some situations, and this should
be borne in mind.

Definition 1.2 (informal). The running time (or computing time) of an algorithm is
the number of its elementary operations.

The actual execution time of a program implementing an algorithm is roughly
proportional to its running time, and the scaling factor depends only on the partic-
ular implementation (computer, programming language, operating system, and so
on).

The memory space required for running an algorithm depends on how many
individual variables (input, intermediate, and output data) are involved simultane-
ously at each computing step. Time and space requirements are almost always inde-
pendent of the programming language or style and characterise the algorithm itself.
From here on, we will measure effectiveness of algorithms and programs mostly in
terms of their time requirements. Any real computer has limits on the size and the
number of data items it can handle.

1.1 Efficiency of algorithms: first examples

If the same problem can be solved by different algorithms, then all other things be-
ing equal, the most efficient algorithm uses least computational resources. The the-
ory of algorithms in modern computer science clarifies basic algorithmic notions
such as provability, correctness, complexity, randomness, or computability. It stud-
ies whether there exist any algorithms for solving certain problems, and if so, how
fast can they be. In this book, we take only a few small steps into this domain.

To search for the most efficient algorithm, one should mathematically prove cor-
rectness of and determine time/space resources for each algorithm as explicit func-
tions of the size of input data to process. For simplicity of presentation in this book,
we sometimes skip the first step (proof of correctness), although it is very impor-
tant. The focus of this chapter is to introduce methods for estimating the resource
requirements of algorithms.

Example 1.3 (Sum of elements of an array). Let a denote an array of integers where
the sum s= ∑n−1

i=0 a[i] is required. To get the sum s, we have to repeat n times the same
elementary operations (fetching from memory and adding a number). Thus, run-
ning time T (n) is proportional to, or linear in n: T (n) = cn. Such algorithms are also
called linear algorithms. The unknown factor c depends on a particular computer,
programming language, compiler, operating system, etc. But the relative change
in running time is just the same as the change in the data size: T (10) = 10T (1), or
T (1000) = 1000T(1), or T (1000) = 10T(100). The linear algorithm in Figure 1.1 imple-
ments a simple loop.

Chapter 1: What is Algorithm Analysis? 9

algorithm linearSum
Input: array a[0..n−1]

begin
s← 0
for i← 0 step i← i+ 1 until n−1 do

s← s+a[i]
end for
return s

end

Figure 1.1: Linear-time algorithm to sum an array.

Example 1.4 (Sums of subarrays). The problem is to compute, for each subarray
a[j.. j+m− 1] of size m in an array a of size n, the partial sum of its elements s[j] =
∑m−1
k=0 a[j+ k]; j = 0, . . . ,n−m. The total number of these subarrays is n−m+ 1. At first

glance, we need to compute n−m+1 sums, each ofm items, so that the running time
is proportional to m(n−m+ 1). If m is fixed, the time depends still linearly on n.

But if m is growing with n as a fraction of n, such as m = n
2 , then T (n) = c n2

(
n
2 + 1

)
= 0.25cn2 + 0.5cn. The relative weight of the linear part, 0.5cn, decreases quickly with
respect to the quadratic one as n increases. For example, if T (n) = 0.25n2 + 0.5n, we
see in the last column of Table 1.1 the rapid decrease of the ratio of the two terms.

Table 1.1: Relative growth of linear and quadratic terms in an expression.

n T (n) 0.25n2 0.5n
value % of quadratic term

10 30 25 5 20.0
50 650 625 25 4.0

100 2550 2500 50 2.0
500 62750 62500 250 0.4

1000 250500 250000 500 0.2
5000 6252500 6250000 2500 0.04

Thus, for large n only the quadratic term becomes important and the running
time is roughly proportional to n2, or is quadratic in n. Such algorithms are some-
times called quadratic algorithms in terms of relative changes of running time with
respect to changes of the data size: if T (n) ≈ cn2 then T (10) ≈ 100T(1), or T (100) ≈
10000T(1), or T (100)≈ 100T(10).

The above “brute-force” quadratic algorithm has two nested loops (see Figure 1.2).
Let us analyse it to find out whether it can be simplified. It is easily seen that repeated
computations in the innermost loop are unnecessary. Two successive sums s[i] and
s[i−1] differ only by two elements: s[i] = s[i−1]+a[i+m−1]−a[i−1]. Thus we need
not repeatedly add m items together after getting the very first sum s[0]. Each next
sum is formed from the current one by using only two elementary operations (ad-
dition and subtraction). Thus T (n) = c(m+ 2(n−m)) = c(2n−m). In the first paren-
theses, the first term m relates to computing the first sum s[0], and the second term
2(n−m) reflects that n−m other sums are computed with only two operations per
sum. Therefore, the running time for this better organized computation is always
linear in n for each value m, either fixed or growing with n. The time for comput-
ing all the sums of the contiguous subsequences is less than twice that taken for the

10 Section 1.1: Efficiency of algorithms: first examples

algorithm slowSums
Input: array a[0..2m−1]

begin
array s[0..m]
for i← 0 to m do

s[i]← 0
for j← 0 to m−1 do

s[i]← s[i]+a[i+ j]
end for

end for
return s

end

Figure 1.2: Quadratic time algorithm to compute sums of an array.

single sum of all n items in Example 1.3
The linear algorithm in Figure 1.3 excludes the innermost loop of the quadratic

algorithm. Now two simple loops, doing m and 2(n−m) elementary operations, re-
spectively, replace the previous nested loop performing m(n−m+ 1) operations.

algorithm fastSums
Input: array a[0..2m−1]

begin
array s[0..m]
s[0]← 0
for j← 0 to m−1 do

s[0]← s[0]+a[j]
end for
for i← 1 to m do

s[i]← s[i−1]+a[i+m−1]−a[i−1]
end for
return s;

end

Figure 1.3: Linear-time algorithm to compute sums of an array.

Such an outcome is typical for algorithm analysis. In many cases, a careful analy-
sis of the problem allows us to replace a straightforward “brute-force” solution with
much more effective one. But there are no “standard” ways to reach this goal. To ex-
clude unnecessary computation, we have to perform a thorough investigation of the
problem and find hidden relationships between the input data and desired outputs.
In so doing, we should exploit all the tools we have learnt. This book presents many
examples where analysis tools are indeed useful, but knowing how to analyse and
solve each particular problem is still close to an art. The more examples and tools
are mastered, the more the art is learnt.

Chapter 1: What is Algorithm Analysis? 11

Exercises

Exercise 1.1.1. A quadratic algorithm with processing time T (n) = cn2 uses 500 ele-
mentary operations for processing 10 data items. How many will it use for processing
1000 data items?

Exercise 1.1.2. Algorithms A and B use exactly TA(n) = cAn lgn and TB(n) = cBn2 ele-
mentary operations, respectively, for a problem of size n. Find the fastest algorithm
for processing n = 220 data items if A and B spend 10 and 1 operations, respectively,
to process 210 ≡ 1024 items.

1.2 Running time for loops and other computations

The above examples show that running time depends considerably on how deeply
the loops are nested and how the loop control variables are changing. Suppose the
control variables change linearly in n, that is, increase or decrease by constant steps.
If the number of elementary operations in the innermost loop is constant, the nested
loops result in polynomial running time T (n) = cnk where k is the highest level of
nesting and c is some constant. The first three values of k have special names: linear
time, quadratic time, and cubic time for k = 1 (a single loop), k = 2 (two nested
loops), and k= 3 (three nested loops), respectively.

When loop control variables change non-linearly, the running time also varies
non-linearly with n.

Example 1.5. An exponential change i = 1,k,k2, . . . ,km−1 of the control variable in
the range 1 ≤ i ≤ n results in logarithmic time for a simple loop. The loop executes
m iterations such that km−1 < n≤ km. Thus, m−1 < logk n≤ m, and T (n) = c�logk n�.

Additional conditions for executing inner loops only for special values of the outer
variables also decrease running time.

Example 1.6. Let us roughly estimate the running time of the following nested loops:
m← 2

for j← 1 to n do
if j = m then

m← 2m
for i← 1 to n do

. . . constant number of elementary operations

end for
end if

end for

The inner loop is executed k times for j = 2,4, . . . ,2k where k < lgn ≤ k+ 1. The
total time for the elementary operations is proportional to kn, that is, T (n) = n�lgn	.

Conditional and switch operations like if {condition} then {constant running
time T1} else {constant running time T2} involve relative frequencies of the groups
of computations. The running time T satisfies T = ftrueT1 +(1− ftrue)T2 < max{T1,T2}
where ftrue is the relative frequency of the true condition value in the if-statement.

The running time of a function or method call is T =∑k
i=1Ti where Ti is the running

time of statement i of the function and k is the number of statements.

12 Section 1.3: “Big-Oh”, “Big-Theta”, and “Big-Omega” tools

Exercises

Exercise 1.2.1. Is the running time quadratic or linear for the nested loops below?

m← 1
for j← 1 step j← j+ 1 until n do

if j = m then m←m · (n−1)
for i← 0 step i← i+ 1 until n−1 do

. . . constant number of elementary operations

end for
end if

end for

Exercise 1.2.2. What is the running time for the following code fragment as a func-
tion of n?

for i← 1 step i← 2 ∗ iwhile i< n do
for j← 1 step j← 2 ∗ j while j < n do

if j = 2 ∗ i
for k = 0 step k← k+ 1 while k < n do

. . . constant number of elementary operations

end for
else

for k← 1 step k← 3 ∗ k while k < n do

. . . constant number of elementary operations

end for
end if

end for
end for

1.3 “Big-Oh”, “Big-Theta”, and “Big-Omega” tools

Two simple concepts separate properties of an algorithm itself from properties of a
particular computer, operating system, programming language, and compiler used
for its implementation. The concepts, briefly outlined earlier, are as follows:

• The input data size, or the number n of individual data items in a single data in-
stance to be processed when solving a given problem. Obviously, how to mea-
sure the data size depends on the problem: nmeans the number of items to sort
(in sorting applications), number of nodes (vertices) or arcs (edges) in graph al-
gorithms, number of picture elements (pixels) in image processing, length of a
character string in text processing, and so on.

• The number of elementary operations taken by a particular algorithm, or its
running time. We assume it is a function f (n) of the input data size n. The
function depends on the elementary operations chosen to build the algorithm.

The running time of a program which implements the algorithm is c f (n) where
c is a constant factor depending on a computer, language, operating system, and
compiler. Even if we don’t know the value of the factor c, we are able to answer the
important question: if the input size increases from n = n1 to n = n2, how does the

Chapter 1: What is Algorithm Analysis? 13

relative running time of the program change, all other things being equal? The answer
is obvious: the running time increases by a factor of T (n2)

T (n1)
= c f (n2)

c f (n1) = f (n2)
f (n1) .

As we have already seen, the approximate running time for large input sizes gives
enough information to distinguish between a good and a bad algorithm. Also, the
constant c above can rarely be determined. We need some mathematical notation to
avoid having to say “of the order of . . .” or “roughly proportional to . . .”, and to make
this intuition precise.

The standard mathematical tools “Big Oh” (O), “Big Theta” (Θ), and “Big Omega”
(Ω) do precisely this.

Note. Actually, the above letterO is a capital “omicron” (all letters in this notation are
Greek letters). However, since the Greek omicron and the English “O” are indistin-
guishable in most fonts, we read O() as “Big Oh” rather than “Big Omicron”.

The algorithms are analysed under the following assumption: if the running time
of an algorithm as a function of n differs only by a constant factor from the running
time for another algorithm, then the two algorithms have essentially the same time
complexity. Functions that measure running time, T (n), have nonnegative values
because time is nonnegative, T (n) ≥ 0. The integer argument n (data size) is also
nonnegative.

Definition 1.7 (Big Oh). Let f (n) and g(n) be nonnegative-valued functions defined
on nonnegative integers n. Then g(n) is O(f (n)) (read “g(n) is Big Oh of f (n)”) iff there
exists a positive real constant c and a positive integer n0 such that g(n)≤ c f (n) for all
n> n0.

Note. We use the notation “iff ” as an abbreviation of “if and only if”.

In other words, if g(n) isO(f (n)) then an algorithm with running time g(n) runs for
large n at most as fast, to within a constant factor, as an algorithm with running time
f (n). Usually the term “asymptotically” is used in this context to describe behaviour
of functions for sufficiently large values of n. This term means that g(n) for large n
may approach closer and closer to c · f (n). Thus, O(f (n)) specifies an asymptotic
upper bound.

Note. Sometimes the “Big Oh” property is denoted g(n) =O(f (n)), but we should not
assume that the function g(n) is equal to something called “Big Oh” of f (n). This
notation really means g(n) ∈ O(f (n)), that is, g(n) is a member of the set O(f (n)) of
functions which are increasing, in essence, with the same or lesser rate as n tends to
infinity (n→∞). In terms of graphs of these functions, g(n) is O(f (n)) iff there exists a
constant c such that the graph of g(n) is always below or at the graph of c f (n) after a
certain point, n0.

Example 1.8. Function g(n) = 100log10 n in Figure 1.4 is O(n) because the graph g(n)
is always below the graph of f (n) = n if n> 238 or of f (n) = 0.3n if n> 1000, etc.

Definition 1.9 (Big Omega). The function g(n) is Ω(f (n)) iff there exists a positive
real constant c and a positive integer n0 such that g(n)≥ c f (n) for all n> n0.

“Big Omega” is complementary to “Big Oh” and generalises the concept of “lower
bound” (≥) in the same way as “Big Oh” generalises the concept of “upper bound”
(≤): if g(n) is O(f (n)) then f (n) is Ω(g(n)), and vice versa.

Definition 1.10 (Big Theta). The function g(n) is Θ(f (n)) iff there exist two positive
real constants c1 and c2 and a positive integer n0 such that c1 f (n) ≤ g(n)≤ c2 f (n) for
all n> n0.

14 Section 1.3: “Big-Oh”, “Big-Theta”, and “Big-Omega” tools

 0 200 400 600 800 1000 1200 n

T(n)

f(n) = 0.3n

200

100

300

400

f(n)=n

g(n)=100 log n10

n0 n0

Figure 1.4: “Big Oh” property: g(n) is O(n).

Whenever two functions, f (n) and g(n), are actually of the same order, g(n) is
Θ(f (n)), they are each “Big Oh” of the other: f (n) is O(g(n)) and g(n) is O(f (n)). In
other words, f (n) is both an asymptotic upper and lower bound for g(n). The “Big
Theta” property means f (n) and g(n) have asymptotically tight bounds and are in
some sense equivalent for our purposes.

In line with the above definitions, g(n) is O(f (n)) iff g(n) grows at most as fast as
f (n) to within a constant factor, g(n) is Ω(f (n)) iff g(n) grows at least as fast as f (n) to
within a constant factor, and g(n) is Θ(f (n)) iff g(n) and f (n) grow at the same rate to
within a constant factor.

“Big Oh”, “Big Theta”, and “Big Omega” notation formally capture two crucial
ideas in comparing algorithms: the exact function, g, is not very important because
it can be multiplied by any arbitrary positive constant, c, and the relative behaviour
of two functions is compared only asymptotically, for large n, but not near the origin
where it may make no sense. Of course, if the constants involved are very large, the
asymptotic behaviour loses practical interest. In most cases, however, the constants
remain fairly small.

In analysing running time, “Big Oh” g(n) ∈ O(f (n)), “Big Omega” g(n) ∈ Ω(f (n)),
and “Big Theta” g(n) ∈ Θ(f (n)) definitions are mostly used with g(n) equal to “exact”
running time on inputs of size n and f (n) equal to a rough approximation to running
time (like logn, n, n2, and so on).

To prove that some function g(n) is O(f (n)), Ω(f (n)), or Θ(f (n)) using the defini-
tions we need to find the constants c, n0 or c1, c2, n0 specified in Definitions 1.7, 1.9,
1.10. Sometimes the proof is given only by a chain of inequalities, starting with f (n).
In other cases it may involve more intricate techniques, such as mathematical induc-
tion. Usually the manipulations are quite simple. To prove that g(n) is not O(f (n)),
Ω(f (n)), or Θ(f (n)) we have to show the desired constants do not exist, that is, their
assumed existence leads to a contradiction.

Example 1.11. To prove that linear function g(n) = an+ b; a > 0, is O(n), we form
the following chain of inequalities: g(n) ≤ an+ |b| ≤ (a+ |b|)n for all n ≥ 1. Thus,
Definition 1.7 with c= a+ |b| and n0 = 1 shows that an+b is O(n).

“Big Oh” hides constant factors so that both 10−10n and 1010n are O(n). It is point-
less to write something like O(2n) or O(an+ b) because this still means O(n). Also,

Chapter 1: What is Algorithm Analysis? 15

only the dominant terms as n→ ∞ need be shown as the argument of “Big Oh”, “Big
Omega”, or “Big Theta”.

Example 1.12. The polynomial P5(n) = a5n5 + a4n4 + a3n3 + a2n2 + a1n+ a0; a5 > 0, is
O(n5) because P5(n)≤ (a5 + |a4|+ |a3|+ |a2|+ |a1|+ |a0|)n5 for all n≥ 1.

Example 1.13. The exponential function g(n) = 2n+k, where k is a constant, is O(2n)
because 2n+k = 2k2n for all n. Generally, mn+k is O(ln); l ≥m> 1, because mn+k ≤ ln+k =
lkln for any constant k.

Example 1.14. For each m> 1, the logarithmic function g(n) = logm(n) has the same
rate of increase as lg(n) because logm(n) = logm(2) lg(n) for all n> 0. Therefore we may
omit the logarithm base when using the “Big-Oh” and “Big Theta” notation: logm n is
Θ(logn).

Rules for asymptotic notation

Using the definition to prove asymptotic relationships between functions is hard
work. As in calculus, where we soon learn to use various rules (product rule, chain
rule, . . .) rather than the definition of derivative, we can use some simple rules to
deduce new relationships from old ones.

We present rules for “Big Oh”—similar relationships hold for “Big Omega” and
“Big Theta”.

We will consider the features both informally and formally using the following
notation. Let x and y be functions of a nonnegative integer n. Then z = x+ y and
z = xy denote the sum of the functions, z(n) = x(n)+ y(n), and the product function:
z(n) = x(n)y(n), respectively, for every value of n. The product function (xy)(n) returns
the product of the values of the functions at n and has nothing in common with the
composition x(y(n)) of the two functions.

Basic arithmetic relationships for “Big Oh” follow from and can be easily proven
with its definition.

Lemma 1.15 (Scaling). For all constants c> 0, c f is O(f). In particular, f is O(f).

Proof. The relationship c f (n)≤ c f (n) obviously holds for all n≥ 0.

Constant factors are ignored, and only the powers and functions are taken into
account. It is this ignoring of constant factors that motivates such a notation.

Lemma 1.16 (Transitivity). If h is O(g) and g is O(f), then h is O(f).

Proof. See Exercise 1.3.6.

Informally, if h grows at most as quickly as g, which grows at most as quickly as f ,
then h grows at most as quickly as f .

Lemma 1.17 (Rule of sums). If g1 isO(f1) and g2 isO(f2), then g1 +g2 isO(max{ f1, f2}).

Proof. See Exercise 1.3.6.

If g is O(f) and h is O(f), then is g+h is O(f). In particular, if g is O(f), then g+ f
is O(f). Informally, the growth rate of a sum is the growth rate of its fastest-growing
term.

16 Section 1.3: “Big-Oh”, “Big-Theta”, and “Big-Omega” tools

Lemma 1.18 (Rule of products). If g1 is O(f1) and g2 is O(f2), then g1g2 is O(f1 f2).

Proof. See Exercise 1.3.6.

In particular, if g isO(f), then gh isO(f h). Informally, the product of upper bounds
of functions gives an upper bound for the product of the functions.

Using calculus we can obtain a nice time-saving rule.

Lemma 1.19 (Limit Rule). Suppose limn→∞ f (n)/g(n) exists (may be ∞), and denote
the limit by L. Then

• if L= 0, then f is O(g) and f is not Ω(g);

• if 0 < L< ∞ then f is Θ(g);

• if L= ∞ then f is Ω(g) and f is not O(g).

Proof. If L = 0 then from the definition of limit, in particular there is some n0 such
that f (n)/g(n)≤ 1 for all n≥ n0. Thus f (n) ≤ g(n) for all such n, and f (n) is O(g(n)) by
definition. On the other hand, for each c > 0, it is not the case that f (n) ≥ cg(n) for
all n past some threshold value n1, so that f (n) is not Ω(g(n)). The other two parts are
proved in the analogous way.

To compute the limit if it exists, the standard L’Hôpital’s rule of calculus is useful
(see Section E.5).

More specific relations follow directly from the basic ones.

Example 1.20. Higher powers of n grow more quickly than lower powers: nk is O(nl)
if 0 ≤ k ≤ l. This follows directly from the limit rule since nk/nl = nk−l has limit 1 if
k = l and 0 if k < l.

Example 1.21. The growth rate of a polynomial is given by the growth rate of its
leading term (ignoring the leading coefficient by the scaling feature): if Pk(n) is a
polynomial of exact degree k then Pk(n) is Θ(nk). This follows easily from the limit
rule as in the preceding example.

Example 1.22. Exponential functions grow more quickly than powers: nk is O(bn),
for all b > 1, n > 1, and k ≥ 0. The restrictions on b, n, and k merely ensure that both
functions are increasing. This result can be proved by induction or by using the limit-
L’Hôpital approach above.

Example 1.23. Logarithmic functions grow more slowly than powers: logb n is O(nk)
for all b > 1, k > 0. This is the inverse of the preceding feature. Thus, as a result, logn
is O(n) and n logn is O(n2).

Exercises

Exercise 1.3.1. Prove that 10n3−5n+ 15 is not O(n2).

Exercise 1.3.2. Prove that 10n3−5n+ 15 is Θ(n3).

Exercise 1.3.3. Prove that 10n3−5n+ 15 is not Ω(n4).

Exercise 1.3.4. Prove that f (n) is Θ(g(n)) if and only if both f (n) is O(g(n) and f (n) is
Ω(g(n)).

Chapter 1: What is Algorithm Analysis? 17

Exercise 1.3.5. Using the definition, show that each function f (n) in Table 1.3 stands
in “Big-Oh” relation to the preceding one, that is, n is O(n logn), n logn is O(n1.5), and
so forth.

Exercise 1.3.6. Prove Lemmas 1.16–1.18.

Exercise 1.3.7. Decide on how to reformulate the Rule of Sums (Lemma 1.17) for
“Big Omega” and “Big Theta” notation.

Exercise 1.3.8. Reformulate and prove Lemmas 1.15–1.18 for “Big Omega” notation.

1.4 Time complexity of algorithms

Definition 1.24 (Informal). A function f (n) such that the running timeT (n) of a given
algorithm is Θ(f (n)) measures the time complexity of the algorithm.

An algorithm is called polynomial time if its running time T (n) is O(nk) where k is
some fixed positive integer. A computational problem is considered intractable iff
no deterministic algorithm with polynomial time complexity exists for it. But many
problems are classed as intractable only because a polynomial solution is unknown,
and it is a very challenging task to find such a solution for one of them.

Table 1.2: Relative growth of running time T (n) when the input size increases from
n= 8 to n= 1024 provided that T (8) = 1.

Time complexity Input size n Time T (n)
Function Notation 8 32 128 1024
Constant 1 1 1 1 1 1

Logarithmic lgn 1 1.67 2.67 3.33 lgn/3
Log-squared lg2 n 1 2.78 5.44 11.1 lg2 n/9

Linear n 1 4 16 128 n/8
“n logn” n lgn 1 6.67 37.3 427 n lgn/24

Quadratic n2 1 16 256 16384 n2/64
Cubic n3 1 64 4096 2097152 n3/512

Exponential 2n 1 224 2125 21021 2n−3

Table 1.2 shows how the running time T (n) of algorithms having different time
complexity, f (n), grows relatively with the increasing input size n. Time complexity
functions are listed in order such that g is O(f) if g is above f : for example, the linear
function n is O(n logn) and O(n2), etc. The asymptotic growth rate does not depend
on the base of the logarithm, but the exact numbers in the table do — we use log2 = lg
for simplicity.

Table 1.3 is even more expressive in showing how the time complexity of an algo-
rithm affects the size of problems the algorithm can solve (we again use log2 = lg). A
linear algorithm solving a problem of size n = 10 in exactly one minute will process
about 5.26 million data items per year and 10 times more if we can wait a decade.
But an exponential algorithm with T (10) = 1 minute will deal only with 29 data items
after a year of running and add only 3 more items after a decade. Suppose we have
computers 10,000 times faster (this is approximately the ratio of a week to a minute).
Then we can solve a problem 10,000 times, 100 times, or 21.5 times larger than before
if our algorithm is linear, quadratic, or cubic, respectively. But for exponential algo-
rithms, our progress is much worse: we can add only 13 more input values if T (n) is
Θ(2n).

18 Section 1.4: Time complexity of algorithms

Table 1.3: The largest data sizes n that can be processed by an algorithm with time
complexity f (n) provided that T (10) = 1 minute.

Length of time to run an algorithm
f (n) 1 minute 1 hour 1 day 1 week 1 year 1 decade
n 10 600 14 400 100 800 5.26×106 5.26×107

n lgn 10 250 3 997 23 100 883 895 7.64×106

n1.5 10 153 1 275 4 666 65 128 302,409
n2 10 77 379 1 003 7 249 22,932
n3 10 39 112 216 807 1,738
2n 10 15 20 23 29 32

Therefore, if our algorithm has a constant, logarithmic, log-square, linear, or even
“n logn” time complexity we may be happy and start writing a program with no doubt
that it will meet at least some practical demands. Of course, before taking the plunge,
it is better to check whether the hidden constant c, giving the computation volume
per data item, is sufficiently small in our case. Unfortunately, order relations can be
drastically misleading: for instance, two linear functions 10−4n and 1010n are of the
same orderO(n), but we should not claim an algorithm with the latter time complex-
ity as a big success.

Therefore, we should follow a simple rule: roughly estimate the computation vol-
ume per data item for the algorithms after comparing their time complexities in a
“Big-Oh” sense! We may estimate the computation volume simply by counting the
number of elementary operations per data item.

In any case we should be very careful even with simple quadratic or cubic algo-
rithms, and especially with exponential algorithms. If the running time is speeded
up in Table 1.3 so that it takes one second per ten data items in all the cases, then we
will still wait about 12 days (220 ≡ 1,048,576 seconds) for processing only 30 items by
the exponential algorithm. Estimate yourself whether it is practical to wait until 40
items are processed.

In practice, quadratic and cubic algorithms cannot be used if the input size ex-
ceeds tens of thousands or thousands of items, respectively, and exponential algo-
rithms should be avoided whenever possible unless we always have to process data
of very small size. Because even the most ingenious programming cannot make an
inefficient algorithm fast (we would merely change the value of the hidden constant
c slightly, but not the asymptotic order of the running time), it is better to spend more
time to search for efficient algorithms, even at the expense of a less elegant software
implementation, than to spend time writing a very elegant implementation of an
inefficient algorithm.

Worst-case and average-case performance

We have introduced asymptotic notation in order to measure the running time of
an algorithm. This is expressed in terms of elementary operations. “Big Oh”, “Big
Omega” and “Big Theta” notations allow us to state upper, lower and tight asymp-
totic bounds on running time that are independent of inputs and implementation
details. Thus we can classify algorithms by performance, and search for the “best”
algorithms for solving a particular problem.

However, we have so far neglected one important point. In general, the running
time varies not only according to the size of the input, but the input itself. The ex-

Chapter 1: What is Algorithm Analysis? 19

amples in Section 1.4 were unusual in that this was not the case. But later we shall
see many examples where it does occur. For example, some sorting algorithms take
almost no time if the input is already sorted in the desired order, but much longer if
it is not.

If we wish to compare two different algorithms for the same problem, it will be
very complicated to consider their performance on all possible inputs. We need a
simple measure of running time.

The two most common measures of an algorithm are the worst-case running
time, and the average-case running time.

The worst-case running time has several advantages. If we can show, for example,
that our algorithm runs in time O(n logn) no matter what input of size n we consider,
we can be confident that even if we have an “unlucky” input given to our program,
it will not fail to run fairly quickly. For so-called “mission-critical” applications this
is an essential requirement. In addition, an upper bound on the worst-case running
time is usually fairly easy to find.

The main drawback of the worst-case running time as a measure is that it may be
too pessimistic. The real running time might be much lower than an “upper bound”,
the input data causing the worst case may be unlikely to be met in practice, and the
constants c and n0 of the asymptotic notation are unknown and may not be small.
There are many algorithms for which it is difficult to specify the worst-case input.
But even if it is known, the inputs actually encountered in practice may lead to much
lower running times. We shall see later that the most widely used fast sorting algo-
rithm, quicksort, has worst-case quadratic running time, Θ(n2), but its running time
for “random” inputs encountered in practice is Θ(n logn).

By contrast, the average-case running time is not as easy to define. The use of
the word “average” shows us that probability is involved. We need to specify a prob-
ability distribution on the inputs. Sometimes this is not too difficult. Often we can
assume that every input of size n is equally likely, and this makes the mathematical
analysis easier. But sometimes an assumption of this sort may not reflect the inputs
encountered in practice. Even if it does, the average-case analysis may be a rather
difficult mathematical challenge requiring intricate and detailed arguments. And of
course the worst-case complexity may be very bad even if the average case complex-
ity is good, so there may be considerable risk involved in using the algorithm.

Whichever measure we adopt for a given algorithm, our goal is to show that its
running time is Θ(f) for some function f and there is no algorithm with running
time Θ(g) for any function g that grows more slowly than f when n→ ∞. In this case
our algorithm is asymptotically optimal for the given problem.

Proving that no other algorithm can be asymptotically better than ours is usually
a difficult matter: we must carefully construct a formal mathematical model of a
computer and derive a lower bound on the complexity of every algorithm to solve
the given problem. In this book we will not pursue this topic much. If our analysis
does show that an upper bound for our algorithm matches the lower one for the
problem, then we need not try to invent a faster one.

Exercises

Exercise 1.4.1. Add columns to Table 1.3 corresponding to one century (10 decades)
and one millennium (10 centuries).

Exercise 1.4.2. Add rows to Table 1.2 for algorithms with time complexity f (n) =
lg lgn and f (n) = n2 lgn.

20 Section 1.5: Basic recurrence relations

1.5 Basic recurrence relations

As we will see later, a great many algorithms are based on the following divide-and-
conquer principle:

• divide a large problem into smaller subproblems and recursively solve each
subproblem, then

• combine solutions of the subproblems to solve the original problem.

Running time of such algorithms is determined by a recurrence relation accounting
for the size and number of the subproblems and for the cost of splitting the problem
into them. The recursive relation defines a function “in terms of itself”, that is, by an
expression that involves the same function. The definition is not circular provided
that the value at a natural number n is defined in terms of values at smaller natural
numbers, and the recursion terminates at some base case below which the function
is not defined.

Example 1.25 (Fibonacci numbers). These are defined by one of the most famous
recurrence relations: F(n) = F(n− 1) + F(n− 2); F(1) = 1, and F(2) = 1. The last
two equations are called the base of the recurrence or initial condition. The re-
currence relation uniquely defines the function F(n) at any number n because any
particular value of the function is easily obtained by generating all the preceding
values until the desired term is produced, for example, F(3) = F(2)+F(1) = 2; F(4) =
F(3)+F(2) = 3, and so forth. Unfortunately, to compute F(10000), we need to per-
form 9998 additions.

Example 1.26. One more recurrence relation is T (n) = 2T (n− 1)+ 1 with the base
condition T (0) = 0. Here, T (1) = 2 · 0 + 1 = 1, T (2) = 2 · 1 + 1 = 3, T (3) = 2 · 3 + 1 = 7,
T (4) = 2 ·7 + 1 = 15, and so on.

Note. A recurrence relation is sometimes simply called a recurrence. In engineering
it is called a difference equation.

We will frequently meet recurrences in algorithm analysis. It is more convenient
to have an explicit expression, (or closed-form expression) for the function in order
to compute it quickly for any argument value n and to compare it with other func-
tions. The closed-form expression for T (n), that is, what is traditionally called a “for-
mula”, makes the growth of T (n) as a function of n more apparent. The process of
deriving the explicit expression is called “solving the recurrence relation”.

Our consideration will be restricted to only the two simplest techniques for solv-
ing recurrences: (i) guessing a solution from a sequence of values T (0), T (1), T (2), . . . ,
and proving it by mathematical induction (a “bottom-up” approach) and (ii) “tele-
scoping” the recurrence (a “top-down” approach). Both techniques allow us to ob-
tain closed forms of some important recurrences that describe performance of sort
and search algorithms. For instance, in Example 1.26 we can simply guess the closed
form expression T (n) = 2n− 1 by inspecting the first few terms of the sequence 0, 1,
3, 7, 15 because 0 = 1− 1, 1 = 2− 1, 3 = 4− 1, 7 = 8− 1, and 15 = 16− 1. But in other
cases these techniques may fail and more powerful mathematical tools beyond the
scope of this book, such as using characteristic equations and generating functions,
should be applied.

Guessing to solve a recurrence

There is no formal way to find a closed-form solution. But after we have guessed the
solution, it may be proven to be correct by mathematical induction (see Section E.2).

Chapter 1: What is Algorithm Analysis? 21

Example 1.27. For the recurrence T (n) = 2T (n−1)+1 with the base condition T (0) =
0 in Example 1.26 we guessed the closed-form relationship T (n) = 2n−1 by analysing
the starting terms 0, 1, 3, 7, 15. This formula is obviously true for n = 0, because
20−1 = 0. Now, by the induction hypothesis,

T (n) = 2T (n−1)+ 1 = 2(2n−1−1)+ 1 = 2n−1

and this is exactly what we need to prove.

The Fibonacci sequence provides a sterner test for our guessing abilities.

Example 1.28. The first few terms of the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . give
no hint regarding the desired explicit form. Thus let us analyse the recurrence F(n) =
F(n− 1)+F(n− 2) itself. F(n) is almost doubled every time, so that F(n) < 2n. The
simplest guess F(n) = c2n with c < 1 fails because for any scaling factor c it leads to
the impossible equality 2n = 2n−1 +2n−2, or 4 = 2+1. The next guess is that the base 2
of the exponential function should be smaller, φ< 2, that is, F(n) = cφn. The resulting
equation φn = φn−1 + φn−2 reduces to the quadratic one, φ2− φ− 1 = 0, with the two
roots: φ1 = 0.5(1+

√
5) and φ2 = 0.5(1−√5). Because each root solves the recurrence,

the same holds for any linear combination of them, so we know that F(n) = c1φn1 +
c2φn2 satisfies the recurrence. We choose the constants c1 and c2 to satisfy the base
conditions F(1) = 1 and F(2) = 1: F(1) = c1φ1 + c2φ2 = 1 and F(2) = c1φ2

1 + c2φ2
2 = 1.

Thus c1 = 1√
5

and c2 =− 1√
5

so that

F(n) =
1√
5

(
1 +
√

5
2

)n

− 1√
5

(
1−√5

2

)n

∼= φn√
5

where φ = 1+
√

5
2
∼= 1.618 is the well-known “golden ratio”. The term with (1−√5)/2∼=

−0.618 tends to zero when n→ ∞, and so F(n) is Θ(φn).

“Telescoping” of a recurrence

This means a recursive substitution of the same implicit relationship in order to de-
rive the explicit relationship. Let us apply it to the same recurrence T (n) = 2T (n−
1)+ 1 with the base condition T (0) = 0 as in Examples 1.26 and 1.27:

Step 0 initial recurrence T (n) = 2T (n−1)+ 1

Step 1 substitute T (n−1) = 2T (n−2)+ 1, that is, replace T (n−1):

T (n) = 2(2T (n−2)+ 1)+ 1 = 22T (n−2)+ 2 + 1

Step 2 substitute T (n−2) = 2T (n−3)+ 1:

T (n) = 22(2T (n−3)+ 1)+ 2 +1 = 23T (n−3)+ 22 + 2 + 1

Step 3 substitute T (n−3) = 2T (n−4)+ 1:

T (n) = 23(2T (n−4)+ 1)+ 22+ 2 + 1

= 24T (n−4)+ 23 + 22 + 2 + 1

Step

22 Section 1.5: Basic recurrence relations

Step n−2 . . .

T (n) = 2n−1T (1)+ 2n−2 + . . .+ 22 + 2 + 1

Step n−1 substitute T (1) = 2T (0)+ 1:

T (n) = 2n−1(2T (0)+ 1)+ 2n−2 + . . .+ 2 + 1

= 2nT (0)+ 2n−1 + 2n−2 + . . .+ 2 + 1

Because of the base condition T (0) = 0, the explicit formula is:

T (n) = 2n−1 + 2n−2 + . . .+ 2 + 1≡ 2n−1

As shown in Figure 1.5, rather than successively substitute the terms T (n− 1),
T (n−2), . . . , T (2), T (1), it is more convenient to write down a sequence of the scaled
relationships for T (n), 2T (n− 1), 22T (n− 2), . . . , 2n−1T (1), respectively, then individ-
ually sum left and right columns, and eliminate similar terms in the both sums (the
terms are scaled to facilitate their direct elimination). Such solution is called tele-
scoping because the recurrence unfolds like a telescopic tube.

T(n) = 2 T(n−1) + 1

T(n−1) = 2 T(n−2) + 1

T(n) = 4 T(n−2) + 2 + 1

T(n−2) = 2 T(n−3) + 1

T(n) = 8 T(n−3) + 4 + 2 + 1

T(1) = 2 T(0) + 1

T(n) = 2 T(0) + 2 + ... + 4 + 2 + 1

 = 2 − 1

n

Basic recurrence: an implicit relationship between T(n) and n; the base condition: T(0) = 0

substitution

substitution

substitution

Explicit relationship between T(n) and n by reducing common left− and right−side terms

n−1

n

T(n) = 2 T(n−1) + 1

2 T(n−1) = 4 T(n−2) + 2

4 T(n−2) = 8 T(n−3) + 4

2 T(1) = 2 T(0) + 2n−1 n n−1

left−side sum right−side sum

Figure 1.5: Telescoping as a recursive substitution.

Although telescoping is not a powerful technique, it returns the desired explicit
forms of most of the basic recurrences that we need in this book (see Examples 1.29–
1.32 below). But it is helpless in the case of the Fibonacci recurrence because after
proper scaling of terms and reducing similar terms in the left and right sums, tele-
scoping returns just the same initial recurrence.

Chapter 1: What is Algorithm Analysis? 23

Example 1.29. T (n) = T (n−1)+n;T(0) = 0.
This relation arises when a recursive algorithm loops through the input to elimi-

nate one item and is easily solved by telescoping:

T (n) = T (n−1)+n

T (n−1) = T (n−2)+ (n−1)
. . .

T (1) = T (0)+ 1

By summing left and right columns and eliminating the similar terms, we obtain that
T (n) = T (0)+ 1 + 2 + . . .+(n−2)+ (n−1)+n= n(n+1)

2 so that T (n) is Θ(n2).

Example 1.30. T (n) = T (�n/2�)+ 1;T (1) = 0.
This relation arises for a recursive algorithm that almost halves the input at each

step. Suppose first that n= 2m. Then, the recurrence telescopes as follows:

T (2m) = T (2m−1)+ 1

T (2m−1) = T (2m−2)+ 1

. . .

T (21) = T (20)+ 1

so that T (2m) = m, or T (n) = lgn which is Θ(logn).
For general n, the total number of the halving steps cannot be greater than m =

�lgn�. Therefore, T (n)≤ �lgn� for all n. This recurrence is usually called the repeated
halving principle.

Example 1.31. Recurrence T (n) = T (�n/2�)+n;T(0) = 0.
This relation arises for a recursive algorithm that halves the input after examining

every item in the input for n≥ 1. Under the same simplifying assumption n= 2m, the
recurrence telescopes as follows:

T (2m) = T (2m−1)+n

T (2m−1) = T (2m−2)+n/2

T (2m−2) = T (2m−3)+n/4

. . .

T (2) = T (1)+ 2

T (1) = T (0)+ 1

so that T (n) = n+ n
2 + n

4 + . . .+ 1 which is Θ(n).
In the general case, the solution is also Θ(n) because each recurrence after halving

an odd-size input may add to the above sum at most 1 and the number of these extra
units is at most �lgn�.
Example 1.32. Recurrence T (n) = T (�n/2�)+T(�n/2)+n;T(1) = 0.

This relation arises for a recursive algorithm that makes a linear pass through the
input for n≥ 2 and splits it into two halves. Under the same simplifying assumption
n= 2m, the recurrence telescopes as follows:

T (2m) = 2T (2m−1)+ 2m

T (2m−1) = 2T (2m−2)+ 2m−1

. . .

T (2) = 2T (1)+ 2

24 Section 1.6: Capabilities and limitations of algorithm analysis

so that

T (2m)
2m

=
T (2m−1)

2m−1 + 1

T (2m−1)
2m−1 =

T (2m−2)
2m−2 + 1

. . .
T (2)

2
=

T (1)
1

+ 1.

Therefore, T (n)
n = T (1)

1 +m= lgn, so that T (n) = n lgn which is Θ(n logn).
For general n, T (n) is also Θ(n logn) (see Exercise 1.5.2).

There exist very helpful parallels between the differentiation / integration in cal-
culus and recurrence analysis by telescoping.

• The difference equation T (n)−2T (n−1) = c rewritten as T (n)−T(n−1)
1 = T (n−1)+

c resembles the differential equation dT (x)
dx = T (x). Telescoping of the difference

equation results in the formula T (n) = c(2n− 1) whereas the integration of the
differential equation produces the analogous exponential one T (x) = cex.

• The difference equation T (n)−T (n−1)= cnhas the differential analogue dT (x)
dx =

cx, and both equations have similar solutions T (n) = cn(n+1)
2 and T (x) = c

2x
2, re-

spectively.

• Let us change variables by replacing n and x with m = lgn and y = lnx so that
n = 2m and x = ey, respectively. The difference equation T (n)−T (n2) = c where
n= 2m and n

2 = 2m−1 reduces to T (m)−T (m−1) = c. The latter has the differen-

tial analogue dT (y)
dy = c. These two equations result in the similar explicit expres-

sions T (m) = cm and T (y) = cy, respectively, so that T (n) = c lgn and T (x) = c lnx.

The parallels between difference and differential equations may help us in deriving
the desired closed-form solutions of complicated recurrences.

Exercise 1.5.1. Show that the solution in Example 1.31 is also in Ω(n) for general n.

Exercise 1.5.2. Show that the solution T (n) to Example 1.32 is no more than n lgn+
n−1 for every n≥ 1. Hint: try induction on n.

Exercise 1.5.3. The running time T (n) of a certain algorithm to process n data items
is given by the recurrence T (n) = kT

(
n
k

)
+ cn; T (1) = 0 where k is a positive integer

constant and n/k means either �n/k� or �n/k	. Derive the explicit expression for T (n)
in terms of c, n, and k assuming n = km with integer m = logk n and k and find time
complexity of this algorithm in the “Big-Oh” sense.

Exercise 1.5.4. The running time T (n) of a slightly different algorithm is given by the
recurrence T (n) = kT

(
n
k

)
+ ckn; T (1) = 0. Derive the explicit expression for T (n) in

terms of c, n, and k under the same assumption n = km and find time complexity of
this algorithm in the “Big-Oh” sense.

1.6 Capabilities and limitations of algorithm analysis

We should neither overestimate nor underestimate the capabilities of algorithm anal-
ysis. Many existing algorithms have been analysed with much more complex tech-
niques than used in this book and recommended for practical use on the basis of

Chapter 1: What is Algorithm Analysis? 25

these studies. Of course, not all algorithms are worthy of study and we should not
suppose that a rough complexity analysis will result immediately in efficient algo-
rithms. But computational complexity permits us to better evaluate basic ideas in
developing new algorithms.

To check whether our analysis is correct, we may code a program and see whether
its observed running time fits predictions. But it is very difficult to differentiate be-
tween, say, Θ(n) and Θ(n logn) algorithms using purely empirical evidence. Also,
“Big-Oh” analysis is not appropriate for small amounts of input and hides the con-
stants which may be crucial for a particular task.

Example 1.33. An algorithm A with running time TA = 2n lgn becomes less efficient
than another algorithm B having running time TB = 1000n only when 2n lgn> 1000n,
or lgn > 500, or n > 2500 ∼= 10150, and such amounts of input data simply cannot be
met in practice. Thus, although the algorithm B is better in the “Big Oh” sense, in
practice we should use algorithm A.

Large constants have to be taken into account when an algorithm is very com-
plex, or when we must discriminate between cheap or expensive access to input
data items, or when there may be lack of sufficient memory for storing large data
sets, etc. But even when constants and lower-order terms are considered, the per-
formance predicted by our analysis may differ from the empirical results. Recall that
for very large inputs, even the asymptotic analysis may break down, because some
operations (like addition of large numbers) can no longer be considered as elemen-
tary.

In order to analyse algorithm performance we have used a simplified mathemat-
ical model involving elementary operations. In the past, this allowed for fairly accu-
rate analysis of the actual running time of program implementing a given algorithm.
Unfortunately, the situation has become more complicated in recent years. Sophis-
ticated behaviour of computer hardware such as pipelining and caching means that
the time for elementary operations can vary wildly, making these models less useful
for detailed prediction. Nevertheless, the basic distinction between linear, quadratic,
cubic and exponential time is still as relevant as ever. In other words, the crude dif-
ferences captured by the Big-Oh notation give us a very good way of comparing al-
gorithms; comparing two linear time algorithms, for example, will require more ex-
perimentation.

We can use worst-case and average-case analysis to obtain some meaningful es-
timates of possible algorithm performance. But we must remember that both re-
currences and asymptotic “Big-Oh”, “Big-Omega”, and “Big-Theta” notation are just
mathematical tools used to model certain aspects of algorithms. Like all models,
they are not universally valid and so the mathematical model and the real algorithm
may behave quite differently.

Exercises

Exercise 1.6.1. Algorithms A and B use TA(n) = 5n log10 n and TB(n) = 40n elementary
operations, respectively, for a problem of size n. Which algorithm has better per-
formance in the “Big Oh” sense? Work out exact conditions when each algorithm
outperforms the other.

Exercise 1.6.2. We have to choose one of two algorithms, A and B, to process a
database containing 109 records. The average running time of the algorithms isTA(n)=
0.001n and TB(n) = 500

√
n, respectively. Which algorithm should be used, assuming

26 Section 1.7: Notes

the application is such that we can tolerate the risk of an occasional long running
time?

1.7 Notes

The word algorithm relates to the surname of the great mathematician Muhammad
ibn Musa al-Khwarizmi, whose life spanned approximately the period 780–850. His
works, translated from Arabic into Latin, for the first time exposed Europeans to new
mathematical ideas such as the Hindu positional decimal notation and step-by-step
rules for addition, subtraction, multiplication, and division of decimal numbers. The
translation converted his surname into “Algorismus”, and the computational rules
took on this name. Of course, mathematical algorithms existed well before the term
itself. For instance, Euclid’s algorithm for computing the greatest common divisor of
two positive integers was devised over 1000 years before.

The Big-Oh notation was used as long ago as 1894 by Paul Bachmann and then
Edmund Landau for use in number theory. However the other asymptotic notations
Big-Omega and Big-Theta were introduced in 1976 by Donald Knuth (at time of writ-
ing, perhaps the world’s greatest living computer scientist).

Algorithms running inΘ(n logn) time are sometimes called linearithmic, to match
“logarithmic”, “linear”, “quadratic”, etc.

The quadratic equation for φ in Example 1.28 is called the characteristic equation
of the recurrence. A similar technique can be used for solving any constant coeffi-
cient linear recurrence of the form F(n) = ∑K

k=1 akF(n− k) where K is a fixed positive
integer and the ak are constants.

Chapter 2

Efficiency of Sorting

Sorting rearranges input data according to a particular linear order (see Section E.3
for definitions of order and ordering relations). The most common examples are the
usual dictionary (lexicographic) order on strings, and the usual order on integers.

Once data is sorted, many other problems become easier to solve. Some of these
include: finding an item, finding whether any duplicate items exist, finding the fre-
quency of each distinct item, finding order statistics such as the maximum, mini-
mum, median and quartiles. There are many other interesting applications of sort-
ing, and many different sorting algorithms, each with their own strengths and weak-
nesses. In this chapter we describe and analyse some popular sorting algorithms.

2.1 The problem of sorting

The problem of sorting is to rearrange an input list of keys, which can be compared
using a total order ≤, into an output list such that if i and j are keys and i precedes
j in the output list, then i ≤ j. Often the key is a data field in a larger object: for
example, we may wish to sort database records of customers, with the key being their
bank balance. If each object has a different key, then we can simply use the keys as
identifiers for the purpose of sorting: rather than moving large objects we need only
keep a pointer from the key to the object.

There are several important attributes of sorting algorithms.

Definition 2.1. A sorting algorithm is called comparison-based if the only way to
gain information about the total order is by comparing a pair of elements at a time
via the order≤.

A sorting algorithm is called stable if whenever two objects have the same key in
the input, they appear in the same order in the output.

A sorting algorithm is called in-place if it uses only a fixed additional amount of
working space, independent of the input size.

With a comparison-based sorting algorithm, we cannot use any information about
the keys themselves (such as the fact that they are all small integers, for example),
only their order relation. These algorithms are the most generally applicable and we
shall focus exclusively on them in this book (but see Exercise 2.7.2).

28 Section 2.1: The problem of sorting

We consider only two elementary operations: a comparison of two items and
a move of an item. The running time of sorting algorithms in practice is usually
dominated by these operations. Every algorithm that we consider will make at most
a constant number of moves for each comparison, so that the asymptotic running
time in terms of elementary operations will be determined by the number of com-
parisons. However, lower order terms will depend on the exact number of moves.
Furthermore, the actual length of time taken by a data move depends on the imple-
mentation of the list. For example, moving an element from the end to the beginning
of an array takes longer than doing the same for a linked list. We shall discuss these
issues later.

The efficiency of a particular sorting algorithm may depend on many factors, for
instance:

• how many items have to be sorted;

• are the items only related by the order relation, or do they have other restric-
tions (for example, are they all integers from the range 1 to 1000);

• to what extent they are pre-sorted;

• can they be placed into an internal (fast) computer memory or must they be
sorted in external (slow) memory, such as on disk (so called external sorting).

No one algorithm is the best for all possible situations, and so it is important to
understand the strengths and weaknesses of several algorithms.

As far as computer implementation is concerned, sorting makes sense only for
linear data structures. We will consider lists (see Section D.1 for a review of basic con-
cepts) which have a first element (the head), a last element (the tail) and a method
of accessing the next element in constant time (an iterator). This includes array-
based lists, and singly- and doubly-linked lists. For some applications we will need a
method of accessing the previous element quickly; singly-linked lists do not provide
this. Also, array-based lists allow fast random access. The element at any given po-
sition may be retrieved in constant time, whereas linked list structures do not allow
this.

Exercises

Exercise 2.1.1. The well-known and obvious selection sort algorithm proceeds as
follows. We split the input list into a head and tail sublist. The head (“sorted”) sublist
is initially empty, and the tail (“unsorted”) sublist is the whole list. The algorithm
successively scans through the tail sublist to find the minimum element and moves
it to the end of the head sublist. It terminates when the tail sublist becomes empty.
(Java code for an array implementation is found in Section A.1).

How many comparisons are required by selection sort in order to sort the input
list (6,4,2,5,3,1) ?

Exercise 2.1.2. Show that selection sort uses the same number of comparisons on
every input of a fixed size. How many does it use, exactly, for an input of size n?

Exercise 2.1.3. Is selection sort comparison-based? in-place? stable?

Exercise 2.1.4. Give a linear time algorithm to find whether a sorted list contains any
duplicate elements. How would you do this if the list were not sorted?

Chapter 2: Efficiency of Sorting 29

2.2 Insertion sort

This is the method usually used by cardplayers to sort cards in their hand. Insertion
sort is easy to implement, stable, in-place, and works well on small lists and lists that
are close to sorted. However, it is very inefficient for large random lists.

Insertion sort is iterative and works as follows. The algorithm splits a list of size n
into a head (“sorted”) and tail (“unsorted”) sublist.

• The head sublist is initially of size 1.

• Repeat the following step until the tail sublist is empty:

◦ choose the first element x in the tail sublist;

◦ find the last element y in the head sublist not exceeding x;

◦ insert x after y in the head sublist.

Before each step i = 1,2, . . . ,n− 1, the sorted and unsorted parts have i and n−
i elements, respectively. The first element of the unsorted sublist is moved to the
correct position in the sorted sublist by exhaustive backward search, by comparing
it to each element in turn until the right place is reached.

Example 2.2. Table 2.1 shows the execution of insertion sort. Variables Ci and Mi

denote the number of comparisons and number of positions to move backward, re-
spectively, at the ith iteration. Elements in the sorted part are italicized, the currently
sorted element is underlined, and the element to sort next is boldfaced.

Table 2.1: Sample execution of insertion sort.

i Ci Mi Data to sort
25 8 2 91 70 50 20 31 15 65

1 1 1 8 25 2 91 70 50 20 31 15 65
2 2 2 2 8 25 91 70 50 20 31 15 65
3 1 0 2 8 25 91 70 50 20 31 15 65
4 2 1 2 8 25 70 91 50 20 31 15 65
5 3 2 2 8 25 50 70 91 20 31 15 65
6 5 4 2 8 20 25 50 70 91 31 15 65
7 4 3 2 8 20 25 31 50 70 91 15 65
8 7 6 2 8 15 20 25 31 50 70 91 65
9 3 2 2 8 15 20 25 31 50 65 70 91

Analysis of insertion sort

Insertion sort is easily seen to be correct (see Exercise 2.2.2 for formal proof), since
the head sublist is always sorted, and eventually expands to include all elements.

It is not too hard to find the worst case for insertion sort: when the input con-
sists of distinct items in reverse sorted order, every element must be compared with
every element preceding it. The number of moves is also maximized by such input.
The best case for insertion sort is when the input is already sorted, when only n− 1
comparisons are needed.

30 Section 2.2: Insertion sort

Lemma 2.3. The worst-case time complexity of insertion sort is Θ(n2).

Proof. Fill in the details yourself — see Exercise 2.2.3.

Since the best case is so much better than the worst, we might hope that on aver-
age, for random input, insertion sort would perform well. Unfortunately, this is not
true.

Lemma 2.4. The average-case time complexity of insertion sort is Θ(n2).

Proof. We first calculate the average numberCi of comparisons at the ith step. At the
beginning of this step, i elements of the head sublist are already sorted and the next
element has to be inserted into the sorted part. This element will move backward j
steps, for some j with 0 ≤ j ≤ i. If 0 ≤ j ≤ i−1, the number of comparisons used will
be j+1. But if j= i (it ends up at the head of the list), there will be only i comparisons
(since no final comparison is needed).

Assuming all possible inputs are equally likely, the value of j will be equally likely
to take any value 0, . . . , i. Thus the expected number of comparisons will be

Ci =
1

i+ 1
(1 + 2 + · · ·+ i−1 + i+ i)=

1
i+ 1

(
i(i+ 1)

2
+ i

)
=

i
2

+
i

i+ 1
.

(see Section E.6 for the simplification of the sum, if necessary).
The above procedure is performed for i = 1,2, . . . ,n− 1, so that the average total

numberC of comparisons is as follows:

C =
n−1

∑
i=1

Ci =
n−1

∑
i=1

(
i
2

+
i

i+ 1

)
=

1
2

n−1

∑
i=1

i+
n−1

∑
i=1

i
i+ 1

The first sum is equal to (n−1)n
2 . To find the second sum, let us rewrite i

i+1 as 1− 1
i+1

so that

n−1

∑
i=1

i
i+ 1

=
n−1

∑
i=1

(
1− 1

i+ 1

)
= n−1−

n−1

∑
i=1

1
i+ 1

= n−
n

∑
i=1

1
i

= n−Hn

where Hn denotes the n-th harmonic number : Hn ≈ lnn when n→ ∞.
Therefore, C = (n−1)n

4 + n−Hn. Now the total number of data moves is at least
zero and at most the number of comparisons. Thus the total number of elementary
operations is Θ(n2).

The running time of insertion sort is strongly related to inversions. The number
of inversions of a list is one measure of how far it is from being sorted.

Definition 2.5. An inversion in a list a is an ordered pair of positions (i, j) such that
i< j but a[i] > a[j].

Example 2.6. The list (3,2,5) has only one inversion corresponding to the pair (3,2),
the list (5,2,3) has two inversions, namely, (5,2) and (5,3), the list (3,2,5,1) has four
inversions (3,2), (3,1), (2,1), and (5,1), and so on.

Example 2.7. Table 2.2 shows the number of inversions, Ii, for each element a[i] of
the list in Table 2.1 with respect to all preceding elements a[0], . . . ,a[i− 1] (Ci and Mi

are the same as in Table 2.1).

Chapter 2: Efficiency of Sorting 31

Table 2.2: Number of inversions Ii, comparisons Ci and data moves Mi for each ele-
ment a[i] in sample list.

Index i 0 1 2 3 4 5 6 7 8 9
List element a[i] 25 8 2 91 70 50 20 31 15 65

Ii 1 2 0 1 2 4 3 6 2
Ci 1 2 1 2 3 5 4 7 3
Mi 1 2 0 1 2 4 3 6 2

Note that Ii =Mi in Table 2.1. This is not merely a coincidence—it is always true.
See Exercise 2.2.4.

The total number of inversions I = ∑n−1
i=1 Ii in a list to be sorted by insertion sort

is equal to the total number of positions an element moves backward during the
sort. The total number of data comparisons C = ∑n−1

i=1 Ci is also equal to the total
number of inversions plus at most n− 1. For the initial list in Tables 2.1 and 2.2,
I = 21, and insertion sort performs C = 28 comparisons and M = 21 data moves: in
total, 49 elementary operations.

Swapping two neighbours that are out of order removes exactly one inversion,
and a sorted list has no inversions. If an original list has I inversions, insertion sort
has to swap I pairs of neighbours. Because of Θ(n) other operations in the algorithm,
its running time is Θ(n+ I). Thus, on nearly sorted lists for which I is Θ(n), insertion
sort runs in linear time. Unfortunately this type of list does not occur often, if we
choose one randomly. As we have seen above, the average number of inversions
for a randomly chosen list must be in Θ(n2). This shows that more efficient sorting
algorithms must eliminate more than just one inversion between neighbours per
swap. One way to do this is a generalization of insertion sort called Shellsort (see
Exercise 2.2.7).

Implementation of insertion sort

The number of comparisons does not depend on how the list is implemented, but
the number of moves does. The insertion operation can be implemented in a linked
list in constant time, but in an array there is no option but to shift elements to the
right when inserting an element, taking linear time in the worst and average case.
Thus if using an array implementation of a list, we may as well move the element
backward by successive swaps. If using a linked list, we can make fewer swaps by
simply scanning backward. On the other hand, scanning backward is easy in an array
but takes more time in a singly linked list. However, none of these issues affect the
asymptotic Big-Theta running time of the algorithm, just the hidden constants and
lower order terms. The main problem with insertion sort is that it takes too many
comparisons in the worst case, no matter how cleverly we implement it.

Figure 2.1 shows basic pseudocode for arrays.

Exercises

Exercise 2.2.1. Determine the quantitiesCi and Mi when insertion sort is run on the
input list (91,70,65,50,31,25,20,15,8,2).

Exercise 2.2.2. Prove by induction that algorithm insertionSort is correct.

Exercise 2.2.3. Prove that the worst-case time complexity of insertion sort is Θ(n2)
and the best case is Θ(n).

32 Section 2.3: Mergesort

algorithm insertionSort
Input: array a[0..n−1]

begin
for i← 1 to n−1 do

k← i−1
while k≥ 0 and a[k] > a[k+ 1] do

swap(a,k,k+ 1)
k← k−1

end while
end for

end

Figure 2.1: Insertion sort for arrays.

Exercise 2.2.4. Prove that the number of inversions, Ii, of an element a[i] with respect
to the preceding elements, a[0], . . . ,a[i−1], in the initial list is equal to the number of
positions moved backward by a[i] in the execution of insertion sort.

Exercise 2.2.5. Suppose a sorting algorithm swaps elements a[i] and a[i+ gap] of a
list a which were originally out of order. Prove that the number of inversions in the
list is reduced by at least 1 and at most 2 gap−1.

Exercise 2.2.6. Bubble sort works as follows to sort an array. There is a sorted left
subarray and unsorted right subarray; the left subarray is initially empty. At each
iteration we step through the right subarray, comparing each pair of neighbours in
turn, and swapping them if they are out of order. At the end of each such pass, the
sorted subarray has increased in size by 1, and we repeat the entire procedure from
the beginning of the unsorted subarray. (Java code is found in Section A.1.)

Prove that the average time complexity of bubble sort is Θ(n2), and that bubble
sort never makes fewer comparisons than insertion sort.

Exercise 2.2.7. Shellsort is a generalization of insertion sort that works as follows.
We first choose an increment sequence . . .ht > ht−1 > .. . > h1 = 1. We start with some
value of t so that ht < n. At each step we form the sublists of the input list a consisting
of elements h := ht apart (for example, the first such list has the elements at position
0,h,2h, . . . , the next has the elements 1,1 + h,1 + 2h, . . . , etc). We sort each of these h
lists using insertion sort (we call this the h-sorting step). We then reduce t by 1 and
continue. Note that the last step is always a simple insertion sort.

Explain why Shellsort is not necessarily slower than insertion sort. Give an input
on which Shellsort uses fewer comparions overall than insertion sort.

Exercise 2.2.8. Find the total numbers of comparisons and backward moves per-
formed by Shellsort on the input list (91,70,65,50,31,25,20,15,8,2) and compare the
total number of operations with that for insertion sort in Exercise 2.2.1.

2.3 Mergesort

This algorithm exploits a recursive divide-and-conquer approach resulting in a worst-
case running time of Θ(n logn), the best asymptotic behaviour that we have seen so
far. Its best, worst, and average cases are very similar, making it a very good choice if
predictable runtime is important. Versions of mergesort are particularly good for
sorting data with slow access times, such as data that cannot be held in internal
memory or are stored in linked lists.

Chapter 2: Efficiency of Sorting 33

Mergesort is based on the following basic idea.

• If the size of the list is 0 or 1, return.

• Otherwise, separate the list into two lists of equal or nearly equal size and re-
cursively sort the first and second halves separately.

• Finally, merge the two sorted halves into one sorted list.

Clearly, almost all the work is in the merge step, which we should make as effi-
cient as possible. Obviously any merge must take at least time that is linear in the
total size of the two lists in the worst case, since every element must be looked at in
order to determine the correct ordering. We can in fact achieve a linear time merge,
as we see in the next section.

Analysis of mergesort

Lemma 2.8. Mergesort is correct.

Proof. We use induction on the size n of the list. If n = 0 or 1, the result is obviously
correct. Otherwise, mergesort calls itself recursively on two sublists each of which
has size less than n. By induction, these lists are correctly sorted. Provided that the
merge step is correct, the top level call of mergesort then returns the correct answer.

Almost all the work occurs in the merge steps, so we need to perform those effi-
ciently.

Theorem 2.9. Two input sorted lists A and B of size nA and nB, respectively, can be
merged into an output sorted listC of size nC = nA+nB in linear time.

Proof. We first show that the number of comparisons needed is linear in n. Let i, j,
and k be pointers to current positions in the lists A, B, and C, respectively. Initially,
the pointers are at the first positions, i = 0, j = 0, and k = 0. Each time the smaller
of the two elements A[i] and B[j] is copied to the current entry C[k], and the corre-
sponding pointers k and either i or j are incremented by 1. After one of the input lists
is exhausted, the rest of the other list is directly copied to list C. Each comparison
advances the pointer k so that the maximum number of comparisons is nA+nB−1.

All other operations also take linear time.

The above proof can be visualized easily if we think of the lists as piles of playing
cards placed face up. At each step, we choose the smaller of the two top cards and
move it to the temporary pile.

Example 2.10. If a = (2,8,25,70,91) and b = (15,20,31,50,65), then merge into c =
(2,8,15,20,25,31,50,65,70,91) as follows.

Step 1 a[0]= 2 and b[0]= 15 are compared, 2 < 15, and 2 is copied to c, that is, c[0]← 2,
i← 0 + 1, and k← 0 + 1.

Step 2 a[1] = 8 and b[0] = 15 are compared to copy 8 to c, that is, c[1]← 8, i← 1 + 1,
and k← 1 + 1.

Step 3 a[2] = 25 and b[0] = 15 are compared and 15 is copied to c so that c[2]← 15,
j← 0 + 1, and k← 2 + 1.

34 Section 2.3: Mergesort

Step 4 a[2] = 25 and b[1] = 20 are compared and 20 is copied to c: c[3]← 20, j← 1+1,
and k← 3 + 1.

Step 5 a[2] = 25 and b[2] = 31 are compared, and 25 is copied to c: c[4]← 25, i← 2+1,
and k← 4 + 1.

The process continues as follows: comparing a[3] = 70 and b[2] = 31, a[3] = 70 and
b[3] = 50, and a[3] = 70 and b[4] = 65 results in c[5]← (b[2] = 31), c[6]← (b[3] = 50), and
c[7]← (b[4] = 65), respectively. Because the list b is exhausted, the rest of the list a is
then copied to c, c[8]← (a[3] = 70) and c[9]← (a[4] = 91).

We can now see that the running time of mergesort is much better asymptotically
than the naive algorithms that we have previously seen.

Theorem 2.11. The running time of mergesort on an input list of size n is Θ(n logn)
in the best, worst, and average case.

Proof. The number of comparisons used by mergesort on an input of size n satisfies
a recurrence of the form T (n) = T (�n/2�)+T(�n/2)+ a(n) where 1 ≤ a(n) ≤ n− 1. It
is straightforward to show as in Example 1.32 that T (n) is Θ(n logn).

The other elementary operations in the divide and combine steps depend on the
implementation of the list, but in each case their number is Θ(n). Thus these opera-
tions satisfy a similar recurrence and do not affect the Θ(n logn) answer.

Implementation of mergesort

It is easier to implement the recursive version above for arrays than for linked lists,
since splitting an array in the middle is a constant time operation. Algorithm merge
in Figure 2.3 follows the above description. The first half of the input array, a, from
the leftmost index l to the middle index m acts as A, the second half from m+ 1 to
the rightmost index r as B, and a separate temporary array t as C. After merging the
halves, the temporary array is copied back to the original one, a.

algorithm mergeSort
Input: array a[0..n−1]; array indices l,r; array t[0..n−1]

sorts the subarray a[l..r]
begin

if l < r then
m← ⌊ l+r2

⌋
mergeSort(a, l,m,t)
mergeSort(a,m+ 1,r,t)
merge(a, l,m+ 1,r,t)

end if
end

Figure 2.2: Recursive mergesort for arrays

It is easy to see that the recursive version simply divides the list until it reaches
lists of size 1, then merges these repeatedly. We can eliminate the recursion in a
straightforward manner. We first merge lists of size 1 into lists size 2, then lists of size
2 into lists of size 4, and so on. This is often called straight mergesort .

Chapter 2: Efficiency of Sorting 35

algorithm merge
Input: array a[0..n−1]; array indices l,r; array index s; array t[0..n−1]

merges the two sorted subarrays a[l..s−1] and a[s..r] into a[l..r]
begin

i← l; j← s; k← l
while i≤ s−1 and j ≤ r do

if a[i]≤ a[j] then t[k]← a[i]; k← k+ 1; i← i+ 1
else t[k]← a[j]; k← k+ 1; j← j+ 1
end if

end while

while i≤ s−1 do copy the rest of the first half

t[k]← a[i]; k← k+ 1; i← i+ 1
end while

while j ≤ r do copy the rest of the second half

t[k]← a[j]; k← k+ 1; j← j+ 1
end while
return a← t

end

Figure 2.3: Linear time merge for arrays

Example 2.12. Starting with the input list (1,5,7,3,6,4,2) we merge repeatedly. The
merged sublists are shown with parentheses.

Step 0: (1)(5)(7)(3)(6)(4)(2)
Step 1: (1,5)(3,7)(4, 6)(2)

Step 2: (1,3,5,7)(2,4,6)
Step 3: (1,2,3,4,5,6,7)

This method works particularly well for linked lists, because the merge steps can
be implemented simply by redefining pointers, without using the extra space re-
quired when using arrays (see Exercise 2.3.4).

Exercises

Exercise 2.3.1. What is the minimum number of comparisons needed when merg-
ing two nonempty sorted lists of total size n into a single list?

Exercise 2.3.2. Give two sorted lists of size 8 whose merging requires the maximum
number of comparisons.

Exercise 2.3.3. The 2-way merge in this section can be generalized easily to a k-way
merge for any positive integer k. The running time of such a merge is c(k− 1)n. As-
suming that the running time of insertion sort is cn2 with the same scaling factor
c, analyse the asymptotic running time of the following sorting algorithm (you may
assume that n is an exact power of k).

• Split an initial list of size n into k sublists of size n
k each.

• Sort each sublist separately by insertion sort.
• Merge the sorted sublists into a final sorted list.

Find the optimum value of k to get the fastest sort and compare its worst/average
case asymptotic running time with that of insertion sort and mergesort.

36 Section 2.4: Quicksort

Exercise 2.3.4. Explain how to merge two sorted linked lists in linear time into a
bigger sorted linked list, using only a constant amount of extra space.

2.4 Quicksort

This algorithm is also based on the divide-and-conquer paradigm. Unlike mergesort,
quicksort dynamically forms subarrays depending on the input, rather than sorting
and merging predetermined subarrays. Almost all the work of mergesort was in the
combining of solutions to subproblems, whereas with quicksort, almost all the work
is in the division into subproblems.

Quicksort is very fast in practice on “random” data and is widely used in software
libraries. Unfortunately it is not suitable for mission-critical applications, because it
has very bad worst case behaviour, and that behaviour can sometimes be triggered
more often than an analysis based on random input would suggest.

Basic quicksort is recursive and consists of the following four steps.

• If the size of the list is 0 or 1, return the list. Otherwise:

• Choose one of the items in the list as a pivot .

• Next, partition the remaining items into two disjoint sublists: reorder the list
by placing all items greater than the pivot to follow it, and all elements less than
the pivot to precede it.

• Finally, return the result of quicksort of the “head” sublist, followed by the
pivot, followed by the result of quicksort of the “tail” sublist.

The first step takes into account that recursive dynamic partitioning may produce
empty or single-item sublists. The choice of a pivot at the next step is most critical
because the wrong choice may lead to quadratic time complexity while a good choice
of pivot equalizes both sublists in size (and leads to “n logn” time complexity). Note
that we must specify in any implementation what to do with items equal to the pivot.
The third step is where the main work of the algorithm is done, and obviously we
need to specify exactly how to achieve the partitioning step (we do this below). The
final step involves two recursive calls to the same algorithm, with smaller input.

Analysis of quicksort

All analysis depends on assumptions about the pivot selection and partitioning meth-
ods used. In particular, in order to partition a list about a pivot element as described
above, we must compare each element of the list to the pivot, so at least n−1 compar-
isons are required. This is the right order: it turns out that there are several methods
for partitioning that use Θ(n) comparisons (we shall see some of them below).

Lemma 2.13. Quicksort is correct.

Proof. We use mathematical induction on the size of the list. If the size is 1, the algo-
rithm is clearly correct. Suppose then that n≥ 2 and the algorithm works correctly on
lists of size smaller than n. Suppose that a is a list of size n, p is the pivot element, and
i is the position of p after partitioning. Due to the partitioning principle of quicksort,
all elements of the head sublist are no greater than p, and all elements of the tail sub-
list are no smaller than p. By the induction hypothesis, the left and right sublists are
sorted correctly, so that the whole list a is sorted correctly.

Chapter 2: Efficiency of Sorting 37

Unlike mergesort, quicksort does not perform well in the worst case.

Lemma 2.14. The worst-case time complexity of quicksort is Ω(n2).

Proof. The worst case for the number of comparisons is when the pivot is always the
smallest or the largest element, one of two sublists is empty, and the second sublist
contains all the elements other than the pivot. Then quicksort is recursively called
only on this second group. We show that a quadratic number of comparisons are
needed; considering data moves or swaps only increases the running time.

Let T (n) denote the worst-case running time for sorting a list containing n ele-
ments. The partitioning step needs (at least) n− 1 comparisons. At each next step
for n≥ 1, the number of comparisons is one less, so that T (n) satisfies the easy recur-
rence, T (n) = T (n−1)+n−1; T (0) = 0, similar to the basic one, T (n) = T (n−1)+n, in
Example 1.29. This yields that T (n) is Ω(n2).

However, quicksort is often used in practice, because it is fast on “random” input.
The proof of this involves a more complicated recurrence than we have seen so far.

Lemma 2.15. The average-case time complexity of quicksort is Θ(n logn).

Proof. Let T (n) denote the average-case running time for sorting a list containing n
elements. In the first step, the time taken to compare all the elements with the pivot
is linear, cn. If i is the final position of the pivot, then two sublists of size i and n−1− i,
respectively, are quicksorted, and in this particular case T (n) = T (i)+T (n−1− i)+cn.
Therefore, the average running time to sort n elements is equal to the partitioning
time plus the average time to sort i and n− 1− i elements, where i varies from 0 to
n−1.

All the positions i may be met equiprobably—the pivot picked with the same
chance 1

n—as the final pivot position in a sorted array. Hence, the average time of
each recursive call is equal to the average, over all possible subset sizes, of the aver-
age running time of recursive calls on sorting both subsets:

T (n) =
1
n

n−1

∑
i=0

(T (i)+T (n−1− i))+ cn=
2
n

n−1

∑
i=0

T (i)+ cn

To solve this more difficult recurrence, let us rewrite it as

nT (n) = 2
n−1

∑
i=0

T (i)+ cn2

and subtract the analogous one with n replaced by n−1:

(n−1)T(n−1) = 2
n−2

∑
i=0

T (i)+ c(n−1)2.

After rearranging similar terms, we obtain nT (n) = (n+ 1)T(n− 1)+ c 2n+1
n(n+1) . Decom-

posing the right side via partial fractions we obtain

T (n)
n+ 1

=
T (n−1)

n
+

c
n+ 1

+
c
n
.

Telescoping of this recurrence results in the following relationship.

T (n)
n+ 1

=
T (0)

1
+ c

(
1
2

+
1
3

+
1
4

+ . . .+
1

n+ 1
+

1
1

+
1
2

+
1
3

+
1
4

+ . . .+
1
n

)
= c(Hn +Hn+1−1)

38 Section 2.4: Quicksort

whereHn+1 is the (n+1)-st harmonic number. Thus (see Section E.6) T (n) isΘ(n logn).

This is the first example we have seen of an algorithm whose worst-case perfor-
mance and average-case performance differ dramatically.

The finer details of the performance of quicksort depend on several implemen-
tation issues, which we discuss next.

Implementation of quicksort

There are many variants of the basic quicksort algorithm, and it makes sense to speak
of “a quicksort”. There are several choices to be made:

• how to implement the list;

• how to choose the pivot;

• how to partition around the pivot.

Choosing a pivot

A passive pivot strategy of choosing a fixed (for example the first, last, or middle)
position in each sublist as the pivot seems reasonable under the assumption that
all inputs are equiprobable. The simplest version of quicksort just chooses the first
element of the list. We call this the naive pivot selection rule.

For such a choice, the likelihood of a random input resulting in quadratic running
time (see Lemma 2.14 above) is very small. However, such a simple strategy is a bad
idea. There are two main reasons:

• (nearly) sorted lists occur in practice rather frequently (think of a huge database
with a relatively small number of updates daily);

• a malicious adversary may exploit the pivot choice method by deliberately feed-
ing the algorithm an input designed to cause worst case behaviour (a so-called
“algorithmic complexity attack”).

If the input list is already sorted or reverse sorted, quadratic running time is ob-
tained when actually quicksort “should” do almost no work. We should look for a
better method of pivot selection.

A more reasonable choice for the pivot is the middle element of each sublist. In
this case an already sorted input list produces the perfect pivot at each recursion.
Of course, it is still possible to construct input sequences that result in quadratic
running time for this strategy. They are very unlikely to occur at random, but this
still leaves the door open for a malicious adversary.

As an alternative to passive strategies, an active pivot strategy makes good use of
the input data to choose the pivot. The best active pivot is the exact median of the list
because it partitions the list into (almost) equal sized sublists. But it turns out that
the median cannot be computed quickly enough, and such a choice considerably
slows quicksort down rather than improving it. Thus, we need a reasonably good yet
computationally efficient estimate of the median. (See Section 2.6 for more on the
problem of exact computation of the median of a list.)

A reasonable approximation to the true median is obtained by choosing the me-
dian of the first, middle, and last elements as the pivot (the so-called median-of-
three method). Note that this strategy is also the best for an already-sorted list be-
cause the median of each subarray is recursively used as the pivot.

Chapter 2: Efficiency of Sorting 39

Example 2.16. Consider the input list of integers (25,8,2,91,70,50,20,31,15,65). Us-
ing the median-of-three rule (with the middle of a size n list defined as the element
at position �n/2), the first pivot chosen is the median of 25, 70 and 65, namely 65.
Thus the left and right sublists after partitioning have sizes 7 and 2 respectively.

The standard choice for pivot would be the left element, namely 25. In this case
the left and right sublists after partitioning have sizes 4 and 5 respectively.

The median-of-three strategy does not completely avoid bad performance, but
the chances of such a case occurring are much less than for a passive strategy.

Finally, another simple method is to choose the pivot randomly. We can show (by
the same calculation as for the average-case running time) that the expected running
time on any given input is Θ(n logn). It is still possible to encounter bad cases, but
these now occur by bad luck, independent of the input. This makes it impossible
for an adversary to force worst-case behaviour by choosing a nasty input in advance.
Of course, in practice an extra overhead is incurred because of the work needed to
generate a “random” number.

A similar idea is to first randomly shuffle the input (which can be done in linear
time), and then use the naive pivot selection method. Again, bad cases still occur,
but by bad luck only.

Partitioning

There are several ways to partition with respect to the pivot element in linear time.
We present one of them here.

Our partitioning method uses a pointer L starting at the head of the list and an-
other pointer R starting at the end. We first swap the pivot element to the head of the
list. Then, while L< R, we loop through the following procedure:

• Decrement R until it meets an element less than or equal to p.

• Increment L until it meets an element greater than or equal to p.

• Swap the elements pointed to by L and R.

Finally, once L= R, we swap the pivot element with the element pointed to by L.

Example 2.17. Table 2.3 exemplifies the partitioning of a 10-element list. We choose
the pivot p = 31. The bold element is the pivot; elements in italics are those pointed
to by the pointers L and R.

Table 2.3: Partitioning in quicksort with pivot p= 31.

Data to sort Description
25 8 2 91 15 50 20 31 70 65 Initial list
31 8 2 91 15 50 20 25 70 65 Move pivot to head
31 8 2 91 15 50 20 25 70 65 stop R
31 8 2 91 15 50 20 25 70 65 stop L
31 8 2 25 15 50 20 91 70 65 swap elements L and R
31 8 2 25 15 50 20 91 70 65 stop R
31 8 2 25 15 50 20 91 70 65 stop L
31 8 2 25 15 20 50 91 70 65 swap elements L and R
31 8 2 25 15 20 50 91 70 65 stop R
20 8 2 25 15 31 50 91 70 65 swap element L with pivot

40 Section 2.4: Quicksort

Lemma 2.18. The partitioning algorithm described above is correct.

Proof. After each swap, we have the following properties:

• each element to the left of L (including the element at L) is less than or equal to
p;

• each element to the right of R (including the element at R) is greater than or
equal to p.

In the final swap, we swap the pivot element p with an element that is no more than
p. Thus all elements smaller than p are now to its left, and all larger are to its right.

We finish this section by discussing details associated with implementation of
lists. Quicksort is much easier to program for arrays than for other types of lists. The
pivot selection methods discussed above can be implemented in constant time for
arrays, but not for linked lists (for example, try the median-of-three rules with linked
lists). The partition step can be performed on linked lists, but the method we have
presented requires a doubly-linked list in order to work well, since we need to scan
both forward and backward.

In Figure 2.4 we present pseudocode for array-based quicksort. Here idenotes the
position of the pivot p before the partition step, and j its position after partitioning.
The algorithm works in-place using the input array.

algorithm quickSort
Input: array a[0..n−1]; array indices l,r

sorts the subarray a[l..r]
begin

if l < r then

i← pivot(a, l,r) return position of pivot element

j← partition(a, l,r, i) return final position of pivot

quickSort(a, l, j−1) sort left subarray

quickSort(a, j+ 1,r) sort right subarray

end if
return a

end

Figure 2.4: Basic array-based quicksort.

Exercises

Exercise 2.4.1. Analyse in the same way as in Example 2.17 the next partitioning of
the left sublist (20,8,2,25,15) obtained in Table 2.3.

Exercise 2.4.2. Show in detail what happens in the partitioning step if all keys are
equal. What would happen if we change the partition subroutine so that L skipped
over keys equal to the pivot? What if R did? What if both did? (hint: the algorithm
would still be correct, but its performance would differ).

Exercise 2.4.3. Analyse partitioning of the list (25,8,8,8,8,8,2) if the pointers L and
R are advanced while L≤ p and p ≤ R, respectively, rather than stopping on equality
as in Table 2.3.

Chapter 2: Efficiency of Sorting 41

Exercise 2.4.4. Suppose that we implement quicksort with the naive pivot choice
rule and the partitioning method of the text. Find an array of size 8, containing each
integer 1, . . .8 exactly once, that makes quicksort do the maximum number of com-
parisons. Find one that makes it do the minimum number of comparisons.

2.5 Heapsort

This algorithm is an improvement over selection sort that uses a more sophisticated
data structure to allow faster selection of the minimum element. It, like mergesort,
achieves Θ(n logn) in the worst case. Nothing better can be achieved by an algorithm
based on pairwise comparisons, as we shall see later, in Section 2.7.

A heap is a special type of tree. See Section E.7 if necessary for general facts about
trees.

Definition 2.19. A complete binary tree is a binary tree which is completely filled at
all levels except, possibly, the bottom level, which is filled from left to right with no
missing nodes.

In such a tree, each leaf is of depth h or h−1, where h is the tree height, and each
leaf of height h is on the left of each leaf of height h−1.

Example 2.20. Figure 2.5 demonstrates a complete binary tree with ten nodes. If the
node J had been the right child of the node E, the tree would have not been complete
because of the left child node missed at the bottom level.

A

B C

D E F G

H I J

1

2 3

4 5 6 7

8 9 10

A B C D E F G H I J

indices:

1 4 6 8

2 7

32 5 7 9 10

0 1 3 4 6 8 95

positions:

Figure 2.5: Complete binary tree and its array representation.

A level-order traversal of a complete binary tree is easily stored in a linear array
as shown in Figure 2.5. In this book we mostly use indices 0 to n− 1 for the array
positions 1 to n in order to match popular programming languages such as Java,
C, or C++. But the array representation of a binary tree is described more conve-
niently when both the node numbers and the array positions are changing from 1 to

42 Section 2.5: Heapsort

n. Therefore, when a position p in an array a is mentioned below, we bear in mind an
array element a[i] with the index i= p−1.

The node in position p has its parent node, left child, and right child in positions
�p/2	, 2p, and 2p+ 1, respectively. The leaves have no children so that for each leaf
node q, the child position 2q exceeds the number of nodes n in the tree: 2q> n.

Example 2.21. In Figure 2.5, the node in position p = 1 is the root with no parent
node. The nodes in positions from 6 to 10 are the leaves. The root has its left child in
position 2 and its right child in position 3. The nodes in positions 2 and 3 have their
left child in position 4 and 6 and their right child in position 5 and 7, respectively. The
node in position 4 has a left child in position 8 and a right child in position 9, and the
node 5 has only a left child, in position 10.

Definition 2.22. A (maximum) heap is a complete binary tree having a key associ-
ated with each node, the key of each parent node being greater than or equal to the
keys of its child nodes.

The heap order provides easy access to the maximum key associated with the
root.

Example 2.23. Figure 2.6 illustrates a maximum heap. Of course, we could just as
easily have a minimum heap where the key of the parent node is less than or equal
to the keys of its child nodes. Then the minimum key is associated with the root.

91

65 70

31 8 50 25

20 15 2

1

2 3

4 5 6 7

8 9 10

91 65 70 31 8 50 25 20 15 2

1 2 3 4 5 6 7 8 9 10

Figure 2.6: Maximum heap and its array representation.

The heapsort algorithm now works as follows. Given an input list, build a heap
by successively inserting the elements. Then delete the maximum repeatedly (ar-
ranging the elements in the output list in reverse order of deletion) until the heap is
empty. Clearly, this is a variant of selection sort that uses a different data structure.

Analysis of heapsort

Heapsort is clearly correct for the same reason as selection sort. To analyse its perfor-
mance, we need to analyse the running time of the insertion and deletion operations.

Chapter 2: Efficiency of Sorting 43

Lemma 2.24. The height of a complete binary tree with n nodes is at most �lgn	.
Proof. Depending on the number of nodes at the bottom level, a complete tree of
height h contains between 2h and 2h+1− 1 nodes, so that 2h ≤ n < 2h+1, or h ≤ lgn <
h+ 1.

Lemma 2.25. Insertion of a new node into a heap takes logarithmic time.

Proof. To add one more node to a heap of n elements, a new, (n+ 1)-st, leaf position
has to be created. The new node with its associated key is placed first in this leaf. If
the inserted key preserves the heap order, the insertion is completed. Otherwise, the
new key has to swap with its parent, and this process of bubbling up, (or percolating
up) the key is repeated toward the root until the heap order is restored. Therefore,
there are at most h swaps where h is the heap height, so that the running time is
O(logn).

Example 2.26. To insert an 11th element, 75, into the heap in Figure 2.6 takes three
steps.

• Position 11 to initially place the new key, 75, is created.

• The new key is swapped with its parent key, 8, in position 5 = �11/2	 to restore
the heap order.

• The same type of swap is repeated for the parent key, 65, in position 2 = �5/2	.
Because the heap order condition is now satisfied, the process terminates.

Table 2.4: Inserting a new node with the key 75 in the heap in Figure 2.6.

Position 1 2 3 4 5 6 7 8 9 10 11
Index 0 1 2 3 4 5 6 7 8 9 10
Array at step 1 91 65 70 31 8 50 25 20 15 2 75
Array at step 2 91 65 70 31 75 50 25 20 15 2 8
Array at step 3 91 75 70 31 65 50 25 20 15 2 8

This is shown in Table 2.4. The elements moved to restore the heap order are
italicized.

Lemma 2.27. Deletion of the maximum key from a heap takes logarithmic time in
the worst case.

Proof. The maximum key occupies the tree’s root, that is, position 1 of the array. The
deletion reduces the heap size by 1 so that its last leaf node has to be eliminated. The
key associated with this leaf replaces the deleted key in the root and then is perco-
lated down the tree. First, the new root key is compared to each child and swapped
with the larger child if at least one child is greater than the parent. This process is
repeated until the order is restored. Therefore, there are h moves in the worst case
where h is the heap height, and the running time is O(logn).

Because we percolate down the previous leaf key, the process usually terminates
at or near the leaves.

44 Section 2.5: Heapsort

Example 2.28. To delete the maximum key, 91, from the heap in Figure 2.6, takes
three steps, as follows.

• Key 2 from the eliminated position 10 is placed at the root.

• The new root key is compared to its children 65 and 70 in positions 2 = 2 ·1 and
3 = 2 ·1 + 1, respectively. To restore the heap order, it is swapped with its larger
child, 70.

• The same swap is repeated for the children 50 and 25 in positions 6 = 2 · 3 and
7 = 2 ·3 + 1. Because the heap order is now correct, the process terminates.

Table 2.5: Deletion of the maximum key from the heap in Figure 2.6.

Position 1 2 3 4 5 6 7 8 9
Index 0 1 2 3 4 5 6 7 8
Array at step 1 2 65 70 31 8 50 25 20 15
Array at step 2 70 65 2 31 8 50 25 20 15
Array at step 3 70 65 50 31 8 2 25 20 15

See also Table 2.5. The leaf key replacing the root key is boldfaced, and the moves
to restore the heap are italicized.

Lemma 2.29. Heapsort runs in time in Θ(n logn) in the best, worst, and average case.

Proof. The heap can be constructed in time O(n logn) (in fact it can be done more
quickly as seen in Lemma 2.31 but this does not affect the result). Heapsort then re-
peats n times the deletion of the maximum key and restoration of the heap property.
In the best, worst, and average case, each restoration is logarithmic, so the total time
is log(n)+ log(n−1)+ ...+ log(1) = logn! which is Θ(n logn).

Implementation of heapsort

There are several improvements that can be made to the basic idea above. First, the
heap construction phase can be simplified. There is no need to maintain the heap
property as we add each element, since we only require the heap property once the
heap is fully built. A nice recursive approach is shown below. Second, we can elim-
inate the recursion. Third, everything can be done in-place starting with an input
array.

We consider each of these in turn.
A heap can be considered as a recursive structure of the form left subheap← root

→ right subheap, built by a recursive “heapifying” process. The latter assumes that
the heap order exists everywhere except at the root and percolates the root down
to restore the total heap order. Then it is recursively applied to the left and right
subheaps.

Lemma 2.30. A complete binary tree satisfies the heap property if and only if the
maximum key is at the root, and the left and right subtrees of the root also satisfy the
heap property with respect to the same total order.

Proof. Suppose that T is a complete binary tree that satisfies the heap condition.
Then the maximum key is at the root. The left and right subtrees at the root are also
complete binary trees, and they inherit the heap property from T .

Chapter 2: Efficiency of Sorting 45

Conversely, suppose that T is a complete binary tree with the maximum at the
root and such that the left and right subtrees are themselves heaps. Then the value
at the root is at least as great as that of the keys of the children of the root. For each
other node of T , the same property holds by our hypotheses. Thus the heap property
holds for all nodes in the tree.

For example, in Figure 2.6 we can see this fact clearly.

Lemma 2.31. A heap can be constructed from a list of size n in Θ(n) time.

Proof. Let T (h) denote the worst-case time to build a heap of height at most h. To
construct the heap, each of the two subtrees attached to the root are first transformed
into heaps of height at most h− 1 (the left subtree is always of height h− 1, whereas
the right subtree could be of lesser height, h− 2). Then in the worst case the root
percolates down the tree for a distance of at most h steps that takes time O(h). Thus
heap construction is asymptotically described by the recurrence similar to Exam-
ple 1.27, T (h) = 2T (h− 1) + ch and so T (h) is O(2h). Because a heap of size n is of
height h = �lgn	, we have 2h ≤ n and thus T (h) is O(n). But since every element of
the input must be inspected, we clearly have a lower bound of Ω(n), which yields the
result.

Now we observe that the recursion above can be eliminated. The key at each po-
sition p percolates down only after all its descendants have been already processed
by the same percolate-down procedure. Therefore, if this procedure is applied to the
nodes in reverse level order, the recursion becomes unnecessary. In this case, when
the node p has to be processed, all its descendants have been already processed.
Because leaves need not percolate down, a non-recursive heapifying process by per-
colating nodes down can start at the non-leaf node with the highest number. This
leads to an extremely simple algorithm for converting an array into a heap (see the
first for loop in Figure 2.7).

Figure 2.7 presents the basic pseudocode for heapsort (for details of the pro-
cedure percolateDown, see the Java code in Section A.1). After each deletion, the
heap size decreases by 1, and the emptied last array position is used to place the just
deleted maximum element. After the last deletion the array contains the keys in as-
cending sorted order. To get them in descending order, we have to build a minimum
heap instead of the above maximum heap.

The first for-loop converts an input array a into a heap by percolating elements
down. The second for-loop swaps each current maximum element to be deleted with
the current last position excluded from the heap and restores the heap by percolating
each new key from the root down.

Example 2.32. Table 2.6 presents successive steps of heapsort on the input array
a = [70,65,50,20,2,91,25,31,15,8]. In the table, the keys moved are italicized and the
items sorted are boldfaced.

Priority-queue sort

A heap is a particular implementation of the priority queue ADT (see Section D.1).
There are many other such implementations. From an abstract point of view, heap-
sort simply builds a priority queue by inserting all the elements of the list to be
sorted, then deletes the highest priority element repeatedly. Any priority queue im-
plementation can be used to sort in the same way.

For example, a very simple implementation of a priority queue is via an unsorted
list. In this case, building the queue is trivial, and the sorting algorithm is exactly

46 Section 2.5: Heapsort

algorithm heapSort
Input: array a[0..n−1]

begin
for i← �n/2	−1 while i≥ 0 step i← i−1 do

percolateDown(a, i,n) build a heap

end for
for i← n−1 while i≥ 1 step i← i−1 do

swap(a[0],a[i]) delete the maximum

percolateDown(a,0, i) restore the heap

end for
end

Figure 2.7: Heapsort.

Table 2.6: Successive steps of heapsort.

Position 1 2 3 4 5 6 7 8 9 10
Index 0 1 2 3 4 5 6 7 8 9
Initial array 70 65 50 20 2 91 25 31 15 8
Building max heap 70 65 50 20 8 91 25 31 15 2

70 65 50 31 8 91 25 20 15 2
70 65 91 31 8 50 25 20 15 2
70 65 91 31 8 50 25 20 15 2
91 65 70 31 8 50 25 20 15 2

Max heap 91 65 70 31 8 50 25 20 15 2
Deleting max 1 2 65 70 31 8 50 25 20 15 91
Restoring heap 1-9 70 65 50 31 8 2 25 20 15 91
Deleting max 2 15 65 50 31 8 2 25 20 70 91
Restoring heap 1-8 65 31 50 20 8 2 25 15 70 91
Deleting max 3 15 31 50 20 8 2 25 65 70 91
Restoring heap 1-7 50 31 25 20 8 2 15 65 70 91
Deleting max 4 15 31 25 20 8 2 50 65 70 91
Restoring heap 1-6 31 20 25 15 8 2 50 65 70 91
Deleting max 5 2 20 25 15 8 31 50 65 70 91
Restoring heap 1-5 25 20 2 15 8 31 50 65 70 91
Deleting max 6 8 20 2 15 25 31 50 65 70 91
Restoring heap 1-4 20 15 2 8 25 31 50 65 70 91
Deleting max 7 8 15 2 20 25 31 50 65 70 91
Restoring heap 1-3 15 8 2 20 25 31 50 65 70 91
Deleting max 8 2 8 15 20 25 31 50 65 70 91
Restoring heap 1-2 8 2 15 20 25 31 50 65 70 91
Deleting max 9 2 8 15 20 25 31 50 65 70 91

selection sort. Another simple implementation is via a sorted list. In this case, the
algorithm is just insertion sort (we don’t really need to delete the elements since the
resulting list after building the priority queue is the output we are seeking).

There are many more sophisticated implementations of priority queues. They
are useful not only for sorting, but for several important graph algorithms covered in
this book, and also for applications such as discrete event simulation. There is still
active research on finding better priority queue implementations.

Chapter 2: Efficiency of Sorting 47

Given that we can build a priority queue (such as a heap) in linear time, it is nat-
ural to ask whether we could implement a priority queue in such a way that the suc-
cessive deletions can be done in better than O(n logn) time, thus yielding a sorting
algorithm that is asymptotically faster in the worst case than any we have yet seen.
Perhaps surprisingly, the answer is no for comparison-based algorithms, as we see
in the next section.

Exercises

Exercise 2.5.1. Insert a 12th element, 85, into the final heap in Table 2.4.

Exercise 2.5.2. Delete the maximum key from the final heap in Table 2.5 and restore
the heap order.

Exercise 2.5.3. Convert the array [10,20,30,40,50,60,70,80,90] into a heap using the
algorithm in Lemma 2.31.

Exercise 2.5.4. Present in the same manner the successive steps of heapsort on the
already sorted input array a= [2,8,15,20,25,31,50,65,70,91].

Exercise 2.5.5. Determine whether heapsort is stable and compare it to insertion
sort, mergesort, and quicksort regarding this property.

Exercise 2.5.6. Determine whether the running time of heapsort on an already sorted
array of size n differs significantly from the average-case running time.

2.6 Data selection

Data selection is closely related to data sorting. The latter arranges an array in order
whereas the former has to find only the kth smallest item (the item of rank k, also
known as the kth order statistic). We have seen (selection sort and heapsort) that if
we can select, then we can sort. The converse is true too: given a list of n items, we
can sort it and then select the desired order statistic easily. The obvious question is:
can we perform selection without sorting, and asymptotically faster?

If for example k = 1 or k = n, then the answer is obviously yes (Exercise 2.6.1).
However, if we require the median (k = �n/2�) the answer is not at all obvious. For
example, building a heap and repeatedly extracting the minimum would take time
in Ω(n logn), which is no better than sorting the entire list.

A variation of quicksort works well on this problem, in the average case for ran-
dom data. However it has all the drawbacks of quicksort, and in the worst case its
performance degenerates badly.

The idea of quickselect is that after the partitioning stage of quicksort, we know
which of the two parts of the partition holds the element we are seeking, and so we
can eliminate one recursive call. In other words, it proceeds as follows.

• If the size of the list is 0, return “not found”; if the size is 1, return the element
of that list. Otherwise:

• Choose one of the items in the list as a pivot.

• Partition the remaining items into two disjoint sublists: reorder the list by plac-
ing all items greater than the pivot to follow it, and all elements less than the
pivot to precede it. Let j be the index of the pivot after partitioning.

48 Section 2.6: Data selection

• If k < j, then return the result of quickselect on the “head” sublist; otherwise
if k = j, return the element p; otherwise return the result of quickselect on the
“tail” sublist.

Analysis of quickselect

Correctness of quickselect is established just as for quicksort (see Exercise 2.6.2). In
the worst case, the running time can be quadratic; for example, if the input list is
already sorted and we use the naive pivot selection rule, then to find the maximum
element takes quadratic time.

Theorem 2.33. The average-case time complexity of quickselect is Θ(n).

Proof. Let T (n) denote the average time to select the k-th smallest element among
n elements, for fixed k where the average is taken over all possible input sequences.
Partitioning uses no more than cn operations and forms two subarrays, of size i and
n−1− i, respectively, where 0≤ i< n.

As in quicksort, the final pivot position in the sorted array has equal probability,
1
n , of taking each value of i. Then T (n) averages the average running time for all the
above pairs of the subarrays over all possible sizes. Because only one subarray from
each pair is recursively chosen, the average running time for the pair of size i and
n−1− i is (T (i)+T (n−1− i))/2 so that

T (n) =
1
2n

n−1

∑
i=0

(T (i)+T (n− i))+ cn=
1
n

n−1

∑
i=0

T (i)+ cn

As for quicksort, the above recurrence can be rewritten as nT (n) = ∑n−1
i=0 T (i) + cn2

and subtracting the analogous equation (n− 1)T(n− 1) = ∑n−2
i=0 T (i)+ c · (n− 1)2 and

rearranging, we we are eventually led to the familiar recurrence T (n) = T (n− 1)+ c
and can see that T (n) is Θ(n).

Implementation of quickselect

The only change from quicksort is that instead of making two recursive calls on the
left and right subarrays determined by the pivot, quickselect chooses just one of
these subarrays.

Figure 2.8 presents a basic array-based implementation. The algorithm processes
a subarray a[l..r], where 0 ≤ l ≤ r ≤ n− 1, of an input array a of size n, assuming that
the desired rank k is in the correct range. A search in the whole array is performed
with the input indices l = 0 and r = n− 1. The search fails only if k is outside the
correct range (including the case where the subarray is empty). Section A.1 contains
a Java implementation that uses median-of-three pivoting.

Exercises

Exercise 2.6.1. Give a simple nonrecursive algorithm to find the maximum of a list
of n elements. How many comparisons does it do in the worst case? Is this the best
we can hope for?

Exercise 2.6.2. Prove that quickselect is correct.

Exercise 2.6.3. To find p keys of fixed ranks, k1, . . . ,kp, in an unordered array, we can
either (i) run quickselect p times or (ii) use quicksort once to order the array and

Chapter 2: Efficiency of Sorting 49

algorithm quickSelect
Input: array a[0..n]; array indices l,r; integer k

finds kth smallest element in the subarray a[l..r]
begin

if l ≤ r then

i← pivot(a, l,r) return position of pivot element

j← partition(a, l,r, i) return final position of pivot

q← j− l+ 1 the rank of the pivot in a[l..r]
if k = q then return a[j]
else if k < q then return quickSelect(a, l, j−1,k)
else return quickSelect(a, j+ 1,r,k−q)

end if
else return “not found”

end

Figure 2.8: Basic array-based quickselect.

simply fetch the desired p keys. Find a condition (in terms of p and n) when on the
average the second variant is more time-efficient (time to fetch array elements can
be ignored). Which variant is better if n is 1 million and p= 10?

Exercise 2.6.4. Investigate “heapselect” and its time complexity. Do the same for
“mergeselect”.

2.7 Lower complexity bound for sorting

All the above sorting methods have average and worst time complexity bounds in
Ω(n logn). One of most fundamental theorems in algorithm analysis shows that no
comparison-based sorting algorithm can have a better asymptotic lower bound. The
proof uses the idea of a n-element binary decision tree representation of any sorting
of n items by pairwise comparisons.

1:2

2:3 2:3

1:3 1:33 2 1 1 2 3

2 3 1 2 1 3 3 1 2 1 3 2

a1 ≥ a2 a1 < a2

a2 ≥ a3 a2 < a3 a2 ≥ a3 a2 < a3

a1 ≥ a3

a1 < a3
a1 < a3

a1 ≥ a3

Figure 2.9: Decision tree for n= 3.

50 Section 2.7: Lower complexity bound for sorting

Example 2.34. A decision tree for three (n = 3) elements a1,a2,a3 is shown in Fig-
ure 2.9. Each internal tree node represents a pairwise comparison and decision
made at a particular step of sorting (in Figure 2.9, i : j denotes the comparison be-
tween the elements a[i] and a[j]). Two downward arcs from the node indicate two
possible results of the comparison: a[i]≥ a[j] or a[i]< a[j]. Leaves represent the sorted
lists. In Figure 2.9, each triple i jk denotes the sorted list (ai,a j,ak) obtained from the
initial list (a1,a2,a3). For instance, 123, 213, or 321 mean that the final list is (a1,a2,a3),
(a2,a1,a3), or (a3,a2,a1), respectively. Because any of the n! permutations of n arbi-
trary items a1,a2, . . . ,an may be obtained as the result of the sort, the decision tree
must have at least n! leaves.

The path length from the root to a leaf in the decision tree is equal to the num-
ber of comparisons to be performed in order to obtain the sorted array at the leaf.
Therefore, the longest path (the height of the tree) equals the number of compar-
isons in the worst case. For example, 3 elements can be sorted with no more than 3
comparisons because the height of the 3-element tree in Figure 2.9 is equal to 3.

Theorem 2.35. Every comparison-based sorting algorithm takes Ω(n logn) time in
the worst case.

Proof. We first claim that each binary tree of height h has at most 2h leaves. Once
this claim is established, we proceed as follows. The least value h such that 2h ≥ n!
has the lower bound h ≥ lg(n!) which is in Ω(n logn) (the asymptotic result follows
from Section E.6). This will prove the theorem.

To prove the above claim about tree height, we use mathematical induction on
h. A tree of height 0 has obviously at most 20 leaves. Now suppose that h ≥ 1 and
that each tree of height h− 1 has at most 2h−1 leaves. The root of a decision tree of
height h is linked to two subtrees, being each at most of height h−1. By the induction
hypothesis, each subtree has at most 2h−1 leaves. The number of leaves in the whole
decision tree is equal to the total number of leaves in its subtrees, that is, at most
2h−1 + 2h−1 = 2h.

This result shows that heapsort and mergesort have asymptotically optimal worst-
case time complexity for comparison-based sorting.

As for average-case complexity, one can also prove the following theorem by us-
ing the decision tree idea. Since we are now at the end of our introductory analysis
of sorting, we omit the proof and refer the reader to the exercises, and to more ad-
vanced books.

Theorem 2.36. Every comparison-based sorting algorithm takes Ω(n logn) time in
the average case.

Proof. Try to prove this yourself (see Exercise 2.7.1).

Exercises

Exercise 2.7.1. Prove Theorem 2.36. The following hints may be useful. First show
that the sum of all depths of leaves in a binary decision tree with k leaves is at least
k lgk. Do this by induction on k, using the recursive structure of these trees. Then
apply the above inequality with k = n!.

Exercise 2.7.2. Consider the following sorting method (often called counting sort)
applied to an array a[n] all of whose entries are integers in the range 1..1000. Intro-
duce a new array t[1000] all of whose entries are initially zero. Scan through the array

Chapter 2: Efficiency of Sorting 51

a[n] and each time an integer i is found, increment the counter t[i−1] by 1. Once this
is complete, loop through 0 ≤ i≤ 999 and print out t[i] copies of integer i+ 1 at each
step.

What is the worst-case time complexity of this algorithm? How do we reconcile
this with Theorem 2.35?

2.8 Notes

It was once said that sorting consumes 25% of all CPU time worldwide. Whatever the
true proportion today, sorting clearly remains a fundamental problem to be solved
in a wide variety of applications.

Given the rise of object-oriented programming languages, comparison-based sort-
ing algorithms are perhaps even more important than in the past. In practice the
time taken to perform a basic comparison operation is often much more than that
taken to swap two objects: this differs from the case of, say, 32-bit integers, for which
most analysis was done in the past.

Shellsort was proposed by D. Shell in 1959, quicksort by C. A. R. Hoare in 1960,
mergesort in 1945 by J. von Neumann, and heapsort in 1964 by J. W. J. Williams. In-
sertion sort and the other quadratic algorithms are very much older.

At the time of writing, versions of mergesort are used in the standard libraries for
the languages Python, C++ and Java, and a hybrid of quicksort and heapsort is used
by C++.

We have not discussed whether there is an algorithm that will find the median
(or any other given order statistic) in worst-case linear time. For a long time this
was unknown, but the answer was shown to be yes in 1973 by Blum, Floyd, Pratt,
Rivest and Tarjan. The algorithm is covered in more advanced books and is fairly
complicated.

Chapter 3

Efficiency of Searching

Searching in a large database is a fundamental computational task. Usually the in-
formation is partitioned into records and each record has a key to use in the search.
Suppose we have a data structure D of records. The search problem is as follows:
given a search key k, either return the record associated with k in D (a successful
search), or indicate that k is not found, without altering D (an unsuccessful search).
If k occurs more than once, return any occurrence. The purpose of the search is usu-
ally to access data in the record (not merely the key). Simple examples are searching
a phone directory or a dictionary.

In this chapter we discuss searching in a general data structure as above. The
more specialized problem of searching for a pattern in a text string is covered later in
Section 7.7.

3.1 The problem of searching

The most general data structure that allows searching is called an associative array,
table or dictionary.

In the general case, a key and a value are linked by association. An associative
array or dictionary is an abstract data type relating a disjoint set of keys to an ar-
bitrary set of values. Keys of entries of an associative array may not have any order-
ing relation and may be of unknown range. There is no upper bound on the size of
this structure, so that it can maintain an arbitrary number of different pieces of in-
formation simultaneously. The analogy with a conventional word dictionary may be
misleading, because the latter has a lexicographical order while dictionary structures
need not be ordered.

Another name for this data type is table. It takes its name from program compila-
tion where a symbol table is used to record variables of a program, together with their
type, address, value, etc. Symbol table operations are also fundamental to database
systems.

Definition 3.1. The table ADT is a set of ordered pairs (table entries) of the form
(k,v) where k is an unique key and v is a data value associated with the key k. Each
key uniquely identifies its entry, and table entries are distinguished by keys because
no two distinct entries have identical keys.

54 Section 3.1: The problem of searching

Basic operations defined for this structure are: construct (initialize) an empty
table, enumerate table entries, search for an entry, insert, delete, retrieve, and update
table entries.

Abstractly, a table is a mapping (function) from keys to values. Given a search
key k, table search has to find the table entry (k,v) containing that key. The found
entry may be retrieved, or removed (deleted) from the table, or its value, v, may be
updated. If the table has no such entry, a new entry with key k may be created and
inserted in the table. Operations on a table also initialize a table to the empty one or
indicate that an entry with the given key is absent. Insertions and deletions modify
the mapping of keys onto values specified by the table.

Example 3.2. Table 3.1 presents a very popular (at least in textbooks on algorithms
and data structures) table having three-letter identifiers of airports as keys and asso-
ciated data such as airport locations, as values. Each identifier has a unique integer
representation k = 262c0 + 26c1 + c2 where the ci; i = 0,1,2, are ordinal numbers of
letters in the English alphabet (A corresponds to 0, B to 1, . . . , Z to 25). For example,
AKL corresponds to 262 ·0 + 26 ·10 + 11 = 271. In total, there are 263 = 17576 possible
different keys and entries.

Table 3.1: A map between airport codes and locations.

Key Associated value v
Code k City Country State / Place
AKL 271 Auckland New Zealand
DCA 2080 Washington USA District Columbia (D.C.)
FRA 3822 Frankfurt Germany Rheinland-Pfalz
GLA 4342 Glasgow UK Scotland
HKG 4998 Hong Kong China
LAX 7459 Los Angeles USA California
SDF 12251 Louisville USA Kentucky
ORY 9930 Paris France

As can be seen from this example, we may map the keys to integers.
We deal with both static (where the database is fixed in advance and no inser-

tions, deletions or updates are done) and dynamic (where insertions, deletions or
updates are allowed) implementations of the table ADT.

In all our implementations of the table ADT, we may simplify the analysis as fol-
lows. We use lists and trees as our basic containers. We treat each query or update of
a list element or tree node, or comparison of two of them, as an elementary opera-
tion. The following lemma summarizes some obvious relationships.

Lemma 3.3. Suppose that a table is built up from empty by successive insertions,
and we then search for a key k uniformly at random. Let Tss(k) (respectively Tus(k)) be
the time to perform successful (respectively unsuccessful) search for k. Then

• the time taken to retrieve, delete, or update an element with key k is at least
Tss(k);

• the time taken to insert an element with key k is at least Tus(k);

• Tss(k)≤ Tus(k).

Chapter 3: Efficiency of Searching 55

In addition

• the worst case value for Tss(k) equals the worst case value for Tus(k);

• the average value of Tss(k) equals 1 plus the average of the times for the unsuc-
cessful searches undertaken while building the table.

Proof. To insert a new element, we first try to find where it would be if it were con-
tained in the data structure, and then perform a single insert operation into the con-
tainer. To delete an element, we first find it, and then perform a delete operation
on the container. Analogous statements hold for updating and retrieval. Thus for a
given state of the table formed by insertions from an empty table, the time for suc-
cessful search for a given element is the time that it took for unsuccessful search for
that element, as we built the table, plus 1. This means that the time for unsuccess-
ful search is always at least the time for successful search for a given element (the
same in the worst case), and the average time for successful search for an element in
a table is 1 more than the average of all the times for unsuccessful searches.

If the data structure used to implement a table arranges the records in a list, the
efficiency of searching depends on whether the list is sorted. In the case of the tele-
phone book, we quickly find the desired phone number (data record) by name (key).
But it is almost hopeless to search directly for a phone number unless we have a spe-
cial reverse directory where the phone number serves as a key. We discuss unsorted
lists in the Exercises below, and sorted lists in the next section.

Exercises

Exercise 3.1.1. The sequential search algorithm simply starts at the head of a list
and examines elements in order until it finds the desired key or reaches the end of
the list. An array-based version is shown in Figure 3.1.

algorithm sequentialSearch
Input: array a[0..n−1]; key k

begin
for i← 0 while i< n step i← i+ 1 do

if a[i] = k then return i
end for
return not found

end

Figure 3.1: A sequential search algorithm.

Show that both successful and unsuccessful sequential search in a list of size n
have worst-case and average-case time complexity Θ(n).

Exercise 3.1.2. Show that sequential search is slightly more efficient for sorted lists
than unsorted ones. What is the time complexity of successful and unsuccessful
search?

3.2 Sorted lists and binary search

A sorted list implementation allows for much better search method that uses the
divide-and-conquer paradigm. The basic idea of binary search is simple. Let k be
the desired key for which we want to search.

56 Section 3.2: Sorted lists and binary search

• If the list is empty, return “not found”. Otherwise:

• Choose the key m of the middle element of the list. If m= k, return its record; if
m > k, make a recursive call on the head sublist; if m < k, make a recursive call
on the tail sublist.

Example 3.4. Figure 3.2 illustrates binary search for the key k= 42 in a list of size 16.
At the first iteration, the search key 42 is compared to the key a[7] = 53 in the middle
position m= �(0 + 15)/2	= 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 14 27 33 42 49 51 53 67 70 77 81 89 94 95 99

m = 7 r = 15

7 14 27 33 42 49 51

l = 0

l = 0 m = 3 r = 6

42 49 51

l = 4 r = 6
m = 5

42

l = r = m = 4; search key = a return 4

i

ai

4

Figure 3.2: Binary search for the key 42.

Because 42 < 53, the second iteration explores the first half of the list with posi-
tions 0, . . . ,6. The search key is compared to the key a[3] = 33 in the middle position
m = �(0 + 6)/2	= 3. Because 42 > 33, the third iteration explores the second half of
the current sublist with positions 4, . . . ,6. The comparison to the key a5 = 49 in the
middle positionm= �(4+6)/2	= 5 reduces the search range to a single key, a[4] = 42,
because now l = r = m = 4. Because the single entry is equal to the search key, the
algorithm returns the answer 4.

Analysis of sorted list-based tables

Binary search is readily seen to be correct by induction on the size of the list (Exer-
cise 3.2.3).

The performance of binary search on an array is much better than on a linked list
because of the constant time access to a given element.

Lemma 3.5. Consider a sorted list implementation of the table ADT.
Using an array, both successful and unsuccessful search take time in Θ(logn), in

both the average and worst case, as do retrieval and updating. Insertion and deletion
take time in Θ(n) in the worst and average case.

Chapter 3: Efficiency of Searching 57

Using a linked list, all the above operations take time in Θ(n).

Proof. Unsuccessful binary search takes �lg(n+1)� comparisons in every case, which
isΘ(logn). By Lemma 3.3, successful search also takes time in Θ(logn) on average and
in the worst case. Insertion and deletion in arrays takes Θ(n) time on average and in
the worst case.

For linked lists, the searches take time in Θ(n) and the list insertion and deletion
take constant time.

Binary search performs a predetermined sequence of comparisons depending on
the data size n and the search key k. This sequence is better analysed when a sorted
list is represented as a binary search tree. For simplicity of presentation, we suppress
the data records and make all the keys integers. Background information on trees is
found in Section E.7.

Definition 3.6. A binary search tree (BST) is a binary tree that satisfies the following
ordering relation: for every node ν in the tree, the values of all the keys in the left
subtree are smaller than (or equal, if duplicates allowed) to the key in ν and the values
of all the keys in the right subtree are greater than the key in ν.

In line with the ordering relation, all the keys can be placed in sorted order by
traversing the tree in the following way: recursively visit, for each node, its left sub-
tree, the node itself, then its right subtree (this is the so-called inorder traversal). The
relation is not very desirable for duplicate keys; for exact data duplicates, we should
have one key and attach to it the number of duplicates.

The element in the middle position,m0 = �(n−1)/2	, of a sorted array is the root of
the tree representation. The lower subrange, [0, . . . ,m0−1], and the upper subrange,
[m0 + 1, . . . ,n− 1], of indices are related to the left and right arcs from the root. The
elements in their middle positions, mleft,1 = �(m0− 1)/2	 and mright,1 = �(n+m0)/2	,
become the left and right child of the root, respectively. This process is repeated
until all the array elements are related to the nodes of the tree. The middle element
of each subarray is the left child if its key is less than the parent key or the right child
otherwise.

Example 3.7. Figure 3.3 shows a binary search tree for the 16 sorted keys in Fig-
ure 3.2. The key a[7] = 53 is the root of the tree. The lower [0..6] and the upper [8..15]
subranges of the search produce the two children of the root: the left child a[3] = 33
and the right child a[11] = 81. All other nodes are built similarly.

The tree representation interprets binary search as a pass through the tree from
the root to a desired key. If a leaf is reached but the key is not found, then the search
is unsuccessful. The number of comparisons to find a key is equal to the number of
nodes along the unique path from the root to the key (the depth of the node, plus 1).

A static binary search always yields a tree that is well-balanced: for each node
in the tree, the left and right subtrees have height that differs by at most 1. Thus all
leaves are on at most two levels. This property is used to define AVL trees in Sec-
tion 3.4.

Implementation of binary search

Algorithm binarySearch in Figure 3.4 searches for key k in a sorted array a.
The search starts from the whole array from l = 0 to r = n−1. If l and r ever cross,

l > r, then the desired key is absent, indicating an unsuccessful search. Otherwise,
the middle position of the odd range or rounded down “almost middle” position of

58 Section 3.2: Sorted lists and binary search

53

33

14

81

49

7

70 94

4227 51 67 77 89 95

99

8..15

7

3 11

0 2

51 9 13

4 6 8 10 12 14

15

0..2 4..6 8..10 12..15

0 2 4 6 8 10 12 14..15

15

tree node array positionkey i
range of positionsl..r

0..6

Figure 3.3: Binary tree representation of a sorted array.

algorithm binarySearch
Input: array a[0..n−1]; key k

begin
l← 0; r← n−1
while l ≤ r do

m←�(l+ r)/2	
if a[m] < k then l←m+ 1
else if a[m] > k then r← m−1 else return m
end if

end while
return not found

end

Figure 3.4: Binary search with three-way comparisons.

the even one, m=
⌊
l+r

2

⌋
, is computed. The search key, k, is compared to the key a[m]

in this position:

• If k= a[m], then return the found position m.

• If k < a[m], then the key may be in the range l to m−1 so that r← m−1 at next
step.

• If k> a[m], then it may be in the range m+ 1 to r so that l←m+ 1 at next step.

Binary search is slightly accelerated if the test for a successful search is removed
from the inner loop in Figure 3.4 and the search range is reduced by one in all cases.

Chapter 3: Efficiency of Searching 59

To determine whether the key k is present or absent, a single test is performed out-
side the loop (see Figure 3.5). If the search key k is not larger than the key a[m] in the
middle position m, then it may be in the range from l to m. The algorithm breaks the
while-loop when the range is 1, that is, l = r, and then tests whether there is a match.

algorithm binarySearch2
Input: array a[0..n−1]; key k

begin
l← 0; r← n−1
while l < r do

m← �(l+ r)/2	
if a[m] < k then l← m+ 1
else r← m

end while
if a[l] = k then return l
else return not found

end

Figure 3.5: Faster binary search with two-way comparisons.

Exercises

Exercise 3.2.1. Perform a search for the key 41 in the situation of Example 3.4.

Exercise 3.2.2. How many comparisons will binary search make in the worst case to
find a key in a sorted array of size n= 109?

Exercise 3.2.3. Prove that both given array implementations of binary search cor-
rectly find an element or report that it is absent.

Exercise 3.2.4. If we have more information about a sorted list, interpolation search
can be (but is not always) much faster than binary search. It is the method used when
searching a telephone book: to find a name starting with “C” we open the book not
in the middle, but closer to the beginning.

To search for an element between position l and r with l < r, we choose ρ= k−a[l]
a[r]−a[l]

and the next guess is m= l+ �ρ(r− l)� .
Give an example of a sorted input array of 8 distinct integers for which interpola-

tion search performs no better than sequential search.

Exercise 3.2.5. Determine how many positions interpolation search will examine to
find the key 85 among the ten keys (10,20,35,45,55,60,75,80,85,100).

3.3 Binary search trees

In Section 3.2 we have already used a binary search tree to specify sequences of com-
parisons and simplify the performance analysis of binary search. Now we use a bi-
nary search tree not just as a mathematical object to aid our analysis, but as an ex-
plicit data structure that implements the table ADT.

Example 3.8. In Figure 3.6, two trees are not binary search trees because the key 2
in the middle tree is in the right subtree of the key 3, and the keys 11 and 12 in the
rightmost tree are in the left subtree of the key 10.

60 Section 3.3: Binary search trees

10

153

1 5

4 8

10

153

1 5

2 8

10

153

1

4

11

12

Figure 3.6: Binary trees: only the leftmost tree is a binary search tree.

Binary search trees implement efficiently the basic search, insert, and remove
operations of the table ADT. In addition a BST allows for more operations such as
sorting records by their keys, finding the minimum key, etc (see Exercises).

Binary search trees are more complex than heaps. Only a root or leaves are added
to or removed from a heap, whereas any node of a binary search tree may be re-
moved.

10

153

1 5

4 8

8<10?

8<3?

8<5?

8=8

10

153

1 5

4 8

7<10?

7<3?

7<5?

7<8?

7 inserted node

found node

Figure 3.7: Search and insertion in the binary search tree.

The search operation resembles usual binary search in that it starts at the root
and moves either left or right along the tree, depending on the result of comparing
the search key to the key in the node.

Example 3.9. To find key 8 in the leftmost tree in Figure 3.6, we start at the root 10
and go left because 8 < 10. This move takes us to 3, so we turn right (because 8 > 3)
to 5. Then we go right again (8 > 5) and encounter 8.

Example 3.10. To find key 7, we repeat the same path. But, when we are at node 8,
we cannot turn left because there is no such link. Hence, 7 is not found.

Figure 3.7 illustrates both Examples 3.9 and 3.10. It shows that the node with key
7 can be inserted just at the point at which the unsuccessful search terminates.

The removal operation is the most complex because removing a node may dis-
connect the tree. Reattachment must retain the ordering condition but should not
needlessly increase the tree height. The standard method of removing a node is as
follows.

Chapter 3: Efficiency of Searching 61

• A leaf node is simply deleted.

• An internal node with only one child is deleted after its child is linked to its
parent node.

• If the node has two children, then it should be swapped with the node having
the smallest key in its right subtree. The latter node is easily found (see Exer-
cise 3.3.1). After swapping, the node can be removed as in the previous cases,
since it is now in a position where it has at most one child.

This approach appears asymmetric but various modifications do not really im-
prove it. The operation is illustrated in Figure 3.8.

5

3

1 4

10

8 15

0 2 6 12 18

5

3

1 4

12

8 15

0 2 6 18

5

3

1 4

10

8 15

0 2 6 12 18

remove 10

minimum
in the
right
subtree

replace 10

Figure 3.8: Removal of the node with key 10 from the binary search tree.

Analysis of BST-based tables

Lemma 3.11. The search, retrieval, update, insert and remove operations in a BST
all take time in O(h) in the worst case, where h is the height of the tree.

Proof. The running time of these operations is proportional to the number of nodes
visited. For the find and insert operations, this equals 1 plus the depth of the node,
but for the remove operation it equals the depth of the node plus at most the height
of the node. In each case this is O(h).

For a well-balanced tree, all operations take logarithmic time. The problem is that
insertions and deletions may destroy the balance, and in practice BSTs may be heav-
ily unbalanced as in Figure 3.11. So in the worst case the search time is linear, Θ(n),
and we have an inferior form of sequential search (because of the extra overhead in
creating the tree arcs).

62 Section 3.3: Binary search trees

Figure 3.9 presents all variants of inserting the four keys 1, 2, 3, and 4 into an
empty binary search tree. Because only relative ordering is important, this corre-
sponds to any four keys (a[i] : i= 1, . . . ,4) such that a[1] < a[2] < a[3] < a[4].

3

2

1

2

4

1

3

4

1

2

32

4 4

4213
4231

4321 4132 4123

1 3

3

1

2

4

43121432 1423 1243

1324
1342

1 1 1 1 1

4 4 3 2

3 2 2 4 3

2 3 4

1234

4

2

3

3214
3241
3421

3124
3142
3412

3

1

2

4

3

2 4

1

2 2

1 1

4

43

3

2134
2314
2341

2143
2413
2431

Figure 3.9: Binary search trees obtained by permutations of 1,2,3,4.

There are in total 4! = 24 possible insertion orders given in Figure 3.9. Some trees
result from several different insertion sequences, and more balanced trees appear
more frequently than unbalanced ones.

Definition 3.12. The total internal path length, Sτ(n), of a binary tree τ is the sum of
the depths of all its nodes.

The average node depth, 1
nSτ(n), gives the average time complexity of a success-

ful search in a particular tree τ. The average-case time complexity of searching is
obtained by averaging the total internal path lengths for all the trees of size n, that
is, for all possible n! insertion orders, assuming that these latter occur with equal
probability, 1

n! .

Lemma 3.13. Suppose that a BST is created by n random insertions starting from
an empty tree. Then the expected time for successful and unsuccessful search is
Θ(logn). The same is true for update, retrieval, insertion and deletion.

Proof. Let S(n) denote the average of Sτ over all insertion sequences, each sequence
considered as equally likely. We need to prove that S(n) is Θ(n logn).

It is obvious that S(1) = 0. Furthermore, any n-node tree, n > 1, contains a left
subtree with i nodes, a root at height 0, and a right subtree with (n− i− 1) nodes
where 0≤ i≤ n−1, each value of i being by assumption equiprobable.

For a fixed i, S(i) is the average total internal path length in the left subtree with
respect to its own root and S(n− i−1) is the analogous total path length in the right
subtree. The root of the tree adds 1 to the path length of each other node. Because
there are n−1 such nodes, the following recurrence holds: S(n) = (n−1)+S(i)+S(n−
i− 1) for 0 ≤ i ≤ n− 1. After summing these recurrences for all i = 0, . . . ,n− 1 and
averaging, just the same recurrence as for the average-case quicksort analysis (see
Lemma 2.15) is obtained: S(n) = (n− 1) + 2

n ∑
n−1
i=0 S(i). Therefore, the average total

internal path length isΘ(n logn). The expected depth of a node is therefore inΘ(logn).
This means that search, update, retrieval and insertion take time in Θ(logn). The

Chapter 3: Efficiency of Searching 63

same result is true for deletion (this requires the result that the expected height of a
random BST is Θ(logn), which is harder to prove—see Notes).

Thus in practice, for random input, all BST operations take time about Θ(logn).
However the worst-case linear time complexity, Θ(n), is totally unsuitable in many
applications, and deletions can also destroy balance.

We tried to eliminate the worst-case degradation of quicksort by choosing a pivot
that performs well on random input data and relying on the very low probability of
the worst case. Fortunately, binary search trees allow for a special general technique,
called balancing , that guarantees that the worst cases simply cannot occur. Balanc-
ing restructures each tree after inserting new nodes in such a way as to prevent the
tree height from growing too much. We discuss this more in Section 3.4.

5

3

1 4

10

8 15

5

10

8 15

1

3

4

Figure 3.10: Binary search trees of height about logn.

15

10

10

15

8

5

1

8

5

4

4

3

3

1 1

15

10

4

8

3

5

Figure 3.11: Binary search trees of height about n.

Implementation of BST

A concrete implementation of a BST requires explicit links between nodes, each of
which contains a data record, and is more complicated than the other implemen-
tations so far. A programming language that supports easy manipulation of objects
makes the coding easier. We do not present any (pseudo)code in this book.

Exercises

Exercise 3.3.1. Show how to find the maximum (minimum) key in a binary search
tree. What is the running time of your algorithm? How could you find the median, or
an arbitrary order statistic?

Exercise 3.3.2. Suppose that we insert the elements 1,2,3,4,5 into an initially empty
BST. If we do this in all 120 possible orders, which trees occur most often? Which tree
shapes (in other words, ignore the keys) occur most often?

64 Section 3.4: Self-balancing binary and multiway search trees

Exercise 3.3.3. Suppose that we insert the elements 1,2,3,4 in some order into an
initially empty BST. Which insertion orders yield a tree of maximum height? Which
yield a tree of minimum height?

Exercise 3.3.4. Show how to output all records in ascending order of their keys, given
a BST. What is the running time of your algorithm?

3.4 Self-balancing binary and multiway search trees

Because balanced binary search trees are more complex than the standard ones, the
insertion and removal operations usually take longer time on the average. But be-
cause of the resulting balanced structure, the worst-case complexity is O(logn). In
other words, the total internal path lengths of the trees are fairly close to the optimal
value.

AVL, red-black, and AA-trees

Definition 3.14. An AVL tree is a binary search tree with the additional balance prop-
erty that, for any node in the tree, the heights of the left and right subtrees can differ
by at most 1.

This balance condition ensures height Θ(logn) for an AVL tree despite being less
restrictive than requiring the tree to be complete. Complete binary trees have too
rigid a balance condition which is difficult to maintain when new nodes are inserted.

Lemma 3.15. The height of an AVL tree with n nodes is Θ(logn).

Proof. Due to the possibly different heights of its subtrees, an AVL tree of height h
may contain fewer than 2h+1−1 nodes. We will show that it contains at least ch nodes
for some constant c> 1, so that the maximum height of a tree with n items is logc n.

Let Sh be the size of the smallest AVL tree of height h. It is obvious that S0 = 1 (the
root only) and S1 = 2 (the root and one child). The smallest AVL tree of height h has
subtrees of height h− 1 and h− 2, because at least one subtree is of height h− 1 and
the second height can differ at most by 1 due to the AVL balance condition. These
subtrees must also be the smallest AVL trees for their height, so that Sh = Sh−1 +Sh−2 +
1.

By mathematical induction, we show easily that Sh = Fh+3− 1 where Fi is the i-
th Fibonacci number (see Example 1.28) because S0 = F3− 1, S1 = F4− 1, and Si+1 =
(Fi+3−1)+(Fi+2−1)+1≡ Fi+4−1. Therefore, for each AVL tree with n nodes n≥ Sh ≈
φh+3√

5
− 1 where φ ≈ 1.618. Thus, the height of an AVL tree with n nodes satisfies the

following condition: h ≤ 1.44 · lg(n+ 1)− 1.33, and the worst-case height is at most
44% more than the minimum height for binary trees.

Note that AVL trees need in the worst case only about 44% more comparisons
than complete binary trees. They behave even better in the average case. Although
theoretical estimates are unknown, the average-case height of a randomly constructed
AVL tree is close to lgn.

All basic operations in an AVL tree have logarithmic worst-case running time. The
difficulty is, of course, that simple BST insertions and deletions can destroy the AVL
balance condition. We need an efficient way to restore the balance condition when
necessary. All self-balancing binary search trees use the idea of rotation to do this.

Chapter 3: Efficiency of Searching 65

Example 3.16. Figure 3.12 shows a left rotation at the node labelled p and a right
rotation at the node labelled q (the labels are not related to the keys stored in the
BST, which are not shown here). These rotations are mutually inverse operations).
Each rotation involves only local changes to the tree, and only a constant number
of pointers must be updated, independent of the tree size. If, for example, there is a
subtree of large height below a, then the right rotation will decrease the overall tree
height.

q

p

a b

c q

p

a

b c

Right Rotation

Left Rotation

Figure 3.12: Left and right rotations of a BST.

The precise details of exactly when a rotation is required, and which kind, differ
depending on the type of balanced BST. In each case the programming of the inser-
tion and removal operations is quite complex, as is the analysis. We will not go into
more details here — the reader should consult the recommended references.

Balancing of AVL trees requires extra memory and heavy computations. This is
why even more relaxed efficient balanced search trees such as red-black trees are
more often used in practice.

Definition 3.17. A red-black tree is a binary search tree such that every node is
coloured either red or black, and every non-leaf node has two children. In addition,
it satisfies the following properties:

• the root is black;

• all children of a red node must be black;

• every path from the root node to a leaf must contain the same number of black
nodes.

Theorem 3.18. If every path from the root to a leaf contains b black nodes, then the
tree contains at least 2b−1 black nodes.

Proof. The statement holds for b = 1 (in this case the tree contains either the black
root only or the black root and one or two red children). In line with the induction
hypothesis, let the statement hold for all red-black trees with b black nodes in every
path. If a tree contains b+ 1 black nodes in every path and has two black children of
the root, then the tree contains two subtrees with b black nodes just under the root
and has in total at least 1+2 ·(2b−1) = 2b+1−1 black nodes. If the root has a red child,
the latter has only black children, so that the total number of the black nodes can
become even larger.

Each path cannot contain two consecutive red nodes and increase more than
twice after all the red nodes are inserted. Therefore, the height of a red-black tree is
at most 2�lgn�, and the search in it is logarithmic, O(logn).

Red-black trees allow for a very fast search. This data structure has still no precise
analysis of its average-case performance. Its properties are found either experimen-
tally or by analysing red-black trees containing random n keys. There are about lgn

66 Section 3.4: Self-balancing binary and multiway search trees

comparisons per search on the average and fewer than 2lgn+ 2 comparisons in the
worst case. Restoring the tree after insertion or deletion of single node requires O(1)
rotations and O(logn) colour changes in the worst case.

Another variety of balanced tree, the AA-tree, becomes more efficient than a red-
black tree when node deletions are frequent. An AA-tree has only one extra condition
with respect to a red-black tree, namely that the left child may not be red. This prop-
erty simplifies the removal operation considerably.

Balanced B-trees: efficiency of external search

The B-tree is a popular structure for ordered databases in external memory such as
magnetic or optical disks. The previous “Big-Oh” analysis is invalid here because it
assumes all elementary operations have equal time complexity. This does not hold
for disk input / output where one disk access corresponds to hundreds of thousands
of computer instructions and the number of accesses dominates running time. For
a large database of many millions of records, even logarithmic worst-case perfor-
mance of red-black or AA-trees is unacceptable. Each search should involve a very
small number of disk accesses, say, 3–4, even at the expense of reasonably complex
computations (which will still take only a small fraction of a disk access time).

Binary tree search cannot solve the problem because even an optimal tree has
height lgn. To decrease the height, each node must have more branches. The height
of an optimal m-ary search tree (m-way branching) is roughly logm n (see Table 3.2),
or lgm times smaller than with an optimal binary tree (for example, 6.6 times for
m= 100).

Table 3.2: Height of the optimal m-ary search tree with n nodes.

n 105 106 107 108 109

�log2 n� 17 20 24 27 30
�log10n� 5 6 7 8 9
�log100 n� 3 3 4 4 5
�log1000n� 2 2 3 3 3

4,10

1,3 6,8 14,17,20

10 3 4 6 8 10 14 17 20

Figure 3.13: Multiway search tree of order m= 4.

Figure 3.13 shows that the search and the traversal of a multiway search tree gen-
eralize in a straightforward way the binary search tree operations. If in the latter
case the search key is compared to a single key in a node in order to choose one of
two branches or stop in the node, in an m-ary tree, the search key is compared to at
most m−1 keys in a node to choose one of m branches. The major difference is that
multiple data records are now associated only with leaves although some multiway

Chapter 3: Efficiency of Searching 67

trees do not strictly follow this condition. Thus the worst-case and the average-case
search involve the tree height and the average leaf height, respectively.

Example 3.19. Search for a desired key k in Figure 3.13 is guided by thresholds, for
example at the root it goes left if k < 4, down if 4 ≤ k < 10, and right if k ≥ 10. The
analogous comparisons are repeated at every node until the record with the key k
is found at a leaf or its absence is detected. Let k = 17. First, the search goes right
from the root (as 17 > 10), then goes to the third child of the right internal node (as
17≤ 17 < 20), and finally finds the desired record in that leaf.

Definition 3.20. A B-tree of order m is an m-ary tree such that:

• the root is either a leaf or it has between 2 and m children inclusive;

• each nonleaf node (except possibly the root) has between �m/2� andm children
inclusive;

• each nonleaf node with μchildren has μ−1 keys, (θ[i] : i= 1, . . . ,μ−1), to guide
the search where θ[i] is the smallest key in subtree i+ 1;

• all leaves are at the same depth;

• data items are stored in leaves, each storing between �l/2� and l items, for some
l.

Other definitions of B-trees (mostly with minor changes) also exist, but the above
one is most popular. The first three conditions specify the memory space each node
needs (first of all, for m links and m−1 keys) and ensure that more than half of it, ex-
cept possibly in the root, will be used. The last two conditions form a well-balanced
tree.

55 75

84 91

11
13
15
16
18
20
22

23 31 40

23
25
27
28

31
33
34
38
39

40
42
44
50
51
52

60 71

55
57
58
59

60
61
62
65
66
68
70

71
72
73
74

75
77
78
79
82

84
85
89
90

91
93
94
95
98
99

m = 4
l = 7

Figure 3.14: 2–4 B-tree with the leaf storage size 7 (2..4 children per node and 4..7
data items per leaf).

Note. B-trees are usually named by their branching limits, that is, �m/2�–m, so that
2–3 and 6–11 trees are B-trees with m= 3 and m= 11, respectively.

68 Section 3.4: Self-balancing binary and multiway search trees

Example 3.21. In a 2−4 B-tree in Figure 3.14 all nonleaf nodes have between �4/2�=
2 and 4 children and thus from 1 to 3 keys. The number l of data records associated
with a leaf depends on the capacity of external memory and the record size. In Fig-
ure 3.14, l = 7 and each leaf stores between �7/2�= 4 and 7 data items.

Because the nodes are at least half full, a B-tree with m ≥ 8 cannot be a simple
binary or ternary tree. Simple ternary 2–3 B-trees with only two or three children per
node are sometimes in use for storing ordered symbol tables in internal computer
RAM. But branching limits for B-trees on external disks are considerably greater to
make one node fit in a unit data block on the disk. Then the number of nodes exam-
ined (and hence the number of disk accesses) decreases lgm times or more compared
with a binary tree search.

In each particular case, the tree orderm and the leaf capacity l depend on the disk
block size and the size of records to store. Let one disk block hold d bytes, each key
be of κ bytes, each branch address be of b bytes, and the database contain s records,
each of size r bytes. In a B-tree of order m, each nonleaf node stores at most m− 1
keys and m branch addresses, that is, in total, κ(m−1)+bm= (κ+b)m−κ bytes. The
largest orderm such that one node fits in one disk block, (κ+b)m−κ≤ d, ism=

⌊
d+κ
b+κ

⌋
.

Each internal node, except the root, has at least
⌈
m
2

⌉
branches. At most l = d

r records
fit in one block, and each leaf addresses from l

2 to l records. Assuming each leaf is
full, the total number of the leaves is n =

⌈
s
l

⌉
, so that in the worst case the leaves are

at level �logm/2 n�+ 1.

Example 3.22. Suppose the disk block is d = 215 ≡ 32768 bytes, the key size is κ =
26 ≡ 64 bytes, the branch address has b = 8 bytes, and the database contains s =
230 ∼= 1.07 · 109 records of size r = 210 ≡ 1024 bytes each. Then the B-tree order is
m= � 32768+64

8+64 	= � 32832
72 	= 456 so that each internal node, except the root, has at least

228 branches. One block contains at most l = 32768
1024 = 32 records, and the number of

leaves is at least n=
⌈
230/32

⌉
= 225. The worst-case level of the leaves in this B-tree is

�log228 225�+ 1 = �3.19�+ 1 = 5.

Generally, a search in or an insertion into a B-tree of order m with n data records
requires fewer than �logm/2 n� disk accesses, and this number is practically constant
if m is sufficiently big as shown in Table 3.2. The running time becomes even smaller
if the root and the upper two tree levels are stored in internal RAM and the slow disk
accesses occur only for level 3 or higher. The three-level B-tree with m = 456 can
handle up to 4563, or 94,818,816 entries. If in Example 3.22 each key uses only κ = 24
bytes, then m= 1024, and the three-level tree can handle over 109 entries.

Data insertion into a B-tree is simple if the corresponding leaf is not already full.
A full leaf has to be split into two leaves, both having the minimum number of data
items, and the parent node should be updated. If necessary, the splitting propagates
up until it finds a parent that need not be split or reaches the root. Only in the ex-
tremely rare case that the root has to be split, the tree height increases and a new root
with two children (halves of the previous root) is created. Data deletion is also sim-
ple until the leaf is empty and its neighbours must be combined to form a full leaf.
Although the programming is not simple, all changes are well defined. Algorithm
analysis, beyond the scope of this book, shows that both data insertion, deletion,
and retrieval have only about logm

2
n disk accesses in the worst case.

Chapter 3: Efficiency of Searching 69

Exercises

Exercise 3.4.1. Draw two different red-black trees containing at most two black nodes
along every path from the root to a leaf.

Exercise 3.4.2. Draw two different AVL trees of size n = 7 and compare them to the
complete binary tree of the same size. Is the latter also an AVL tree?

Exercise 3.4.3. Draw an AA-tree containing at most 2 black nodes along every path
from a node to a leaf and differing from the complete binary tree of order n= 7.

Exercise 3.4.4. Draw a binary search tree of minimum size such that a left rotation
reduces the height of the tree.

3.5 Hash tables

There are numerous ways to implement the table ADT. We have already seen that
various search trees will do everything required, provided the keys are from some
totally ordered set. If, say, the keys are dictionary words with the usual ordering,
then it is not necessary to use any integer encoding—keys can be compared directly.

Suppose now that we have a very simple situation where the number of possible
keys is small. Then we can just store the values in an array. One array entry can be
reserved in advance for each possible key, and the key-to-value mapping ends up
as a conventional array address. Searching then has worst-case constant time, as
does insertion and deletion. This implementation of a table works well provided the
number of possible keys is sufficiently small.

However, that nice state of affairs does not occur often (we could use it for the
airport codes in Example 3.2). Usually there exists a very large number of possible
keys although only a tiny fraction of them are actually put into use. For example,
suppose that we have a database where each customer is identified by an 8-digit
telephone number. If we have 10 000 customers, only 0.01% of the array addresses
are filled.

There is another technique to store and search for values in symbol tables, called
hashing , that uses less space and retains many (not all) of the benefits of direct array
addressing.

Definition 3.23. Hashing computes an integer hash code for each object using a
hash function that maps objects (for example, keys) to indices of a given linear array
(the hash table).

Hash functions are designed in such a manner that hash codes are computed
quickly. The computation of an array index with a hash function, or “hashing a key
to an index”, depends only on the key to hash and is independent of other keys in the
table. If h(k) is the value of a hash function for k, then the key k should be placed at
location h(k).

The hash function is chosen so as to always return a valid index for the array. A
perfect hash function maps each key to a different index. Unfortunately, it is difficult
to find such a function in most cases.

Example 3.24. Let us map two-digit integer keys onto the ten array indices [0, 1,
. . . , 9] by a simple hash function h(k) = k/10. Then the keys 21 and 27 both have the
hash code 2 pointing to the same position in the array. Such a situation in which
two different keys, k1 �= k2, hash to the same index (table address), h(k1) = h(k2), is
called a collision. Because both table entries (k1,v1) and (k2,v2) cannot be at the
same address, we need a definite collision resolution policy.

70 Section 3.5: Hash tables

Different keys hashed to the same hash address are called synonyms, and data
items with synonymic keys are frequently also referred to as synonyms.

Collision resolution: OALP, OADH, and SC hash tables

There are many collision resolution policies. The main issues are:

• Do we use extra storage, or not?

• Which element moves when a collision occurs: the incumbent element or the
newcomer (or both)?

• How do we decide where to move the evicted element to?

Chaining

In separate chaining synonyms with the same hash address are stored in a linked
list connected to that address. We still hash the key of each item to obtain an array
index. But if there is a collision, the new item is simply placed in this hash address,
along with all other synonyms. Each array element is a head reference for the asso-
ciated linked list, and each node of this list stores not only the key and data values
for a particular table entry but also a link to the next node. The head node of the list
referenced by the array element always contains the last inserted item.

Open addressing

Open addressing uses no extra space for collision resolution. Instead, we move one
of the colliding elements to another slot in the array. We may use LIFO (last-in, first
out — the new element must move), FIFO (first in, first out — the old element must
move), or more complicated methods such as Robin Hood or cuckoo hashing (see
Notes). For our purposes here, we use LIFO.

Each collision resolution policy probes another array slot, and if empty inserts
the currently homeless element. If the probed slot is not empty, we probe again to
find a slot in which to insert the currently homeless element, and so on until we
finish insertion. The probe sequence used can be a simple fixed sequence, or given
by a more complicated rule (but is always deterministic). They all have the property
that they “wrap around” the array when the reach the end. The two most common
probing methods are:

• (Linear probing) always probe the element to the left;

• (Double hashing) probe to the left by an amount determined by the value of a
secondary hash function.

Note. The choice of probing to the left versus probing to the right is clearly a matter
of convention; the reader should note that other books may use rightward probing
in their definitions.

Example 3.25. Table 3.3 shows how OALP fills the hash table of size 10 using the two-
digit keys and the hash function of Example 3.24. The first five insertions have found
empty addresses. However, the key–value pair [31, F] has a collision because the
address h(31) = 3 is already occupied by the pair [39, E] with the same hash address,
h(39) = 3. Thus, the next lower table address, location 2, is probed to see if it is empty,
and in the same way the next locations 1 and 0 are checked. The address 0 is empty
so that the pair [31, F] can be placed there.

Chapter 3: Efficiency of Searching 71

Table 3.3: Open addressing with linear probing (OALP).

Data [key,value] Hash: key/10 Table address Comments
[20,A] 2 2
[15,B] 1 1
[45,C] 4 4
[87,D] 8 8
[39,E] 3 3
[31,F] 3 0 try 3, 2, 1, 0
[24,G] 2 9 try 2, 1, 0, 9

A similar collision occurs when we try to insert the next pair, [24, G], because the
hash address h(24) = 2 for the key 24 is already occupied by the previous pair [20, A].
Consequently, we probe successive lower locations 1 and 0, and since they both are
already occupied, we wrap around and continue the search at the highest location
9. Because it is empty, the pair [24, G] is inserted in this location yielding the final
configuration of the table in Figure 3.3.

OALP is simple to implement but the hash table may degenerate due to clus-
tering . A cluster is a sequence of adjacent occupied table entries. OALP tends to
form clusters around the locations where one or more collisions have occurred. Each
collision is resolved using the next empty location available for sequential probing.
Therefore, other collisions become more probable in that neighbourhood, and the
larger the clusters, the faster they grow. As a result, a search for an empty address to
place a collided key may turn into a very long sequential search.

Another probing scheme, double hashing , reduces the likelihood of clustering.
In double hashing, when a collision occurs, the key is moved by an amount deter-
mined by a secondary hash function Δ. Let hdenote the primary hash function. Then
for each key k we have the starting probe address i0 = h(k) and the probe decrement
Δ(k). Each next successive probe position is it = (it−1−Δ(k)) mod m; t = 1,2, . . . where
m is the table size.

Example 3.26. Table 3.4 shows how OADH fills the same hash table as in Exam-
ple 3.25 if the hash function is given by Δ(k) = (h(k)+ k) mod 10.

Table 3.4: Open addressing with double hashing (OADH).

Data [key,value] Hash: key/10 Table address Comments
[20,A] 2 2
[15,B] 1 1
[45,C] 4 4
[87,D] 8 8
[39,E] 3 3
[31,F] 3 9 using Δ(31) = 4
[24,G] 2 6 using Δ(24) = 6

Now when we try to place the key–value pair [31, F] into position h(31) = 3, the
collision is resolved by probing the table locations with decrement Δ(31) = 4. The
first position, (3−4) mod 10 = 9 is empty so that the pair [31, F] can be placed there.
For the collision of the pair, [24, G], at location 2 the decrement Δ(24) = 6 immedi-

72 Section 3.5: Hash tables

ately leads to the empty location 6. The final table in Figure 3.4 contains three small
clusters instead of one large cluster in Figure 3.3.

Generally, OADH results in more uniform hashing that forms more clusters than
OALP but of smaller sizes. Linear probing extends each cluster from its end with the
lower table address, and nearby clusters join into larger clusters growing even faster.
Double hashing does not extend clusters only at one end and does not tend to join
nearby clusters.

Analysis of hash tables

The time complexity of searching in and inserting items in a hash table of size m
with n already occupied entries is determined by the load factor , λ := n

m . In open
addressing, 0≤ λ < 1: λ equals the fraction of occupied slots in the array, and cannot
be exactly equal to 1 because a hash table should have at least one empty entry in
order to efficiently terminate the search for a key or the insertion of a new key.

Open addressing and separate chaining require n probes in the worst case, since
all elements of the hash table may be synonyms. However the basic intuition is that
provided the table is not too full, collisions should be rare enough that searching for
an element requires only a constant number of probes on average.

Thus we want a result such as: “Provided the load factor is kept bounded (and
away from 1 in the case of open addressing), all operations in a hash table take Θ(1)
time in the average case.”

In order to have confidence in this result, we need to describe our mathematical
model of hashing. Since a good hash function should scatter keys randomly, and we
have no knowledge of the input data, it is natural to use the “random balls in bins”
model. We assume that we have thrown n balls one at a time into m bins, each ball
independently and uniformly at random.

For our analysis, it will be useful to use the function Q defined below.

Definition 3.27. For each integer m,n with 0≤ n≤ m, we define

Q(m,n) =
m!

(m−n)!mn =
m
m
m−1
m

. . .
m−n+ 1

m
.

Note that Q(m,0) = 1.

Basic analysis of collisions

It is obvious that if we have more items than the size of the hash table, at least one
collision must occur. But the distinctive feature of collisions is that they are relatively
frequent even in almost empty hash tables.

The birthday paradox refers to the following surprising fact: if there are 23 or
more people in a room, the chance is greater than 50% that two or more of them have
the same birthday. Note: this is not a paradox in the sense of a logical contradiction,
but just a “counter-intuitive” fact that violates “common sense”.

More precisely, if each of 365 bins is selected with the same chance 1
365 , then after

23 entries have been inserted, the probability that at least one collision has occurred
(at least one bin has at least two balls) is more than 50%. Although the table is only
23/365 (∼= 6.3%) full, more than half of our attempts to insert one more entry will
result in a collision!

Let us see how the birthday paradox occurs. Let m and n denote the size of a table
and the number of items to insert, respectively. Let Prm(n) be the probability of at
least one collision when n balls are randomly placed into m bins.

Chapter 3: Efficiency of Searching 73

Lemma 3.28. The probability of no collisions when n balls are thrown independently
into m boxes uniformly at random is Q(m,n). Thus Prm(n) = 1−Q(m,n) and the ex-
pected number of balls thrown until the first collision is ∑n≤mQ(m,n).

Proof. Let πm(n) be the probability of no collisions. The “no collision” event after
inserting ν items; ν = 2, . . . ,n, is a joint event of “no collision” after inserting the pre-
ceding ν− 1 items and “no collision” after inserting one more item, given ν− 1 po-
sitions are already occupied. Thus Prm(ν) = Prm(ν− 1)Pm(no collision | ν− 1) where
Pm(no collision | ν) denotes the conditional probability of no collision for a single item
inserted into the table with m− ν unoccupied positions. This latter probability is
simply m−ν

m .
This then yields immediately

πm(n) =
m
m
m−1
m

. . .
m−n+ 1

m
=
m(m−1) · · ·(m−n+ 1)

mn =
m!

mn(m−n)!

Therefore, Prm(n) = 1− m!
mn(m−n)! = 1−Q(m,n) which gives the first result.

The number of balls is at least n+ 1 with probability Q(m,n). Since the expected
value of a random variable T taking on nonegative integer values can always be com-
puted byE[T] =∑n≥1 iPr(T = i) =∑ j≥0 Pr(T > j), and these latter probabilities are zero
when j > m, the second result follows.

Table 3.5 presents (to 4 decimal places) some values of Prm(n) for m = 365 and
n = 5 . . .100. As soon as m = 47 (the table with 365 positions is only 12.9% full),
the probability of collision is greater than 0.95. Thus collisions are frequent even
in sparsely occupied tables.

Table 3.5: Birthday paradox: Pr365(n).

n 5 10 15 20 22
Pr365(n) 0.0271 0.1169 0.2529 0.4114 0.4757

n 23 25 30 35 40
Pr365(n) 0.5073 0.5687 0.7063 0.8144 0.8912

n 45 50 55 60 65
Pr365(n) 0.9410 0.9704 0.9863 0.9941 0.9977

n 70 75 80 90 100
Pr365(n) 0.9992 0.9997 0.9999 1.0000 1.0000

Figure 3.15 shows the graph of Pr365(n) as a function of n. The median of this
distribution occurs around n = 23, as we have said above, and so 23 or more balls
suffice for the probability of a collision to exceed 1/2. Also, the expected number of
balls before the first collision is easily computed to be 25.

When the load factor is much less than 1, the average number of balls per bin is
small. If the load factor exceeds 1 then the average number is large. In each case
analysis is not too difficult. For hashing to be practical, we need to be able to fill
a hash table as much as possible before we spend valuable time rehashing — that
is, allocating more space for the table and reassigning hash codes via a new hash
function. Thus we need to analyse what happens when the load factor is comparable
to 1, that is, when the number of balls is comparable to the number of bins. This also
turns out to be the most interesting case mathematically.

74 Section 3.5: Hash tables

0 100 200 300
0

0.2

0.4

0.6

0.8

1.0

Figure 3.15: Birthday paradox: Pr365(n).

Theoretical analysis of hashing

In addition to the basic operations for arrays, we also consider the computation of
the hash address of an item to be an elementary operation.

Chaining is relatively simple to analyse.

Lemma 3.29. The expected running time for unsuccessful search in a hash table
with load factor λ using separate chaining is given by

Tus(λ) = 1 +λ.

The expected running time for successful search is O(1 +λ/2).
Update, retrieval, insertion and deletion all take time that is O(1 +λ).

Proof. In an unsuccessful search for a key k, the computation of the hash address,
h(k), takes one elementary operation. The average running time to unsuccessfully
search for the key at that address is equal to the average length of the associated
chain, λ = n

m . Thus in total Tus(λ) = 1 +λ= 1 +n/m.
The result for successful search and other operations now follows from Lemma 3.3,

since update, retrieval and deletion from a linked list take constant time.

To analyse open addressing, we must make some extra assumptions. We use the
uniform hashing hypothesis: each configuration of n keys in a hash table of size m
is equally likely to occur. This is what we would expect of a truly “random” hash
function, and it seems experimentally to be a good model for double hashing. Note
that this is stronger than just requiring that each key is independently and uniformly
likely to hash initially to each slot before collision resolution (“random balls in bins”).
It also implies that all probe sequences are equally likely.

Lemma 3.30. Assuming the uniform hashing hypothesis holds, the expected num-
ber of probes for search in a hash table satisfy

Tus(λ)≤ 1
1−λ

Chapter 3: Efficiency of Searching 75

and

Tss(λ)≤ 1
λ

ln
1

1−λ
.

Proof. The average number of probes for an unsuccessful search is Tus(λ)=∑n
i=1 ipm,n(i)

where pm,n(i) denotes the probability of exactly iprobes during the search. Obviously,
pm,n(i) = Pr(m,n, i)−Pr(m,n, i+1) where Pr(m,n, i) is the probability of i or more probes
in the search. By a similar argument to that used in the birthday problem analysis
we have for i≥ 2

Pr(m,n, i) =
n
m
· n−1
m−1

· · · n− i+ 2
m− i+ 2

while Pr(m,n,1) = 1. Note that clearly Pr(m,n, i)≤ (n/m)i−1 = λi−1. Thus

Tus(λ) =
n

∑
i=1

i(Pr(n,m, i)−Pr(n,m, i+ 1))

≤
∞

∑
i=1

i(Pr(n,m, i)−Pr(n,m, i+ 1)) =
∞

∑
i=1

Pr(n,m, i)≤
∞

∑
i=1

λi−1 =
1

1−λ
=

m
m−n .

The result for successful search now follows by averaging. We have

Tss(λ)≤ 1
n

m−1

∑
i=0

m
m− i

=
1
λ

m

∑
j=m−n+1

1
j

≤ 1
λ

Z n

n−m
dx/x=

1
λ

ln

(
m

m−n
)

=
1
λ

ln

(
1

1−λ

)
.

Note. It can be shown that the exact values are

Tus(λ) =
m+ 1

m−n+ 1
≈ 1

1−λ

Tss(λ) =
m+ 1
n

(Hm+1−Hm−n+1)≈ 1
λ

ln

(
1

1−λ

)

so that the upper bounds in the theorem are asymptotically precise as m→ ∞.

Good implementations of OADH have been shown in theory and practice to be
well described by the simple uniform hashing model above, so we may safely use the
above results.

However, OALP is not well described by the uniform hashing model, because of
its clustering behaviour. It can be analysed, however, in a similar but more compli-
cated manner.

Lemma 3.31. Assuming uniformly hashed random input, the expected number of
probes for successful, Tss(λ), and unsuccessful, Tus(λ), search in a hash table using
OALP are, respectively,

Tss(λ)≈ 0.5

(
1 +

1
1−λ

)
and Tus(λ)≈ 0.5

(
1 +
(

1
1−λ

)2
)

Proof. The proof is beyond the scope of this book (see Notes).

76 Section 3.5: Hash tables

The relationships in Lemma 3.31 and Lemma 3.30 completely fail when λ= 1. But
the latter situation indicates a full hash table, and we should avoid getting close to it
anyway.

Unlike OALP and OADH, the time estimates for separate chaining (SC) remain
valid with data removals. Because each chain may keep several table elements, the
load factor may be more than 1.

Table 3.6: Average search time bounds in hash tables with load factor λ.

λ Successful search: Tss(λ) Unsuccessful search: Tus(λ)
SC OALP OADH SC OALP OADH

0.10 1.05 1.06 1.05 1.10 1.12 1.11
0.25 1.12 1.17 1.15 1.25 1.39 1.33
0.50 1.25 1.50 1.39 1.50 2.50 2.0
0.75 1.37 2.50 1.85 1.75 8.50 4.0
0.90 1.45 5.50 2.56 1.90 50.5 10.0
0.99 1.49 50.5 4.65 1.99 5000.0 100.0

Table 3.6 presents the above theoretical estimates of the search time in the OALP,
OADH, and SC hash tables under different load factors. Average time measurements
for actual hash tables [21] are close to the estimates for SC tables in the whole range
λ≤ 0.99 and seem to be valid for larger values of λ, too. The measurements for OADH
tables remain also close to the estimates up to λ = 0.99. But for OALP tables, the
measured time is considerably less than the estimates if λ > 0.90 for a successful
search and λ > 0.75 for an unsuccessful search.

Example 3.32. The expected performance of hashing depends only on the load fac-
tor. If λ = 0.9, OADH double hashing takes on the average 2.56 and 10 probes for
successful and unsuccessful search, respectively. But if λ = 0.5, that is, the same keys
are stored in a roughly twice larger table, the same numbers decrease to 1.39 and 2
probes.

Implementation of hashing

Resizing

One problem with open addressing is that successive insertions may cause the table
to become almost full, which degrades performance. Eventually we will need to in-
crease the table size. Doing this each time an element is inserted is very inefficient.
It is better to use an upper bound, say 0.75, on the load factor, and to double the
array size when this threshold is exceeded. This will then require recomputing the
addresses of each element using a new hash function.

The total time required to resize, when growing a table from 0 tom= 2k elements,
is of order 1 + 2 + 4 + 8 + · · ·+ 2k−1 = 2k− 1 = n− 1. Since the n insertions take time
of order n (recall the table always has load factor bounded away from 1), the average
insertion time is still Θ(1).

Deletion

It is quite easy to delete a table entry from a hash table with separate chaining (by
mere node deletion from a linked list). However, open addressing encounters diffi-
culties. If a particular table entry is physically removed from a OA-hash table leaving
an empty entry in that place, the search for subsequent keys becomes invalid. This is

Chapter 3: Efficiency of Searching 77

because the OA-search terminates when the probe sequence encounters an empty
table entry. Thus if a previously occupied entry is emptied, all probe sequences that
previously travelled through that entry will now terminate before reaching the right
location.

To avoid this problem, the deleted entry is normally marked in such a way that
insertion and search operations can treat it as an empty and nonempty location,
respectively. Unfortunately, such a policy results in hash tables packed with entries
which are marked as deleted. But in this case the table entries can be rehashed to
preserve only actual data and really delete all marked entries. In any case, the time
to delete a table entry remains O(1) both for SC and OA hash tables.

Choosing a hash function

Ideally, the hash function, h(k), has to map keys uniformly and randomly onto the
entire range of hash table addresses. Therefore, the choice of this function has much
in common with the choice of a generator of uniformly distributed pseudorandom
numbers. A randomly chosen key k has to equiprobably hash to each address so that
uniformly distributed keys produce uniformly distributed indices h(k). A poorly de-
signed hash function distributes table addresses nonuniformly and tends to cluster
indices for contiguous clusters of keys. A well designed function scatters the keys as
to avoid their clustering as much as possible.

If a set of keys is fixed, there always exists a that maps the set one-to-one onto
a set of table indices and thus entirely excludes collisions. However, the problem is
how to design such a function as it should be computed quickly but without using
large tables. There exist techniques to design perfect hash functions for given sets
of keys. But perfect hashing is of very limited interest because in most applications
data sets are not static and the sets of keys cannot be pre-determined.

Four basic methods for choosing a hash function are division, folding , middle-
squaring , and truncation.

Division assuming the table size is a prime number m and keys, k, are integers, the
quotient, q(k,m) =

⌊
k
n

⌋
, and the remainder, r(k,m) = k modm, of the integer di-

vision of k by m specify the probe decrement for double hashing and the value
of the hash function h(k), respectively:

h(k) = r(k,m) and Δ(k) = max{1, q(k,m) mod m} .

The probe decrement is put to the range [1, . . . ,m− 1] because all decrements
should be nonzero and point to the indices [0,1, . . . ,m− 1] of the table. The
reason thatm should be prime is that otherwise some slots may be unreachable
by a probe sequence: for example if m = 12 and Δ(k) = 16, only 3 slots will be
probed before the sequence returns to the starting position.

Folding an integer key k is divided into sections and the value h(k) combines sums,
differences, and products of the sections (for example, a 9-digit decimal key,
such as k = 013402122, can be split into three sections: 013, 402, and 122, to be
added together for getting the value h(k) = 537 in the range [0, . . . ,2997]).

Middle-squaring a middle section of an integer key k, is selected and squared, then
a middle section of the result is the value h(k) (for example, the squared middle
section, 402, of the above 9-digit key, k = 013402122, results in 161604, and the
middle four digits give the value h(k) = 6160 in the range [0, . . . ,9999]).

Truncation parts of a key are simply cut out and the remaining digits, or bits, or
characters are used as the value h(k) (for example, deletion of all but last three

78 Section 3.5: Hash tables

digits in the above 9-digit key, k = 013402122, gives the value h(k) = 122 in the
range [0, . . . ,999]). While truncation is extremely fast, the keys do not scatter
randomly and uniformly over the hash table indices. This is why truncation is
used together with other methods, but rarely by itself.

Many real-world hash functions combine some of the above methods.
We conclude by discussing the idea of universal hashing. We have seen (in the

section on quicksort) the idea of using randomization to protect against bad worst-
case behaviour. An analogous idea works for hashing.

If a hash table is dynamically changing and its elements are not known in ad-
vance, any fixed hash function can result in very poor performance on certain in-
puts, because of collisions. Universal hashing allows us to reduce the probability of
this occurrence by randomly selecting the hash function at run time from a large
set of such functions. Each selected function still may be bad for a particular input,
but with a low probability which remains equally low if the same input is met once
again. Due to its internal randomisation, universal hashing behaves well even for
totally nonrandom inputs.

Definition 3.33. Let K, m, and F denote a set of keys, a size of a hash table (the range
of indices), and a set of hash functions mapping K to {0, . . . ,m−1}, respectively. Then
F is a universal class if any distinct pair of keys k,κ ∈ K collide for no more than 1

m of
the functions in the class F , that is,

1
|F |
∣∣∣{h ∈ F | h(k) = h(κ)}

∣∣∣≤ 1
m

.

Thus in the universal class all key pairs behave well and the random selection of
a function from the class results in a probability of at most 1

m that any pair collide.
One popular universal class of hashing functions is produced by a simple division

method. It assumes the keys are integers and cardinality of the set of keys K is a
prime number larger than the largest actual key. The size m of the hash table can be
arbitrary. This universal class is described by the next theorem.

Theorem 3.34 (Universal Class of Hash Functions). Let K = {0, . . . , p−1} and |K|= p
be a prime number. For any pair of integers a ∈ {1, . . . , p−1} and b ∈ {0, . . . , p−1}, let
ha,b(k) = ((ak+b) mod p) mod m. Then

F = {ha,b | 1≤ a< p and 0≤ b< p}
is a universal class.

Proof. It is easily shown that the number of collisions in the class F ,∣∣∣{h ∈ F | h(k) = h(κ); k,κ ∈ K}
∣∣∣ ,

is the number of distinct numbers (x,y); 0≤ x,y< p such that x mod n = y mod m. Let
us denote the latter property: x≡ y (mod m). It is evident that ha,b(k) = ha,b(κ) iff

(ak+b) mod p≡ (aκ+b) mod p (mod m) .

Then for any fixed k,κ< p, there is one-to-one correspondence between the pairs
(a,b) such that 0 < a < p and 0 < b < p and ha,b(k) = ha,b(κ), and the pairs of distinct
numbers (x,y) with the property that 0 ≤ x,y < p and x ≡ y (mod n). The correspon-
dence is given in one direction by

x= (ak+b) mod p; y= (aκ+b) mod p

Chapter 3: Efficiency of Searching 79

where x �= y since
{az+b | z= 0, . . . , p−1}= {0, . . . , p−1}

when p is prime and a �= 0. In the other direction the correspondence is given by the
condition that a and b are the unique integers in {0, . . . , p−1} such that

ak+b≡ x (mod p) and aκ+b≡ y (mod p) .

These equations have a unique solution for a and b since p is prime, and a �= 0 since
x �= y.

Clearly |F| = p(p− 1). Now let us find out how many pairs of distinct numbers
(x,y) exist such that 0≤ x,y< p and x≡ y (mod m). For any fixed s<m there are at most⌈ p
m

⌉
numbers x< p such that x≡ s (mod m). Since p andm are integers,

⌈ p
m

⌉≤ p−1
m +1.

Therefore for each x < p there are no more than p
m − 1 ≤ p−1

m numbers y < p distinct
from x such that x ≡ y (mod m), and the total number of such pairs (x,y) is at most
p(p−1)
m . Hence for any fixed distinct pair of keys (k,κ) the fraction of F that cause k

and κ to collide is at most 1
m , so the class F is universal.

This suggests the following strategy for choosing a hash function at run time: (i)
find the current size of the set of keys to hash; (ii) select the next prime number p
larger than the size of the key set found; (iii) randomly choose integers a and b such
that 0 < a< p and 0≤ b< p, and (iv) use the function ha,b defined in Theorem 3.34.

Exercises

Exercise 3.5.1. The Java programming language (as of time of writing) uses the fol-
lowing hash function h for character strings. Each character has a Unicode value
represented by an integer (for example, the upper case letters A,B, . . . ,Z correspond
to 65,66, . . . ,90 and the lower case a,b, . . . ,z correspond to 97,98, . . . ,122). Then h is
computed using 32-bit integer addition via

h(s) = s[0]∗ 31n−1 + s[1]∗ 31n−2 + · · ·+ s[n−1]∗ 31 + s[n].

Find two 2-letter strings that have the same hash value. How could you use this
to make 2100 different strings all of which have the same hash code?

Exercise 3.5.2. Place the sequence of keys k = 10,26,52,76,13,8,3,33,60,42 into a
hash table of size 13 using the modulo-based hash address i = k mod 13 and linear
probing to resolve collisions.

Exercise 3.5.3. Place the sequence of keys k = 10,26,52,76,13,8,3,33,60,42 into a
hash table of size 13 using the modulo-based hash address i= k mod 13 and double
hashing with the secondary hash function Δ(k) = max{1,k/13} to resolve collisions.

Exercise 3.5.4. Place the sequence of keys k = 10,26,52,76,13,8,3,33,60,42 into a
hash table of size 13 using separate chaining to resolve collisions.

3.6 Notes

Binary search, while apparently simple, is notoriously hard to program correctly
even for professional programmers: see [3] for details.

The expected height of a randomly grown BST was shown to be Θ(logn) by J. M.
Robson in 1979. After much work by many authors it is now known that the average

80 Section 3.6: Notes

value is tightly concentrated around α lnn where α is the root of x ln(2e/x) = 1, α ∼=
4.311.

The historically first balanced binary search tree was proposed in 1962 by G. M.
Adelson-Velskii and E. M. Landis, hence the name AVL tree. Red-black trees were de-
veloped in 1972 by R. Bayer under the name “symmetric binary B-trees” and received
their present name and definition from L. Guibas and R. Sedgewick in 1978. AA-trees
were proposed by A. Anderson in 1993.

Multiway B-trees were proposed in 1972 by R. Bayer and E. McCreight.
According to D. Knuth, hashing was invented at IBM in early 1950’s simultane-

ously and independently by H. P. Luhn (hash tables with SC) and G. M. Amdahl
(OALP).

The analysis of OALP hashing was first performed by D. Knuth in 1962. This was
the beginning of the modern research field of analysis of algorithms.

The random balls in bins model can be analysed in detail by more advanced
methods than we present in this book (see for example [9]). Some natural questions
are

• When do we expect all bins to have at least one ball?

• What proportion of boxes are expected to be empty when n≈ m?

• What is the expected maximum number of balls in a box when n≈ m?

The answers are applicable to our analysis of chaining: when are all chains expected
to be nonempty? how many chains are empty when the average chain length is Θ(1)?
what is the maximum chain length when the average chain length is Θ(1)? The an-
swers are known to be, respectively: when n≈m lnm; about e−λ; Θ(logn/ loglogn). The
last result is much harder to derive than the other two.

Part II

Introduction to Graph Algorithms

Chapter 4

The Graph Abstract Data Type

Many real-world applications, such as building compilers, finding routing proto-
cols in communication networks, and scheduling processes, are well modelled using
concepts from graph theory. A (directed) graph is an abstract mathematical model:
a set of points and connection relations between them.

4.1 Basic definitions

Graphs can be studied from a purely mathematical point of view (“does something
exist, can something be done?”). In this book we focus on algorithmic aspects of
graph theory (“how do we do it efficiently and systematically?”). However, the math-
ematical side is where we must start, with precise definitions. The intuition behind
the definitions is not hard to guess.

We start with the concept of digraph (the word stands for directed graph). A good
example to keep in mind is a street network with one-way streets.

Definition 4.1. A digraph G= (V,E) is a finite nonempty setV of nodes together with
a (possibly empty) set E of ordered pairs of nodes of G called arcs.

Note. In the mathematical language of relations, the definition says that E is a rela-
tion on V . If (u,v) ∈ E, we say that v is adjacent to u, that v is an out-neighbour of u,
and that u is an in-neighbour of v.

We can think of a node as being a point and an arc as an arrow from one node
to another. This allows us to draw pictures that suggest ideas. The pictures cannot
prove anything, however.

Very often the adjacency relation is symmetric (all streets are two-way). There are
two ways to deal with this. We can use a digraph that happens to be symmetric (in
other words, (u,v) is an arc if and only if (v,u) is an arc). However, it is sometimes
simpler to reduce this pair of arcs into a single undirected edge that can be traversed
in either direction.

Definition 4.2. A graph G= (V,E) is a finite nonempty setV of vertices together with
a (possibly empty) set E of unordered pairs of vertices of G called edges.

Note. Since we defined E to be a set, there are no multiple arcs/edges between a
given pair of nodes/vertices.

84 Section 4.1: Basic definitions

G1 G20

1 2

3 4

0

1 2

3 4

Figure 4.1: A graph G1 and a digraph G2.

Non-fluent speakers of English please note: the singular of “vertices” is not “ver-
tice”, but “vertex”.

For a given digraph G we may also denote the set of nodes byV (G) and the set of
arcs by E(G) to lessen any ambiguity.

Example 4.3. We display a graphG1 and a digraphG2 in Figure 4.1. The nodes/vertices
are labelled 0,1, . . . as in the picture. The arcs and edges are as follows.

E(G1) = {{0,1},{0,2},{1,2},{2,3},{2,4},{3,4}}

E(G2) = {(0,2),(1,0),(1,2),(1,3),(3,1),(3,4),(4,2)}

Note. Some people like to view a graph as a special type of digraph where every un-
ordered edge {u,v} is replaced by two directed arcs (u,v) and (v,u). This has the ad-
vantage of allowing us to consider only digraphs, and we shall use this approach in
our Java implementation in Appendix B. It works in most instances.

However, there are disadvantages; for some purposes we must know whether our
object is really a graph or just a symmetric digraph. Whenever there is (in our opin-
ion) a potential ambiguity, we shall point it out.

Example 4.4. Every rooted tree (see Section E.7) can be interpreted as a digraph:
there is an arc from each node to each of its children.

Every free tree is a graph of a very special type (see Appendix E.7).

Note. (Graph terminology) The terminology in this subject is unfortunately not com-
pletely standard. Some authors call a graph by the longer term “undirected graph”
and use the term “graph” to mean what we call a directed graph. However when us-
ing our definition of a graph, it is standard practice to abbreviate the phrase “directed
graph” with the word digraph.

We shall be dealing with both graphs and digraphs throughout these notes. In
order to save writing “(di)graph” too many times, we make the following conven-
tion. We treat the digraph as the fundamental concept. In other words, we shall use
the terminology of digraphs, nodes and arcs, with the understanding that if this is
changed to graphs, edges, and vertices, the resulting statement is still true. However,
if we talk about graphs, edges, and vertices, our statement is not necessarily true for
digraphs. Whenever a result is true for digraphs but not for graphs, we shall say this
explicitly (this happens very rarely).

Chapter 4: The Graph Abstract Data Type 85

There is another convention to discuss. An arc that begins and ends at the same
node is called a loop. We make the convention that loops are not allowed in our di-
graphs. Again, other authors may differ. If our conventions are relaxed to allow mul-
tiple arcs and/or loops, many of the algorithms below work with no modification or
with only very minor modification required. However dealing with loops frequently
requires special cases to be considered, and would distract us from our main goal of
introducing the field of graph algorithms. As an example of the problems caused by
loops, suppose that we represent a graph as a symmetric digraph as described above.
How do we represent a loop in the graph?

Definition 4.5. The order of a digraph G = (V,E) is |V |, the number of nodes. The
size of G is |E|, the number of arcs.

We usually use n to denote |V | and m to denote |E|.
For a given n, the value of m can be as low as 0 (a digraph consisting of n totally

disconnected points) and as high as n(n−1) (each node can point to each other node;
recall that we do not allow loops). If m is toward the low end, the digraph is called
sparse, and ifm is toward the high end, then the digraph is called dense. These terms
are obviously very informal. For our purposes we will call a class of digraphs sparse
if m is O(n) and dense if m is Ω(n2).

Definition 4.6. A walk in a digraph G is a sequence of nodes v0 v1 . . . vl such that, for
each i with 0 ≤ i < l, (vi,vi+1) is an arc in G. The length of the walk v0 v1 . . . vl is the
number l (that is, the number of arcs involved).

A path is a walk in which no node is repeated. A cycle is a walk in which v0 = vl
and no other nodes are repeated.

Thus in a graph, we rule out a walk of the form uvu as a cycle (going back and
forth along the same edge should not count as a cycle). A cycle in a graph must be of
length at least 3.

It is easy to see that if there is a walk from u to v, then (by omitting some steps if
necessary) we can find a path from u to v.

Example 4.7. For the graph G1 of Figure 4.1 the following sequences of vertices are
classified as being walks, paths, or cycles.

vertex sequence walk? path? cycle?
032 no no no
01234 yes yes no
0120 yes no yes
123420 yes no no
010 yes no no

Example 4.8. For the digraph G2 of Figure 4.1 the following sequences of nodes are
classified as being walks, paths, or cycles.

node sequence walk? path? cycle?
01234 no no no
312 yes yes no
131 yes no yes
1312 yes no no
024 no no no

86 Section 4.1: Basic definitions

Definition 4.9. In a graph, the degree of a vertex v is the number of edges meeting v.
In a digraph, the outdegree of a node v is the number of out-neighbours of v, and the
indegree of v is the number of in-neighbours of v.

A node of indegree 0 is called a source and a node of outdegree 0 is called a sink.

If the nodes have a natural order, we may simply list the indegrees or outdegrees
in a sequence.

Example 4.10. For our graph G1, the degree sequence is (2,2,4,2,2). The in-degree
sequence and out-degree sequence of the digraph G2 are (1,1,3,1,1) and (1,3,0,2,1),
respectively. Node 2 is a sink.

Definition 4.11. The distance from u to v in G, denoted by d(u,v), is the minimum
length of a path from u to v. If no path exists, the distance is undefined (or +∞).

For graphs, we have d(u,v) = d(v,u) for all vertices u,v.

Example 4.12. In graph G1 of Figure 4.1, we can see by considering all possibilities
that d(0,1) = 1, d(0,2) = 1, d(0,3) = 2, d(0,4) = 2, d(1,2) = 1, d(1,3) = 2, d(1,4) = 2,
d(2,3) = 1, d(2,4) = 1 and d(3,4) = 1.

In digraph G2, we have, for example, d(0,2) = 1,d(3,2) = 2. Since node 2 is a sink,
d(2,v) is not defined unless v= 2, in which case the value is 0.

There are several ways to create new digraphs from old ones.
One way is to delete (possibly zero) nodes and arcs in such a way that the resulting

object is still a digraph (there are no arcs missing any endpoints!).

Definition 4.13. A subdigraph of a digraph G= (V,E) is a digraph G′ = (V ′,E ′) where
V ′ ⊆ V and E ′ ⊆ E. A spanning subdigraph is one with V ′ = V ; that is, it contains all
nodes.

Example 4.14. Figure 4.2 shows (on the left) a subdigraph and (on the right) a span-
ning subdigraph of the digraph G2 of Figure 4.1.

1 2

3

0

4

12

3

Figure 4.2: A subdigraph and a spanning subdigraph of G2.

Definition 4.15. The subdigraph induced by a subset V ′ of V is the digraph G′ =
(V ′,E ′) where E ′ = {(u,v) ∈ E | u ∈V ′ and v ∈V ′}.
Example 4.16. Figure 4.3 shows the subdigraph of the digraph G2 of Figure 4.1 in-
duced by {1,2,3}.

We shall sometimes find it useful to “reverse all the arrows”.

Chapter 4: The Graph Abstract Data Type 87

1

3

2

Figure 4.3: The subdigraph of G2 induced by {1,2,3}.

Definition 4.17. The reverse digraph of the digraph G = (V,E), is the digraph Gr =
(V,E ′) where (u,v) ∈ E ′ if and only if (v,u) ∈ E.

Example 4.18. Figure 4.4 shows the reverse of the digraph G2 of Figure 4.1.

0

1 2

43

Figure 4.4: The reverse of digraph G2.

It is sometimes useful to replace all one-way streets with two-way streets. The
formal definition must take care not to introduce multiple edges. Note below that if
(u,v) and (v,u) belong to E, then only one edge joins u and v in G′. This is because
{u,v} and {v,u} are equal as sets, so appear only once in the set E ′.

Definition 4.19. The underlying graph of a digraphG=(V,E) is the graphG′=(V,E ′)
where E ′ = {{u,v} | (u,v) ∈ E}.
Example 4.20. Figure 4.5 shows the underlying graph of the digraph G2 of Figure 4.1.

We may need to combine two or more digraphs G1,G2, . . .Gk into a single graph
where the vertices of eachGi are completely disjoint from each other and no arc goes
between the different Gi. The constructed graph G is called the graph union, where
V (G) =V (G1)∪V (G2)∪ . . .∪V (Gk) and E(G) = E(G1)∪E(G2)∪ . . .∪E(Gk).

Exercises

Exercise 4.1.1. Prove that in a digraph, the sum of all outdegrees equals the sum of
all indegrees. What is the analogous statement for a graph?

Exercise 4.1.2. Let G be a digraph of order n and u,v nodes of G. Show that d(u,v)≤
n−1 if there is a walk from u to v.

88 Section 4.2: Digraphs and data structures

0

1 2

3 4

Figure 4.5: The underlying graph of G2.

Exercise 4.1.3. Prove that in a sparse digraph, the average indegree of a node isO(1),
while in a dense digraph, the average indegree of a node is Ω(n).

4.2 Digraphs and data structures

In order to process digraphs by computer we first need to consider how to represent
them in terms of data structures. There are two common computer representations
for digraphs, which we now present. We assume that the digraph has the nodes given
in a fixed order. Our convention is that the vertices are labelled 0,1, . . . ,n−1.

Definition 4.21. Let G be a digraph of order n. The adjacency matrix of G is the n×n
boolean matrix (often encoded with 0’s and 1’s) such that entry (i, j) is true if and
only if there is an arc from the node i to node j.

Definition 4.22. For a digraph G of order n, an adjacency lists representation is a
sequence of n sequences, L0, . . . ,Ln−1. Sequence Li contains all nodes of G that are
adjacent to node i.

The sequence Li may or may not be sorted in order of increasing node number.
Our convention is to sort them whenever it is convenient. (However, many imple-
mentations, such as the one given in Appendix B, do not enforce that their adjacency
lists be sorted.)

We can see the structure of these representations more clearly with examples.

Example 4.23. For the graph G1 and digraph G2 of Example 4.3, the adjacency ma-
trices are given below.

G1 :

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ G2 :

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 1 1 0
0 0 0 0 0
0 1 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

Notice that the number of 1’s in a row (column) is the outdegree (indegree) of the
corresponding node. The corresponding adjacency lists are now given.

Chapter 4: The Graph Abstract Data Type 89

G1 :

1 2
0 2
0 1 3 4
2 4
2 3

G2 :

2
0 2 3

1 4
2

Note. Only the out-neighbours are listed in the adjacency lists representation. An
empty sequence can occur (for example, sequence 2 of the digraph G2). If the nodes
are not numbered in the usual way (for example, they are numbered 1, . . . ,n or la-
belled A,B,C, . . .), we may include these labels if necessary.

It is often useful to input several digraphs from a single file. Our standard format
is as follows. The file consists of several digraphs one after the other. To distinguish
the beginning of one and the end of the other we have a single line giving the order at
the beginning of each graph. If the order is n then the next n lines give the adjacency
matrix or adjacency lists representation of the digraph. The end of the file is marked
with a line denoting a digraph of order 0.

Example 4.24. Here is a file consisting of 3 digraphs, of orders 4, 3, 0 respectively.
The first contains a sink and hence there is a blank line.

4

1 2
3

0 1 2

3

2
0
1

0

There are also other specialized (di)graph representations besides the two men-
tioned in this section. These data structures take advantage of special structure for
improved storage or access time, often for families of graphs sharing a common
property. For such specialized purposes they may be better than either the adja-
cency matrix or lists representations.

For example, trees can be stored more efficiently. We have already seen in Sec-
tion 2.5 how a complete binary tree can be stored in an array. A general rooted tree
of n nodes can be stored in an array pred of size n. The value pred[i] gives the parent
of node i. The root is a special case and can be given value −1 (representing a NULL
pointer), for example, if we number nodes from 0 to n− 1 in the usual way. This of
course is a form of adjacency lists representation, where we use in-neighbours in-
stead of out-neighbours.

We will sometimes need to represent ∞ when processing graphs. For example,
it may be more convenient to define d(u,v) = ∞ than to say it is undefined. From a
programming point of view, we can use any positive integer that can not be confused
with any other that might legitimately arise. For example, the distance between 2
nodes in a digraph on n nodes cannot be more than n− 1 (see Exercise 4.1.2). Thus
in this case we may use n to represent the fact that there is no path between a given
pair of nodes. We shall return to this subject in Chapter 6.

90 Section 4.3: Implementation of digraph ADT operations

Exercises

Exercise 4.2.1. Write down the adjacency matrix of the digraph of order 7 whose ad-
jacency lists representation is given below.

2
0
0 1
4 5 6
5
3 4 6
1 2

Exercise 4.2.2. Consider the digraph G of order 7 whose adjacency matrix represen-
tation is given below. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1 0
1 0 0 1 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Write down the adjacency lists representation of G.

Exercise 4.2.3. Consider the digraph G of order 7 given by the following adjacency
lists representation.

2
0
0 1
4 5 6
5
3 4 6
1 2

Write down the adjacency matrix representation of the reverse digraph Gr.

Exercise 4.2.4. Consider the digraph G whose nodes are the integers from 1 to 12
inclusive and such that (i, j) is an arc if and only if i is a proper divisor of j (that is, i
divides j and i �= j).

Write down the adjacency lists representation of G and of Gr.

Exercise 4.2.5. Write the adjacency lists and adjacency matrix representation for a
complete binary tree with 7 vertices, assuming they are ordered 1, . . . ,7 as in Sec-
tion 2.5.

4.3 Implementation of digraph ADT operations

In this section we discuss the implementation of basic digraph operations we have
seen in Section 4.1.

A matrix is simply an array of arrays. The lists representation is really a list of lists,
but a list can be implemented in several ways, for example by an array or singly- or
doubly-linked list using pointers. These have different properties (see Section D.1);

Chapter 4: The Graph Abstract Data Type 91

Table 4.1: Digraph operations in terms of data structures.

Operation Adjacency Matrix Adjacency Lists
arc (i, j) exists? is entry (i, j) 0 or 1 find j in list i
outdegree of i scan row, count 1’s size of list i
indegree of i scan column, count 1’s for j �= i, find i in list j
add arc (i, j) change entry (i, j) insert j in list i
delete arc (i, j) change entry (i, j) delete j from list i
add node create new row and column add new list at end
delete node i delete row/column i delete list i

shuffle other entries for j �= i, delete i from list j

for example, accessing the middle element is Θ(1) for an array but Θ(n) for a linked
list. In any case, however, to find a value that may or may not be in the list requires
sequential search and takes Θ(n) time in the worst case.

We now discuss the comparative performance of some basic operations using the
different data structures. In Table 4.1 we show how the basic graph operations can
be described in terms of the adjacency matrix or lists representations.

For example, suppose we wish to check whether arc (i, j) exists. Using the adja-
cency matrix representation, we are simply accessing an array element twice. How-
ever, with the lists representation, we will need to find j in list i. Adding a node in
the lists case is easy, since we just add an empty list at the end, but adding a node
with the matrix representation requires us to allocate an extra row and column of
zeros. Deleting a node (which perhaps necessitates deleting some arcs) is trickier. In
the matrix case, we must delete a row and column, and move up some elements so
there are no gaps in the matrix. In the lists case, we must remove a list and also all
references to the deleted node in other lists. This requires scanning each list for the
offending entry and deleting it.

In Table 4.2 we compare the performance of two different data structures. There
are several ways to implement a list, and hence the square of that number of ways
to implement an adjacency lists representation. We have chosen one, an array of
doubly linked lists, for concreteness.

For example, finding j in list i will take time in the worst case Θ(d), where d is the
size of list i, which equals the outdegree of i. In the worst case this might be Θ(m)
since all nodes but i might be sinks. On the other hand, for a sparse digraph, the
average outdegree is Θ(1), so arc lookup can be done on average in constant time.
Note that if we want to print out all arcs of a digraph, this will take time Θ(n+m) in
the lists case and Θ(n2) in the matrix case.

Finding outdegree with the lists representation merely requires accessing the cor-
rect list (constant time) plus finding the size of that list (constant time). Finding in-
degree with the lists representation requires scanning all lists except one, and this
requires us to look at every arc in the worst case, taking time Θ(n+m) (the n is be-
cause we must consider every node’s list even if it is empty). If we wish to compute
just one indegree, this might be acceptable, but if all indegrees are required, this will
be inefficient. It is better to compute the reverse digraph once and then read off the
outdegrees, this last step taking time Θ(n) (see Exercise 4.3.1).

One way around all this work is to use in our definition of adjacency lists repre-
sentation, instead of just the out-neighbours, a list of in-neighbours also. This may
be useful in some contexts but in general requires more space than is needed.

92 Section 4.4: Notes

Table 4.2: Comparative worst-case performance of adjacency lists and matrices.

Operation matrix lists
arc (i, j) exists? Θ(1) Θ(d)
outdegree of i Θ(n) Θ(1)
indegree of i Θ(n) Θ(n+m)
add arc (i, j) Θ(1) Θ(1)
delete arc (i, j) Θ(1) Θ(d)
add node Θ(n) Θ(1)
delete node i Θ(n2) Θ(n+m)

We conclude by discussing space requirements. The adjacency matrix represen-
tation requires Θ(n2) storage: we simply need n2 bits. It appears that an adjacency
lists representation requires Θ(n+m) storage, since we must store an endpoint of
each arc, and we need to allocate space for each node’s list. However this is not
strictly true for large graphs. Each node number requires some storage; the number k
requires on average Θ(logk) bits. If, for example, we have a digraph on n nodes where
every possible arc occurs, then the total storage required is of order n2 logn, worse
than with a matrix representation. For small, sparse digraphs, it is true that lists use
less space than a matrix, whereas for small dense digraphs the space requirements
are comparable. For large sparse digraphs, a matrix can still be more efficient, but
this happens rarely.

The remarks above show that it is not immediately clear which representation to
use. We will mostly use adjacency lists, which are clearly superior for many common
tasks (such as graph traversals, covered in Chapter 5) and generally better for sparse
digraphs.

Any implementation of an abstract data type (for example as a Java class) must in-
clude objects and “methods”. While most people would include methods for adding
nodes, deleting arcs, and so on, it is not clear where to draw the line. In Appendix B,
one way of writing Java classes to deal with graphs is presented in detail. There are
obviously a lot of different choices one can make. In particular for our Java lists rep-
resentation we use ArrayList<ArrayList<Integer>>.

Exercises

Exercise 4.3.1. Show how to compute the (sorted) adjacency lists representation of
the reverse digraph of G from the (sorted) adjacency lists representation of G itself.
It should take time Θ(n+m).

4.4 Notes

This chapter shows how to represent and process graphs with a computer. Although
Appendix B uses the Java programming language, the ideas and algorithms are ap-
plicable to other industrial programming languages. For example, C++ has several
standard graph algorithms libraries such as the Boost Graph Library [18], LEDA (Li-
brary of Efficient Data structures and Algorithms) [16] and GTL (Graph Template Li-
brary) [5]. All algorithms discussed here are provided in these libraries and in other
mathematical interpreted languages like Mathematica and Maple.

Chapter 5

Graph Traversals and Applications

Many graph problems require us to visit each node of a digraph in a systematic way.
For example, we may want to print out the labels of the nodes in some order, or per-
haps we are in a maze and we have no idea where to find the door. More interesting
examples will be described below. The important requirements are that we must
be systematic (otherwise an algorithm is hard to implement), we must be complete
(visit each node at least once), and we must be efficient (visit each node at most
once).

There are several ways to perform such a traversal. Here we present the two most
common, namely breadth-first search and depth-first search. We also discuss a more
general but also more complicated and slower algorithm, priority-first search. First
we start with general remarks applicable to all graph traversals.

5.1 Generalities on graph traversal

We first discuss a general skeleton common to all graph traversals. In Figure 5.1, this
general skeleton is presented in pseudocode. We first describe it less formally.

Suppose that G is a digraph. Choose a node v as a starting point. We shall visit all
nodes reachable from v in G using an obvious method.

At each stage, there are three possible types of nodes. White nodes are those
that have not yet been visited. Grey nodes (or frontier nodes) are those that have
been visited but may have adjacent nodes that are white. Finally, black nodes are
those nodes that have been visited, along with all their adjacent nodes. This is shown
pictorially in Figure 5.2.

Initially, all nodes are white. The traversal algorithm first colours v grey. At each
subsequent step, it chooses a grey node w and then a white node x adjacent to w
(thereby changing the colour of x to grey). This possibly causes some grey nodes to
become black. When all nodes are black, there can be no white nodes reachable from
the current set of visited nodes. We have reached every node that can be reached
from the root, and the traversal from v terminates.

At this stage we have created a subdigraph of G that is a tree: the nodes are pre-
cisely the black nodes, and the arcs are those arcs connecting a grey node to its white
neighbour at the instant before the white node turns grey.

There may remain unvisited nodes in the digraph. In this case, we may choose

94 Section 5.1: Generalities on graph traversal

algorithm traverse
Input: digraph G

begin
array colour[0..n−1], pred[0..n−1]
for u ∈V (G) do

colour[u]←WHITE
end for
for s ∈V (G) do

if colour[s] = WHITE then
visit(s)

end if
end for
return pred

end

algorithm visit
Input: node s of digraph G

begin
colour[s]←GREY; pred[s]←NULL
while there is a grey node do

choose a grey node u
if there is a white neighbour of u

choose such a neighbour v
colour[v]← GREY; pred[v]← u

else colour[u]← BLACK
end if

end while
end

Figure 5.1: Graph traversal schema.

Figure 5.2: Node states in the middle of a digraph traversal.

Chapter 5: Graph Traversals and Applications 95

another white node as root and continue. Eventually, we obtain a set of disjoint trees
spanning the digraph, which we call the search forest .

The above is formalized in Figure 5.1. Here traverse simply chooses a new root
s when required. The main work is done by visit. In this procedure, the array pred
stores the parent of each node; each root gets the value NULL, since it has no par-
ent. Each time through the while-loop, a white node is turned grey or a grey node
is turned black. Thus eventually there are no white nodes reachable from s and the
procedure terminates. If a node u is reachable from s then it is visited during the call
to visit with input s, unless it had already been visited in a previous tree.

Now once a traversal has been completed and a search forest obtained, we may
classify the arcs into four distinct types. This classification will be useful later.

Definition 5.1. Suppose we have performed a traversal of a digraph G, resulting in a
search forest F . Let (u,v) ∈ E(G) be an arc. It is called a tree arc if it belongs to one of
the trees of F . If the arc is not a tree arc, there are three possibilities. A non-tree arc
is called a forward arc if u is an ancestor of v in F , a back arc if u is a descendant of v
in F , and a cross arc if neither u nor v is an ancestor of the other in F .

In the first three cases in Definition 5.1, u and v must belong to the same tree of
F . However, a cross arc may join two nodes in the same tree or point from one tree
to another.

The following theorem collects all the basic facts we need for proofs in later sec-
tions. Figure 5.3 illustrates the first part.

Theorem 5.2. Suppose that we have carried out traverse on G, resulting in a search
forest F . Let v,w ∈V (G).

• Let T1 and T2 be different trees in F and suppose that T1 was explored before T2.
Then there are no arcs from T1 to T2.

• Suppose that G is a graph. Then there can be no edges joining different trees of
F.

• Suppose that v is visited before w and w is reachable from v in G. Then v and w
belong to the same tree of F.

• Suppose that v and w belong to the same tree T in F. Then any path from v to w
in G must have all nodes in T .

Proof. If the first part were not true, then since w is reachable from v, and w has not
been visited before T1 is started, w must be reached in the generation of T1, contra-
dicting w ∈ T2. The second part follows immediately for symmetric digraphs and
hence for graphs. Now suppose that v is seen before w. Let r be the root of the tree T
containing v. Then w is reachable from r and so since it has not already been visited
when r is chosen, it belongs to T . Finally, if v and w are in the same tree, then any
path from v to w in G going outside the tree must re-enter it via some arc; either the
leaving or the entering arc will contradict the first part.

We now turn to the analysis of traverse. The generality of our traversal proce-
dure makes its complexity hard to determine. Its running time is very dependent on
how one chooses the next grey node u and its white neighbour v. It also apparently
depends on how long it takes to determine whether there exist any grey nodes or
whether u has any white neighbours. However, any sensible rule for checking exis-
tence of either type of node should simply return false if there is no such node, and

96 Section 5.1: Generalities on graph traversal

T2 TkT1

Figure 5.3: Decomposition of a digraph in terms of search trees.

take no more time in this case than if it does find one. Thus we do not need to take
account of the checking in our analysis.

Since the initialization of the array colour takes time Θ(n), the amount of time
taken by traverse is clearly Θ(n+ t), where t is the total time taken by all the calls to
visit.

Each time through the while-loop of visit a grey node is chosen, and either a
white node is turned grey or a grey node is turned black. Note that the same grey
node can be chosen many times. Thus we execute the while-loop in total Θ(n) times
since every node must eventually move from white through grey to black. Let a,A be
lower and upper bounds on the time taken to choose a grey node (note that they may
depend on n and be quite large if the rule used is not very simple). Then the time
taken in choosing grey nodes is O(An) and Ω(an). Now consider the time taken to
find a white neighbour. This will involve examining each neighbour of u and check-
ing whether it is white, then applying a selection rule. If the time taken to apply the
rule is at least b and at most B (which may depend on n), then the total time in choos-
ing white neighbours is O(Bm) and Ω(bm) if adjacency lists are used and O(Bn2) and
Ω(bn2) if an adjacency matrix is used.

In summary, then, the running time of traverse is O(An+Bm) and Ω(an+ bm) if
adjacency lists are used, and O(An+Bn2) and Ω(an+bn2) if adjacency matrix format
is used.

A more detailed analysis would depend on the rule used. We shall see in Sec-
tion 5.2 that BFS and DFS have a,b,A,B all constant, and so each yields a linear-time
traversal algorithm. In this case, assuming a sparse input digraph, the adjacency list
format seems preferable. On the other hand, for example, suppose that a is at least
of order n (a rather complex rule for grey nodes is being used) and b,B are constant
(for example, the first white node found is chosen). Then asymptotically both repre-
sentations take time Ω(n2), so using the adjacency matrix is not clearly ruled out (it
may even be preferable if it makes programming easier).

Exercises

Exercise 5.1.1. Draw a moderately complicated graph representing a maze (corri-
dors are edges and intersections are nodes). Label one node as the start and another
as the end. One rule for getting through a maze is to try to go forward, always make
a right turn when faced with a choice of direction, and back up as little as possible
when faced with a dead end. Apply this method to your example. Interpret what you

Chapter 5: Graph Traversals and Applications 97

do in terms of the procedure traverse.

Exercise 5.1.2. Suppose that in traverse, the grey node is chosen at random and so
is the white node. Find your way through your maze of the previous exercise using
this method.

Exercise 5.1.3. Give an example for each of the following items.

• A search forest in which a cross arc points from one tree to another.

• A search forest in which a cross arc joins two nodes in the same tree.

5.2 DFS and BFS

So far everything has been discussed at a very general level. To proceed further we
need more analysis of how to guide the traversal: what rule do we use for choosing
the next grey and next white node? Different rules lead to very different results. The
two main rules are breadth-first search (BFS) and depth-first search (DFS) which we
discuss now. We shall also discuss the more complicated priority-first search (PFS)
in Section 5.5.

Breadth-first and depth-first search are dual to each other. In BFS, when we want
to visit a new node, the new grey node chosen is the one that has been grey for the
longest time. By contrast, in DFS, we choose the one that has been grey for the short-
est time.

In BFS we start at a node v and then go to each neighbour of v (in some order),
then each neighbour of a neighbour of v that has not already been visited, and so on.
The search chooses grey nodes across the entire frontier between the white and grey
nodes, and takes us away from the root node as slowly as possible.

By contrast, in DFS we start at a node v, but this time we “deeply” search as far
away from vertex v as possible, until we cannot visit any new nodes, upon which we
backtrack as little as possible. The search keeps us away from the root as long as
possible.

These search concepts are best illustrated with some examples.

Example 5.3. A graph G1 and a digraph G2 are displayed in Figure 5.4.
Breadth-first search trees (originating from node 0) of the graph G1 and digraph

G2 are displayed in Figure 5.5. The dashed arcs indicate the original arcs that are not
part of the BFS trees.

Note that even with DFS or BFS specified there still remains the choice of which
white neighbour of the chosen grey node to visit. While it does not matter what
choice is made, the choice should be algorithmic. Our convention is to choose the
one with lowest index (the nodes being numbered 0, . . . ,n−1).

This convention for choosing white nodes means that we can reconstruct the
progress of the BFS traversal completely. For example, in G1, node 0 is visited first,
then node 1, node 2, node 3, node 4, node 8, and so on. Thus we can classify the
edges: for example {1,2} is a cross edge, {2,8} a tree edge, and so on.

We also display depth-first search trees (originating from node 0) of the graph G1

and digraph G2 in Figure 5.6. Again, the dashed arcs indicate the original arcs that
are not part of the DFS trees.

Here, for example, in G2 we see that the order of visiting nodes is 0,1,6,2,4, 5,3.
The arc (5,0) is a back arc, (3,5) is a cross arc, there are no forward arcs, etc.

In the examples above, all nodes were reachable from the root, and so there is a
single search tree in the forest. For general digraphs, this may not be true. We should

98 Section 5.2: DFS and BFS

G1 G20

1 2

3 4

0 1

2 3

4 5 6

7
8

65

Figure 5.4: A graph G1 and a digraph G2.

G1 G20

1 2

3 4

0 1

2 3

4 5 6

7
8

65

1

2 3

4
5

6
7 8 9

1 2

3
4

5
6

7

Figure 5.5: BFS trees for G1 and G2, rooted at 0.

distinguish between BFS or DFS originating from a given node, or just BFS/DFS run
on a digraph. The former we call BFSvisit/DFSvisit (a special case of visit) and
the latter just BFS/DFS (a special case of traverse). The algorithm DFS, for example,
repeatedly chooses a root and runs DFSvisit from that root, until all nodes have
been visited. Pseudocode for these procedures is given in the next two sections.

Exercises

Exercise 5.2.1. Draw a graph for which DFS and BFS visit can nodes in the same
order. Then draw one for which they must visit nodes in the same order. Make your
examples as large as possible (maximize n+m).

Exercise 5.2.2. A technique called iterative deepening combines features of BFS and
DFS. Starting a a root, for each i = 0,1, . . . we search all nodes at distance at most i,
using DFS (in other words, we limit the depth of the DFS to i). We do this for each i
until the whole graph is explored or we reach a preassigned limit on i.

Chapter 5: Graph Traversals and Applications 99

G1 G2
0

1

2 3

4

0

1 2 3

4

5

6

7

8

65

Figure 5.6: DFS trees for G1 and G2, rooted at 0.

Note that we visit nodes near the root many times, so this search is not as efficient
in terms of time. What is the advantage of this search technique when the graphs are
too big to hold in memory?

5.3 Additional properties of depth-first search

In DFS, the next grey node chosen is the last one to be coloured grey thus far. The
data structure for processing grey nodes in this “last in, first out” order is therefore a
stack (see Section D.1 if necessary for the basic facts about stacks). We may store the
nodes in a stack as they are discovered. So the general traverse and visit proce-
dures can be replaced by those in Figure 5.7. Note how the algorithm for visit has
been altered. We loop through the nodes adjacent to the chosen grey node u, and as
soon as we find a white one, we add it to the stack. We also introduce a variable time
and keep track of the time a node was turned grey, and the time it was turned black,
in the arrays seen,done. These will be useful later.

The complexity analysis of DFS is easy. Choosing a grey node u takes constant
time since only the stack pop operation is required. The time taken to apply the
selection rule to a white neighbour is also constant, since we take the first one found
in the for-loop. Our analysis of traverse shows us that DFS runs in time Θ(n+m) if
adjacency lists are used, and Θ(n2) using an adjacency matrix. In summary, DFS is a
linear-time traversal algorithm.

One nice feature of depth-first search is its recursive nature. The relationship
between stacks and recursion is, we hope, well known to the reader. We can replace
the DFSvisit procedure in this case by the recursive version in Figure 5.8.

We now note a few important facts about depth-first search that are useful in
proving correctness of various algorithms later on.

100 Section 5.3: Additional properties of depth-first search

algorithm DFS
Input: digraph G

begin
stack S
array colour[0..n−1], pred[0..n−1],seen[0..n−1],done[0..n−1]
for u ∈V (G) do

colour[u]←WHITE; pred[u]←NULL
end for
time← 0
for s ∈V (G) do

if colour[s] = WHITE then
DFSvisit(s)

end if
end for
return pred,seen,done

end

algorithm DFSvisit
Input: node s

begin
colour[s]←GREY
seen[s]← time; time← time+ 1
S.insert(s)
while not S.isEmpty() do

u← S.peek()
if there is a neighbour v with colour[v] = WHITE then

colour[v]← GREY; pred[v]← u
seen[v]← time; time← time+ 1
S.insert(v)

else
S.delete()
colour[u]← BLACK
done[u]← time; time← time+ 1

end if
end while

end

Figure 5.7: Depth-first search algorithm.

Chapter 5: Graph Traversals and Applications 101

algorithm recursiveDFSvisit
Input: node s

begin
colour[s]← GREY
seen[s]← time; time← time+ 1
for each v adjacent to s do

if colour[v] = WHITE then
pred[v]← s
recursiveDFSvisit(v)

end if
end for
colour[s]← BLACK
done[s]← time; time← time+ 1

end

Figure 5.8: Recursive DFS visit algorithm.

Theorem 5.4. The call to recursiveDFSvisitwith input s terminates only when all
nodes reachable from s via a path of white nodes have been visited. The descendants
of s in the DFS forest are precisely these nodes.

Proof. See Exercise 5.3.10.

There are not as many possibilities for interleaving of the timestamps as there ap-
pear at first sight. In particular, we cannot have seen[v] < seen[w] < done[v] < done[w].
The following theorem explains why.

Theorem 5.5. Suppose that we have performed DFS on a digraph G, resulting in a
search forest F . Let v,w ∈V (G) and suppose that seen[v] < seen[w].

• If v is an ancestor of w in F , then

seen[v] < seen[w] < done[w] < done[v] .

• If v is not an ancestor of w in F, then

seen[v] < done[v] < seen[w] < done[w] .

Proof. The first part is clear from the recursive formulation of DFS. Now suppose
that v is not an ancestor of w. Note that w is obviously also not an ancestor of v. Thus
v lives in a subtree that is completely explored before the subtree of w is visited by
recursiveDFSvisit.

All four types of arcs in our search forest classification can arise with DFS. The
different types of non-tree arcs can be easily distinguished while the algorithm is
running. For example, if an arc (u,v) is explored and v is found to be white, then the
arc is a tree arc; if v is grey then the arc is a back arc, and so on (see Exercise 5.3.3).
We can also perform the classification after the algorithm has terminated, just by
looking at the timestamps seen and done (see Exercise 5.3.4).

102 Section 5.3: Additional properties of depth-first search

Exercises

Exercise 5.3.1. Give examples to show that all four types of arcs can arise when DFS
is run on a digraph.

Exercise 5.3.2. Execute depth-first search on the digraph with adjacency lists repre-
sentation given below. Classify each arc as tree, forward, back or cross.

0: 2
1: 0
2: 0 1
3: 4 5 6
4: 5
5: 3 4 6
6: 1 2

Exercise 5.3.3. Explain how to determine, at the time when an arc is first explored
by DFS, whether it is a cross arc or a forward arc.

Exercise 5.3.4. Suppose that we have performed DFS on a digraph G. Let (v,w) ∈
E(G). Show that the following statements are true.

• (v,w) is a tree or forward arc if and only if

seen[v] < seen[w] < done[w] < done[v];

• (v,w) is a back arc if and only if

seen[w] < seen[v] < done[v] < done[w];

• (v,w) is a cross arc if and only if

seen[w] < done[w] < seen[v] < done[v].

Exercise 5.3.5.

Suppose that DFS is run on a digraph G and the following timestamps obtained.

v 0 1 2 3 4 5 6
seen[v] 0 1 2 11 4 3 6
done[v] 13 10 9 12 5 8 7

• List all tree arcs in the DFS forest.

• Suppose that (6,1) is an arc ofG. Which type of arc (tree, forward, back or cross)
is it?

• Is it possible for node 2 to be an ancestor of node 3 in the DFS forest?

• Is it possible that G contains an arc (5,3)? If so, what type of arc must it be?

• Is it possible that G contains an arc (1,5)? If so, what type of arc must it be?

Exercise 5.3.6. Is there a way to distinguish tree arcs from non-tree arcs just by look-
ing at timestamps after DFS has finished running?

Chapter 5: Graph Traversals and Applications 103

Exercise 5.3.7. Suppose that DFS is run on a graph G. Prove that cross edges do not
occur.

Exercise 5.3.8. Give an example to show that the following conjecture is not true: ifw
is reachable from v and seen[v] < seen[w] then w is a descendant of v in the DFS forest.

Exercise 5.3.9. DFS allows us to give a so-called pre-order and post-order labelling
to a digraph. The pre-order label indicates the order in which the nodes were turned
grey. The post-order label indicates the order in which the nodes were turned black.

For example, each node of the following tree is labelled with a pair of integers
indicating the pre- and post- orders, respectively, of the layout.

1,8

2,3

3,2

4,1

5,7

6,4
7,6

8,5

post-order traversal

This is obviously strongly related to the values in the arrays seen and done. What
is the exact relationship between the two?

Exercise 5.3.10. Prove Theorem 5.4 by using induction.

5.4 Additional properties of breadth-first search

The first-in first-out processing of the grey nodes in BFS is ideally handled by a queue.
In Figure 5.9 we present the algorithm. The timestamps seen,done of DFS are of less
use here; it is more useful to record the number of steps from the root in the array d.

A similar analysis to what we did for DFS also holds for BFS: it is also a linear time
traversal algorithm, because the next grey and white node can again be chosen in
constant time.

It is rather obvious that BFS processes all nodes at distance 1, then all nodes at
distance 2, etc, from the root. The formal proof is below.

Theorem 5.6. Suppose we run BFS on a digraph G. Let v ∈V (G), and let r be the root
of the search tree containing v. Then d[v] = d(r,v).

Proof. Note that since d[v] is the length of a path of tree arcs from r to v, we have
d[v]≥ d(r,v). We prove the result by induction on the distance. Denote the BFS search
forest by F and let s be the root of a tree in F. Then d[s] = 0 = d(s,s) so the result is
true for distance zero. Suppose it is true for all v for which d(s,v) < k and consider a
node v such that d(s,v) = k ≥ 1. Choose a shortest path from s to v in G and let u be
the penultimate node in the path. Then d(s,u) = k− 1 (it cannot be less, or it would

104 Section 5.4: Additional properties of breadth-first search

algorithm BFS
Input: digraph G

begin
queue Q
array colour[0..n−1], pred[0..n−1],d[0..n−1]
for u ∈V (G) do

colour[u]←WHITE; pred[u]←NULL
end for
for s ∈V (G) do

if colour[s] = WHITE then
BFSvisit(s)

end if
end for
return pred,d

end

algorithm BFSvisit
Input: node s

begin
colour[s]←GREY; d[s]← 0
Q.insert(s)
while not Q.isEmpty() do

u←Q.peek()
for each v adjacent to u do

if colour[v] = WHITE then
colour[v]← GREY; pred[v]← u; d[v]← d[u]+ 1
Q.insert(v)

end if
end for
Q.delete()
colour[u]← BLACK

end while
end

Figure 5.9: Breadth-first search algorithm.

contradict d(s,v) = k; on the other hand the subpath from s to u must be a shortest
path from s to u, otherwise we could find a shorter one from s to v). By the inductive
hypothesis, d[u] = d(s,u) = k− 1. Now v must be seen after u (otherwise d[v] < k, but
we know d[v]≥ d(s,v) = k). Thus v is seen in the loop through white neighbours of u,
and so d[v] = d[u]+ 1 = k.

We can classify arcs, but the answer is not as nice as with DFS.

Theorem 5.7. Suppose that we are performing BFS on a digraph G. Let (v,w) ∈ E(G)
and suppose that we have just chosen the grey node v. Then

• if (v,w) is a tree arc then colour[w] = WHITE, d[w] = d[v]+ 1

• if (v,w) is a back arc, then colour[w] = BLACK, d[w]≤ d[v]−1

• There are no forward arcs.

Chapter 5: Graph Traversals and Applications 105

• if (v,w) is a cross arc then one of the following holds:

◦ d[w] < d[v]−1, and colour[w] = BLACK;

◦ d[w] = d[v], and colour[w] = GREY;

◦ d[w] = d[v], and colour[w] = BLACK;

◦ d[w] = d[v]−1, and colour[w] = GREY;

◦ d[w] = d[v]−1, and colour[w] = BLACK.

Proof. The arc is added to the tree if and only ifw is white. If the arc is a back arc, then
w is an ancestor of v; the FIFO queue structure means w is black before the adjacency
list of v is scanned.

Now suppose that (x,u) is a forward arc. Then since u is a descendant of x but not
a child in the search forest, Theorem 5.6 yields d[u]≥ d[x]+2. But by the last theorem
we have d[u] = d(s,u)≤ d(s,x)+1 = d[x]+1, a contradiction. Hence no such arc exists.

A cross arc may join two nodes on the same level, jump up one level, or jump
up more than one level. In the last case, w is already black before v is seen. In the
second case, w may be seen before v, in which case it is black before v is seen (recall
w is not the parent of v), or it may be seen after v, in which case it is grey when (v,w)
is explored. In the first case, w may be seen before v (in which case it is black before v
is seen), or w may be seen after v (in which case it is grey when (v,w) is explored).

In the special case of graphs we can say more.

Theorem 5.8. Suppose that we have performed BFS on a graph G. Let {v,w} ∈ E(G).
Then exactly one of the following conditions holds.

• {v,w} is a tree edge, |d[w]−d[v]|= 1;

• {v,w} is a cross edge, d[w] = d[v];

• {v,w} is a cross edge, |d[w]−d[v]|= 1.

Proof. By Theorem 5.7 there can be no forward edges, hence no back edges. A cross
edge may not jump up more than one level, else it would also jump down more than
one level, which is impossible by Theorem 5.6.

For a given BFS tree, we can uniquely label the vertices of a digraph based on
the time they were first seen. For the graph G1 of Figure 5.4, we label vertex 0 with
1, vertices {1,2} with labels {2,3}, vertices {3,4,8} with labels {4,5,6}, and the last
vertex level {5,6,7}with labels {7,8,9}. These are indicated in Figure 5.5.

Exercises

Exercise 5.4.1. Carry out BFS on the digraph with adjacency list given below. Show
the state of the queue after each change in its state.

0: 2
1: 0
2: 0 1
3: 4 5 6
4: 5
5: 3 4 6
6: 1 2

106 Section 5.5: Priority-first search

Exercise 5.4.2. How can we distinguish between a back and a cross arc while BFS is
running on a digraph?

Exercise 5.4.3. Explain how to determine whether the root of a BFS tree is contained
in a cycle, while the algorithm is running. You should find a cycle of minimum length
if it exists.

5.5 Priority-first search

Priority-first search is a more sophisticated form of traversal with many applica-
tions. For now, we consider it simply as a common generalization of breadth-first
and depth-first search. Priority-first search may seem a little abstract compared to
the more concrete DFS and BFS. We shall not need it until Chapter 6; however it will
be essential then.

The important property is that each grey node has associated with it an integer
key. The interpretation of the key is of a priority: the smaller the key, the higher the
priority. The rule for selecting a new grey node is to choose one with the smallest key.

In the simplest form of PFS, the key value is assigned when the node becomes
grey, and never updated subsequently. More generally, the key may be further up-
dated at other times. We shall see both types in this book. The second type of PFS is
used in optimization problems as we shall discuss in Chapter 6.

The first type of PFS includes both BFS and DFS. In BFS, the key value of v can
be taken as the time v was first coloured grey. Note that this means that a given grey
node can be selected many times—until it becomes black, in fact, it will always have
minimum key among the grey nodes. By contrast, in DFS we can take the key value
to be−seen[v]. Then the last node seen always has minimum key. It cannot be chosen
again until the nodes seen after it have become black.

The running time of PFS depends mostly on how long it takes to find the mini-
mum key value, and how long it takes to update the key values.

In the array implementation mentioned above, finding the minimum key value
takes time of order n at each step, so the quantity a is Ω(n). Thus a PFS of this type
will take time in Ω(n2). This is worse than the Θ(n+m) we obtain with BFS and DFS
using adjacency lists and a queue or stack respectively. One reason is that a simple
array is not a particularly good data structure for finding the minimum key. You have
already seen a better one in Part I of this book—the binary heap. In fact PFS is best
described via the priority queue ADT (see Section D.1).

Pseudocode demonstrating the first type of PFS is presented in Figure 5.10. The
subroutine setKey there is the rule for giving the key value when a node is inserted.
We do not include any code for setKey.

We proceed to show some applications of BFS and DFS in the following sections.
Applications of PFS will be discussed in Chapter 6.

5.6 Acyclic digraphs and topological ordering

In this section we show how to arrange, when possible, the nodes of a digraph into
a topological or precedence order. Many computer science applications require us
to find precedences (or dependencies) among events, such as a compiler evaluating
sub-expressions of an expression like that shown in Figure 5.11.

Here the compiler would need to compute, for example, both (a+b) and c before
it can compute c− (a+b).

Chapter 5: Graph Traversals and Applications 107

algorithm PFS
Input: digraph G

begin
priority queue Q
array colour[0..n−1], pred[0..n−1]
for u ∈V (G) do

colour[u]←WHITE; pred[u]←NULL
end for
for s ∈V (G) do

if colour[s] = WHITE then
PFSvisit(s)

end if
end for
return pred

end

algorithm PFSvisit
Input: node s

begin
colour[s]← GREY
Q.insert(s, setKey (s))
while not Q.isEmpty() do

u←Q.peek()
if u has a neighbour v with colour[v] = WHITE then

colour[v]← GREY
Q.insert(v, setKey (v))

else
Q.delete()
colour[u]← BLACK

end if
end while end

Figure 5.10: Priority-first search algorithm (first kind).

(a+b)*(c-(a+b))*(-c+d)

a b c d

+

-

+
*

*

-

Figure 5.11: Digraph describing structure of an arithmetic expression.

108 Section 5.6: Acyclic digraphs and topological ordering

0

1

2

3

4

5

6

0

1 2

3 4

0

1

2 3

4 5
0,1,2,3,4

0,1,2,4,3

0,2,1,3,4
0,2,1,4,3

0,1,3,2,4,5
0,1,3,2,5,4
0,1,2,3,4,5
0,1,2,3,5,4

...
0,1,2,5,4,3

0,1,2,4,5,3,6
0,1,2,5,3,4,6
0,1,2,5,4,3,6
0,1,5,2,3,4,6
0,1,5,2,4,3,6

Figure 5.12: Topological orders of some DAGs.

Definition 5.9. LetG be a digraph. A topological sort ofG is a linear ordering of all its
vertices such that if G contains an arc (u,v), then u appears before v in the ordering.

The term topological sort comes from the study of partial orders and is some-
times called a topological order or linear order . If a topological sort exists, then it is
possible to draw a picture ofGwith all nodes in a straight line, and the arcs “pointing
the same way”.

A digraph without cycles is commonly called a DAG, an abbreviation for directed
acyclic graph. It is much easier for a digraph to be a DAG than for its underlying
graph to be acyclic.

For our arithmetic expression example above, a linear order of the sub-expression
DAG gives us an order (actually the reverse of the order) where we can safely evaluate
the expression.

Clearly if the digraph contains a cycle, it is not possible to find such a linear order-
ing. This corresponds to inconsistencies in the precedences given, and no schedul-
ing of the tasks is possible.

Example 5.10. In Figure 5.12 we list three DAGs and possible topological orders for
each. Note that adding more arcs to a DAG reduces the number of topological orders
it has. This is because each arc (u,v) forces u to occur before v, which restricts the
number of valid permutations of the vertices.

The algorithms for computing all topological orders are more advanced than
what we have time or space for here. We show how to compute one such order, how-
ever.

First we note that if a topological sort of a DAG G is possible, then there must be
a source node in G. The source node can be first in a topological order, and no node
that is not a source can be first (because it has an in-neighbour that must precede it
in the topological order).

Chapter 5: Graph Traversals and Applications 109

Theorem 5.11. A digraph has a topological order if and only if it is a DAG.

Proof. First show that every DAG has a source (see exercise 5.6.2). Given this, we
proceed as follows. Deleting a source node creates a digraph that is still a DAG, be-
cause deleting a node and some arcs cannot create a cycle where there was none
previously. Repeatedly doing this gives a topological order.

This theorem then gives an algorithm (zero-indegree sorting) for topologically
sorting a DAG G.

So far we have not shown how to determine whether a given digraph is a DAG.
But if we apply zero-indegree sorting to a digraph that is not a DAG, eventually it
will stop because no source node can be found at some point (otherwise we would
obtain a topological order and hence the digraph would be a DAG).

There is another way to determine acyclicity and topologically sort a DAG, based
on DFS. If G contains a cycle, DFS must eventually reach a node that points to one
that has been seen before. In other words, we will detect a back arc. The details and
proof that this works now follow.

Theorem 5.12. Suppose that DFS is run on a digraph G. Then G is acyclic if and only
if there are no back arcs.

Proof. Suppose that we run DFS on G. Note that if there is a back arc (v,u), then u
and v belong to the same tree T , with root s say. Then there is a path from s to u, and
there is a path from u to v by definition of back arc. Adding the arc (v,u) gives a cycle.

Conversely, if there is a cycle v0 v1 . . . vn v0, we may suppose without loss of gener-
ality that v0 is the first node of the cycle visited by the DFS algorithm. We claim that
(vn,v0) is a back arc. To see why this is true, first note that during the DFS v0 is linked
to vn via a path of unvisited nodes (possibly of length shorter than n). We have vn as a
descendant of v0 in the DFS tree and a back arc (vn,v0).

One valid topological order is simply the reverse of the DFS finishing times.

Theorem 5.13. Let G be a DAG. Then listing the nodes in reverse order of DFS fin-
ishing times yields a topological order of G.

Proof. Consider any arc (u,v) ∈ E(G). Since G is a DAG, the arc is not a back arc by
Theorem 5.12. In the other three cases, Exercise 5.3.4 shows that done[u] > done[v],
which means u comes before v in the alleged topological order.

We can therefore just run DFS on G, and stop if we find a back arc. Otherwise
printing the nodes in reverse order of finishing time gives a topological order. Note
that printing the nodes in order of finishing time gives a topological order of the
reverse digraph Gr.

Exercises

Exercise 5.6.1. Give an example of a DAG whose underlying graph contains a cycle.
Make your example as small as possible.

Exercise 5.6.2. Prove that every DAG must have at least one source and at least one
sink.

Exercise 5.6.3. Show that the following method for topologically sorting a DAG does
not work in general: print the nodes in order of visiting time.

110 Section 5.7: Connectivity

Exercise 5.6.4. Professor P has the following information taped to his mirror, to help
him to get dressed in the morning.

Socks before shoes; underwear before trousers; trousers before belt; trousers be-
fore shoes; shirt before glasses; shirt before tie; tie before jacket; shirt before hat;
shirt before belt.

Find an acceptable order of dressing for Professor P.

Exercise 5.6.5. What is the time complexity of zero-indegree sorting?

Exercise 5.6.6. Let G be a graph. There is an easy way to show that G is acyclic. It is
not hard to show (see Section E.7) that a graph G is acyclic if and only if G is a forest,
that is, a union of (free) trees.

Give a simple way to check whether a graph G is acyclic. Does the method for
finding a DAG given above work for acyclic graphs also?

5.7 Connectivity

For many purposes it is useful to know whether a digraph is “all in one piece”, and if
not, to decompose it into pieces. We now formalize these notions. The situation for
graphs is easier than that for digraphs.

Definition 5.14. A graph is connected if for each pair of vertices u,v ∈V (G), there is
a path between them.

In Example 4.3 the graph G1 is connected, as is the underlying graph of G2.
If a graph is not connected, then it must have more than one “piece”. More for-

mally, we have the following.

Theorem 5.15. Let G be a graph. Then G can be uniquely written as a union of sub-
graphs Gi with the following properties:

• each Gi is connected

• if i �= j, there are no edges from any vertices in Gi to any vertices in Gj

Proof. Consider the relation∼ defined onV (G), given by u∼ v if and only if there is a
path joining u and v (in other words, u and v are each reachable from the other). Then
∼ is an equivalence relation and so induces a partition of V (G) into disjoint subsets.
The subgraphs Gi induced by these subsets have no edges joining them by definition
of ∼, and each is connected by definition of∼.

The subgraphs Gi above are called the connected components of the graph G.
Clearly, a graph is connected if and only if it has exactly one connected component.

Example 5.16. The graph obtained by deleting two edges from a triangle has 2 con-
nected components.

We can determine the connected components of a graph easily by using a traver-
sal algorithm. The following obvious theorem explains why.

Theorem 5.17. Let G be a graph and suppose that DFS or BFS is run on G. Then the
connected components of G are precisely the subgraphs spanned by the trees in the
search forest.

Proof. The result is true for any traversal procedure, as we have already observed in
Theorem 5.2. The trees of the search forest have no edges joining them, and together
they span G.

Chapter 5: Graph Traversals and Applications 111

So we need only run BFS or DFS on the graph, and keep count of the number of
times we choose a root—this is the number of components. We can store or print
the vertices and edges in each component as we explore them. Clearly, this gives a
linear time algorithm for determining the components of a graph.

So far it may seem that we have been too detailed in our treatment of connect-
edness. After all the above results are all rather obvious. However, now consider the
situation for digraphs. The intuition of “being all in one piece” is not as useful here.
In Example 4.3 the graph G1 is connected, as is the underlying graph of G2. They
are “all in one piece”, but not the same from the point of view of reachability. For
example, in digraph G2, node 2 is a sink. This motivates the following definition.

Definition 5.18. A digraph G is strongly connected if for each pair of nodes u,v of G,
there is a path in G from u to v.

Note. In other words, u and v are each reachable from the other.

Suppose that the underlying graph ofG is connected (some authors call this being
weakly connected), but G is not strongly connected. Then if G represents a road
network, it is possible to get from any place to any other one, but at least one such
route will be illegal: one must go the wrong way down a one-way street.

A strongly connected digraph must contain many cycles: indeed, if v and w are
different nodes, then there is a path from v to w and a path from w to v, so v and w are
contained in a cycle. Conversely, if each pair of nodes is contained in a cycle, then
the digraph is clearly strongly connected.

Again, we can define strongly connected components in a way that is entirely
analogous to component for graphs. The proof above for connected components
generalizes to this situation.

Theorem 5.19. Let G = (V,E) be a digraph. Then V can be uniquely written as a
union of disjoint subsetsVi, with each corresponding induced subdigraph Gi being a
strongly connected component of G.

Proof. Consider the relation ∼ defined on V , given by u ∼ v if and only if there is a
path joining u and v and a path joining v and u (in other words, u and v are each reach-
able from the other). Then∼ is an equivalence relation and so induces a partition of
V into disjoint subsets. By definition, each subdigraph Gi is strongly connected and
of maximal order.

Example 5.20. A digraph and its three (uniquely determined) strongly connected
components are displayed in Figure 5.13. Note that there are arcs of the digraph not
included in the strongly connected components.

Note that if the underlying graph of G is connected but G is not strongly con-
nected, then there are strong components C1 and C2 such that it is possible to get
from C1 to C2 but not from C2 to C1. If C1 and C2 are different strong components,
then any arcs between them must either all point fromC1 toC2 or fromC2 toC1. Sup-
pose that we imagine each strong component shrunk to a single node (so we ignore
the internal structure of each component, but keep the arcs between components).
Then in the digraph resulting, if v �= w and we can get from v to w then we cannot
get from w to v. In other words, no pair of nodes can belong to a cycle, and hence
the digraph is acyclic. See Figure 5.14. Note that the converse is also true: if we have
an acyclic digraph G and replace each node by a strongly connected digraph, the
strongly connected components of the resulting digraph are exactly those digraphs
that we inserted.

112 Section 5.7: Connectivity

0 1

2 3

54

5

40

2 3

1

Figure 5.13: A digraph and its strongly connected components.

C1 C2 Cm

Figure 5.14: Structure of a digraph in terms of its strong components.

Note the similarity between this and the search forest decomposition in Figure 5.3.
In that case, if we shrink each search tree to a point, the resulting digraph is also
acyclic.

How to determine the strongly connected components? First we observe that the
previous method for graphs definitely fails (see Exercise 5.7.1). To decide whether a
digraph is strongly connected we could run BFSvisit or DFSvisit originating from
each node in turn and see whether each of the n trees so generated spans the digraph.
However the running time of such an algorithm is Θ(n2 +nm).

We can do better by using DFS more cleverly.
Consider the reverseGr. The strong components of Gr are the same as those ofG.

Shrinking each strong component to a point, we obtain acyclic digraphs H and Hr.
Consider a sink S1 in Hr. If we run DFS on Gr starting in the strong component S1, we
will reach every node in that component and no other nodes of Gr. The DFS tree will
exactly span S1. Now choose the next root to lie in the strong component S2 node of
Hr whose only possible out-neighbour is S1 (this is possible by the same reasoning
used for zero-indegree sort, except here we deal with outdegree). The DFS will visit
all of S2 and no other nodes ofGr because all other possible nodes have already been
visited. Proceed in this way until we have visited all strong components.

We have shown that if we can choose the roots correctly, then we can find all
strong components. Now of course we don’t know these components a priori, so
how do we identify the roots to choose?

Chapter 5: Graph Traversals and Applications 113

Whenever there is a choice for the root of a new search tree, it must correspond
to a new node of the DAG Hr. We want at least a reverse topological order of Hr. This
is simply a topological order for H. Note that in the case where H = G (each strong
component has just one point), then G is a DAG. The method above will work if and
only if we choose the roots so that each tree in the DFS for Gr has only one point. We
just need a topological order for G, so run DFS on G and print the nodes in reverse
order of finishing time. Then choose the roots for the DFS on Gr in the printed order.

It therefore seems reasonable to begin with a DFS of G. Furthermore, an obvi-
ous choice is: in the DFS of Gr, choose each new root from among white nodes that
finished latest in F .

Then each DFS tree in the search ofGr definitely contains the strong component S
of the root r. To see this, note that no node in that strong component could have been
visited before in Gr, otherwise r would have already been visited. By Theorem 5.4,
every node in the strong component of r is a descendant of r.

The only thing that could go wrong is that a search tree in Gr might contain more
than one strong component. This cannot happen, as we now prove.

Theorem 5.21. If the following rule for choosing roots is used in the algorithm de-
scribed above, then each tree in the second search forest spans a strong component
of G, and all strong components arise this way.

Rule: use the white node whose finishing time in F was largest.

Proof. Suppose that a search tree in Gr does contain more than one strong compo-
nent. Let S1 be the first strong component seen in Gr and let S2 be another, and let
the roots be r,s respectively. Note that by the rule for choosing nodes r was the first
node of S1 seen in F (by Theorem 5.4, every node of S1 is a descendant of the first one
seen, which therefore has latest finishing time). The analogous statement holds for s
and S2.

By the rule for choosing roots, we have done[r] > done[s] in F . We cannot have
seen[s] > seen[r] in F , for then s would be a descendant of r in F and in Gr, so they
would belong to the same strong component. Thus seen[r] > seen[s] in F . Hence S2

was explored in F before r (and hence any node of S1) was seen. But then r would
have been reachable from s in G via a path of white nodes, so Theorem 5.4 shows
that r and s are in the same strong component, another contradiction.

The above algorithm runs in linear time with adjacency lists, since each DFS and
the creation of the reverse digraph take linear time. We only need to remember while
performing the first DFS to store the nodes in an array in order of finishing time.

Exercises

Exercise 5.7.1. Give an example to show that a single use of DFS does not in general
find the strongly connected components of a digraph.

Exercise 5.7.2. Carry out the above algorithm by hand on the digraph of Exam-
ple 5.20 and verify that the components given there are correct. Then run it again
on the reverse digraph and verify that the answers are the same.

114 Section 5.8: Cycles

6

8

0 01

1
2

2

3

3

4

4

5

5

7

6

8

0 1

2 4

5

7

3

6

Figure 5.15: Some (di)graphs with different cycle behaviour.

5.8 Cycles

In this section, we cover three varied topics concerning cycles.

The girth of a graph

The length of the smallest cycle in a graph is an important quantity. For example, in
a communication network, short cycles are often something to be avoided because
they can slow down message propagation.

Definition 5.22. For a graph (with a cycle), the length of the shortest cycle is called
the girth of the graph. If the graph has no cycles then the girth is undefined but may
be viewed as +∞.

Note. For a digraph we use the term girth for its underlying graph and the (maybe
non-standard) term directed girth for the length of the smallest directed cycle.

Example 5.23. In Figure 5.15 are three (di)graphs. The first has no cycles (it is a free
tree), the second is a DAG of girth 3, and the third has girth 4.

How to compute the girth of a graph? Here is an algorithm for finding the length
of a shortest cycle containing a given vertex v in a graph G. Perform BFSvisit. If we
meet a grey neighbour (that is, we are exploring edge {x,y} from x and we find that y
is already grey), continue only to the end of the current level and then stop. For each
edge {x,y} as above on this level, if v is the lowest common ancestor of x and y in the
BFS tree, then there is a cycle containing x,y,v of length l = d(x)+d(y)+1. Report the
minimum value of l obtained along the current level.

Theorem 5.24. The above algorithm is correct.

Proof. Suppose that we arrive at vertex x, d(x) = k, and we have just encountered a
grey neighbour y. Then d[y] = d[x] + 1 or d[y] = d[x] (note that d[x] = d[y] + 1 is ruled
out because then xwould be a child of y and ywould be black). This means that there
is definitely a cycle containing x,y and z, where z is the lowest common ancestor of x
and y in the BFS tree. Note that z �= x,z �= y since neither x nor y is an ancestor of the
other. The cycle consists of the tree edges from z to x, the cross edge {x,y} and the
tree edges from z to y. The length of the cycle is l = d[x]+d[y]−2d[z]+ 1.

Conversely, let C be any cycle and let z be the first vertex of the cycle reached by
the search. Let x and y be two vertices in C whose distance from z is greatest, with
d[x] ≤ d[y]. Then the lowest common ancestor of x and y is exactly z, and the cycle
found in the first paragraph is exactlyC.

Chapter 5: Graph Traversals and Applications 115

Figure 5.16: A bipartite graph.

The vertex v belongs to the cycle C if and only if v = z. The length of the cycle
is 2k+ 1 if d[x] = d[y] and 2k+ 2 if d[y] = d[x]− 1. The minimum length of any cycle
containing v found after this is 2(k+ 1)+ 1 = 2k+ 3, so no better cycle can be found
after the current level k is explored.

Note. An easy-to-implement DFS idea may not work properly. For example, the DFS
tree originating from vertex 0 of the third graph of Figure 5.15 finds only 6-cycles with
the back edges (even though a 4-cycle exists using two of the back edges).

To compute the girth of a graph, we can simply run the above algorithm from
each vertex in turn, and take the minimum cycle length achieved.

Bipartite graphs

Many graphs in applications have two different types of nodes, and no relations be-
tween nodes of the same type (this is a model of sexually reproducing organisms, for
example).

Definition 5.25. A graph G is bipartite ifV (G) can be partitioned into two nonempty
disjoint subsetsV0,V1 such that each edge of G has one endpoint in V0 and one in V1.

Example 5.26. The graph in Figure 5.16 is bipartite. The isolated vertex could be
placed on either side.

Showing that a graph is bipartite can be done by exhibiting a bipartition (a par-
tition into two subsets as in the definition). Of course finding such a bipartition may
not be easy. Showing a graph is not bipartite seems even harder. In each case, we cer-
tainly do not want to have to test all possible partitions of V into two subsets! There
is a better way.

Definition 5.27. Let k be a positive integer. A graph G has a k-colouring if V (G) can
be partitioned into k nonempty disjoint subsets such that each edge of G joins two
vertices in different subsets.

Example 5.28. The graph in Figure 5.16 has a 2-colouring as indicated.

It is not just a coincidence that our example of a bipartite graph has a 2-colouring.

Theorem 5.29. The following conditions on a graph G are equivalent.

• G is bipartite;

116 Section 5.9: Maximum matchings

• G has a 2-colouring;

• G does not contain an odd length cycle.

Proof. Given a bipartition, use the same subsets to get a 2-colouring, and vice versa.
This shows the equivalence of the first two conditions. Now suppose G is bipartite.
A cycle must have even length, since the start and end vertices must have the same
colour. Finally suppose that G has no odd length cycle. A 2-colouring is obtained as
follows. Perform BFS and assign each vertex at level i the “colour” i mod 2. If we can
complete this procedure, then by definition each vertex goes from a vertex of one
colour to one of another colour. The only problem could be if we tried to assign a
colour to a node v that was adjacent to a node w of the same colour at the same level
k. But then a cycle of length 2k+ 1 is created.

It is now easy to see that we may use the method in the proof above to detect an
odd length cycle if it exists, and otherwise produce a 2-colouring of G. This of course
runs in linear time.

Exercises

Exercise 5.8.1. Give an example to show that in the shortest cycle algorithm, if we
do not continue to the end of the level, but terminate when the first cycle is found,
we may find a cycle whose length is one more than the shortest possible.

Exercise 5.8.2. What is the time complexity of the shortest cycle algorithm?

Exercise 5.8.3. The n-cube (hypercube) is a graph on 2n vertices, each labelled by a
different bit vector of length n. If v = (v0, . . . ,vn−1) and w = (w0, . . . ,wn−1) are such bit
vectors, then there is an edge between the vertex labelled v and a vertex labelled w
if and only if v and w differ in exactly one component. For which values of n is the
n-cube bipartite?

5.9 Maximum matchings

Next we want to introduce an important graph problem that can be solved in poly-
nomial time by a clever path augmentation algorithm.

Definition 5.30. A matching in a graph is a set of pairwise non-adjacent edges (that
is, each vertex can be in at most one edge of the matching). A maximal matching
is a matching such that is not a proper subset of any other matching. A maximum
matching is one with the largest possible number of edges (over all possible match-
ings).

Often, for many real-world problems, we want to find a maximum matching in
bipartite graphs as illustrated by the next two examples.

Example 5.31. Suppose we have a set of workersV0 and a set of tasksV1 that need to
be assigned. A given worker of V0 is able to perform a subset of the tasks in V1. Now
with each worker capable of doing at most one task at a time, the boss would like to
assign (match) as many workers as possible to as many of the tasks.

Example 5.32. Consider the marriage problem where we have a set of men and
women (as vertices) and edges representing compatible relationships. The goal is to
marry as many couples as possible, which is the same as finding a maximum match-
ing in the relationship graph. If there are no homosexual interests then we have a
bipartite graph problem.

Chapter 5: Graph Traversals and Applications 117

Ann

Cher

Eve

Bob

Doug

Fred

Ann

Cher

Eve

Bob

Doug

Fred

Figure 5.17: A maximal and maximum matching in a bipartite graph.

In Figure 5.17 we illustrate the difference between a maximal and maximum match-
ing in the setting of Example 5.32. The matchings consist of bold-dashed edges (be-
tween females on the left and males on the right) in the drawings.

It is easy to find a maximal matching M in a graph. For example, a simple greedy
approach of iterating over all edges and adding each edge to M if it is non-adjacent
to anything already in M will work. As illustrated in Figure 5.17, a maximal matching
may have fewer edges than a more desirable maximum matching.

Our algorithm to compute a maximum matching will be based on trying to im-
prove an existing matching M by finding certain types of paths in a graph.

Definition 5.33. Given a matching M, an alternating path is a path in which the
edges of the path alternate from being in the matching and not. An augmenting
path is an alternating path that starts from and ends on unmatched vertices.

For example, consider the augmenting path Eve–Doug–Cher–Fred of Figure 5.17.
It contains three edges but only the middle edge is part of a matching on the left case.
We can get the better matching on the right if we add Eve-Doug, remove Doug–Cher,
and add Cher–Fred to the existing matching. Thus, in general, we see that we can
improve a matching if we can find an augmenting path. Note that there is always
one more non-matching edge than matching edge in an augmenting path. Likewise,
it is pretty easy to show that if there is no such augmenting path then we must have
a maximum matching (see Exercise 5.9.1).

We next present a polynomal-time algorithm that finds an augmenting path if
one exists. The basic idea is to start from an unmatched vertex v and build a tree (via
a graph traversal algorithm such as BFS) of alternating paths away from v. If we reach
another unmatched vertex then we have found an augmenting path. Otherwise, if we
visit all vertices (in the same component as v) then we conclude that no augmenting
path exists starting at v. This algorithm is given in Figure 5.18.

Theorem 5.34. There exists a polynomial-time algorithm to find a maximum match-
ing in a bipartite graph.

Proof. We first need to show that the algorithm findAugmentingPath, given in Fig-
ure 5.18, does find an augmenting path if one exists. It is sufficient to show that if
there exists at least one augmenting path from vertex x to some other unmatched
vertex that we find any one of them (in our case, by imitating BFS, it will be one of
shortest length). findAugmentingPath builds a traversal tree starting at x using the
following constraints.

• If a reachable vertex u is in the same partition as x (status will be set to EVEN
by the algorithm) then we know (except for x) that there is an alternating path
with the last edge including u being in the matching.

118 Section 5.9: Maximum matchings

algorithm findAugmentingPath
Input: bipartite graph G; matching M; unmatched vertex x

begin
queue Q
array status[0..n−1], pred[0..n−1]
for each u ∈V (G) do

status[u]←WHITE; pred[u]←NULL
end for
status[x]← EVEN
Q.insert(x)
while not Q.isEmpty() do

u← Q.peek()
if status[u] = EVEN then

for each v adjacent to u do
if status[v] = WHITE then

status[v]←ODD; pred[v]← u
if v is unmatched in M then

return path x, . . . , pred[pred[u]], pred[u],u,v
else

Q.insert(v)
end if

end if
end for

else that is, status[u] = ODD

v←matched vertex of u from M
if status[v] = WHITE then

status[v]← EVEN; pred[v]← u
Q.insert(v)

end if
end if

end while

return false no augmenting paths containing x

end

Figure 5.18: An algorithm to find an augmenting path, given a matching and an un-
matched starting vertex.

Chapter 5: Graph Traversals and Applications 119

x EVEN

ODD

ODD

ODD

EVEN

EVEN

EVEN

v — unmatched

u = pred[v]

pred[u]

Figure 5.19: Structure of the graph traversal tree for finding augmenting paths.

• If a reachable vertex v is not in the same partition as x (status will be set to ODD
if it is matched) then we know that there is an alternating path with the last
edge including v is not in the matching.

This process produces a tree with alternating paths rooted at x as illustrated in Fig-
ure 5.19. The status of the nodes are ODD or EVEN depending if they are an even or
odd distance from x. If a vertex (first seen) is at an odd distance then we have seen
an alternating path where the last edge is not in the matching. If this last vertex is
unmatched then we have found an augmenting path, otherwise we extend the path
by using the matched edged. If a vertex is at an even distance then we have seen an
alternating path where the last edge is in the matching. Since the graph is bipartite
the status of being ODD or EVEN is unambiguous.

Suppose the algorithm findAugmentingPath terminates without finding an aug-
menting path when one does exist. Let x = v0,v1, . . . ,vk be a counterexample. Con-
sider the first index 0 < i≤ k such that status[vi] = WHITE. We know vi−1 was inserted
in the queue Q. Consider the two cases. If i−1 is even then since vi is a neighbour of
vi−1 its status would have changed to ODD. If i−1 is odd then either (vi−1,vi) is in the
matching or not. If so, the status of vi would have changed; if not, a prefix of the coun-
terexample is not an augmenting path. Thus, by contradiction, findAugmentingPath
will find an augmenting path if one exists.

The running time of one invocation of findAugmentingPath is the same as the
running time of BFS since each vertex is added to the queue Q at most once. For
adjacency list representation of graphs this can be carried out in time O(m). If we
find an augmenting path then our best matching increases by one. Since a maxi-
mum matching is bounded by �n/2	 we only need to find at most O(n) augmenting
paths. We potentially need to call findAugmentingPath once for each unmatched

120 Section 5.10: Notes

vertex, which is bounded by O(n), and repeat the process for each modified match-
ing. Therefore, the total running time to find a maximum matching is at mostO(n2m).

The algorithm presented here can easily be improved toO(nm) by noting that it is
only required to traverse and compute an “alternating path forest” in order to find an
augmenting path. That is, we do not need to originate a call to findAugmentingPath
for all unmatched vertices. However the correctness is a bit tricky to justify.

There are other algorithms that find maximum matchings more efficiently than
the one presented. One of these is the Hopcroft-Karp algorithm which runs in time
O(m
√
n) and is based on finding a maximal flow in a network (by adding a source

and sink vertex and directing all edges from one vertex partition to the other of the
bipartite graph).

We conclude this section by mentioning that there also exist polynomial-time
algorithms to find maximum matchings in arbitrary (non-bipartite) graphs. The de-
tails are beyond the scope of this book.

Exercises

Exercise 5.9.1. Prove that a matching for a graph is maximum if and only if it does
not have any augmenting paths.

Exercise 5.9.2. Give an example of a bipartite graph of order 12 with a maximal
matching that has an augmenting path of length 6 and a maximum matching of the
same graph with two more edges.

Exercise 5.9.3. Show that the size of a maximum matching in a bipartite graph G =
(V,E) is the same as the size of the smallest vertex cover of G. A vertex cover is a
subset V ′ ⊆V of vertices such that for all (u,v) ∈ E, at least one of u or v is in V ′. Does
the equality hold for arbitrary graphs?

5.10 Notes

The linear-time algorithm for finding strong components of a digraph was intro-
duced by R. E. Tarjan in 1971.

One of the early polynomial-time algorithms for finding maximum matchings in
bipartite graphs is based on the Ford–Fulkerson network flow algorithm [10] from
1956. The first polynomial-time algorithm for finding a maximum matching in an
arbitrary graph was presented by J. Edmonds [8] in 1965.

Chapter 6

Weighted Digraphs and Optimization
Problems

So far our digraphs have only encoded information about connection relations be-
tween nodes. For many applications it is important to study not only whether one
can get from A to B, but how much it will cost to do so.

For example, the weight could represent how much it costs to use a link in a com-
munication network, or distance between nodes in a transportation network. We
shall use the terminology of cost and distance interchangeably (so, for example, we
talk about finding a minimum weight path by choosing a shortest edge).

We need a different ADT for this purpose.

6.1 Weighted digraphs

Definition 6.1. A weighted digraph is a pair (G,c) whereG is a digraph and c is a cost
function, that is, a function associating a real number to each arc of G.

We interpret c(u,v) as the cost of using arc (u,v). An ordinary digraph can be
thought of as a special type of weighted digraph where the cost of each arc is 1. A
weighted graph may be represented as a symmetric digraph where each of a pair of
antiparallel arcs has the same weight.

In Figure 6.1 we display a classic unweighted graph (called the 3-cube) of diame-
ter 3, a digraph with arc weights, and a graph with edge weights.

There are two obvious ways to represent a weighted digraph on a computer. One
is via a matrix. The adjacency matrix is modified so that each entry of 1 (signifying
that an arc exists) is replaced by the cost of that arc. Another is a double adjacency
list. In this case, the list associated to a node v contains, alternately, an adjacent node
w and then the cost c(v,w).

If there is no arc between u and v, then in an ordinary adjacency matrix the cor-
responding entry is 0. However, in a weighted adjacency matrix, the “cost” of a non-
existent arc should be set consistantly for most applications. We adopt the following
convention. An entry of null or 0 in a weighted adjacency matrix means that the arc
does not exist, and vice versa. In many of our algorithms below, such entries should
be replaced by the programming equivalent of null for class objects, or ∞ for primi-

122 Section 6.2: Distance and diameter in the unweighted case

0 1

2 3

4

0 1

2 3

4

0 1

2

3

5

6 7

1

4

3

4
1

2

22

4

5

5

1

43

2

2

Figure 6.1: Some weighted (di)graphs.

tive data types. In the later case, we might use some positive integer greater than any
expected value that might occur during an execution of the program.

Example 6.2. The two weighted (di)graphs of Figure 6.1 are stored as weighted ad-
jacency matrices below.

⎡
⎢⎢⎣

0 1 4 0
0 0 0 2
0 2 0 5
2 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 4 1 0 4 0
4 0 0 2 3 4
1 0 0 0 3 0
0 2 0 0 0 1
4 3 3 0 0 2
0 4 0 1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The corresponding weighted adjacency lists representations are

1 1 2 4
3 2
1 2 3 5
0 2

and
1 4 2 1 4 4
0 4 3 2 4 3 5 4
0 1 4 3
1 2 5 1
0 4 1 3 2 3 5 2
1 4 3 1 4 2

See Appendix B.4 for sample Java code for representing the abstract data type of
edge-weighted digraphs.

6.2 Distance and diameter in the unweighted case

One important application for graphs is to model computer networks or parallel pro-
cessor connections. There are many properties of such networks that can be ob-
tained by studying the characteristics of the graph model. For example, how do we
send a message from one computer to another, using the fewest intermediate nodes?
This question is answered by finding a shortest path in the graph. We may also want
to know what the largest number of communication links that may be required for
any two nodes to talk with each other; this is equal to the diameter of the graph.

Chapter 6: Weighted Digraphs and Optimization Problems 123

Definition 6.3. The diameter of a strongly connected digraph G is the maximum of
d(u,v) over all nodes u,v ∈V (G).

Note. If the digraph is not strongly connected then the diameter is not defined; the
only “reasonable” thing it could be defined to be would be +∞, or perhaps n (since
no path in G can have length more than n−1).

Example 6.4. The diameter of the 3-cube in Figure 6.1 is easily seen to be 3. Since
the digraph G2 in Figure 4.1 is not strongly connected, the diameter is undefined.

The problem of computing distances in (ordinary, unweighted) digraphs is rela-
tively easy. We already know from Theorem 5.6 that for each search tree, BFS finds
the distance from the root s to each node in the tree (this distance equals the level of
the node). If v is not in the tree then v is not reachable from s and so d(s,v) = +∞ (or
is undefined, depending on your convention).

It is often useful to have a readily available distance matrix. The (i, j)-entry of
this matrix contains the distance between node i and node j. Such a matrix can be
generated by running BFSvisit from each node in turn; this gives an algorithm with
running time in Θ(n2 +nm).

Example 6.5. An adjacency matrix and a distance matrix for the 3-cube shown in
Figure 6.1 is given below. The maximum entries of value 3 indicate the diameter. The
reader should check these entries by performing a breadth-first search from each
vertex.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 2 3 1 2
1 0 2 1 3 2 2 1
1 2 0 1 1 2 2 3
2 1 1 0 2 1 3 2
2 3 1 2 0 1 1 2
3 2 2 1 1 0 2 1
1 2 2 3 1 2 0 1
2 1 3 2 2 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is more difficult to compute distance in weighted digraphs. In the next two
sections we consider this problem.

Exercises

Exercise 6.2.1. Give an example of a weighted digraph in which the obvious BFS
approach does not find the shortest path from the root to each other node.

Exercise 6.2.2. The eccentricity of a node u in a digraph G is the maximum of d(u,v)
over all v ∈ V (G). The radius of G is the minimum eccentricity of a node. Write an
algorithm to compute the radius of a digraph in time Θ(n2 + nm). How can we read
off the radius from a distance matrix?

6.3 Single-source shortest path problem

The single-source shortest path problem (SSSP) is as follows. We are given a weighted
digraph (G,c) and a source node s. For each node v of G, we must find the minimum
weight of a path from s to v (by the weight of a path we mean the sum of the weights
on the arcs).

124 Section 6.3: Single-source shortest path problem

algorithm Dijkstra
Input: weighted digraph (G,c); node s ∈V (G)

begin
array colour[0..n−1], dist[0..n−1]
for u ∈V (G) do

dist[u]← c[s,u]; colour[u]←WHITE
end for
dist[s]← 0; colour[s]← BLACK
while there is a white node

find a white node u so that dist[u] is minimum
colour[u]← BLACK
for x ∈V (G) do

if colour[x] = WHITE then
dist[x]←min{dist[x],dist[u]+ c[u,x]}

end if
end for

end while
return dist

end

Figure 6.2: Dijkstra’s algorithm, first version.

Example 6.6. In the weighted digraph of Figure 6.1, we can see by considering all
possibilities that the unique minimum weight path from 0 to 3 is 013, of weight 3.

We first present an algorithm of Dijkstra that gives an optimal solution to the SSSP
whenever all weights are nonnegative. It does not work in general if some weights are
negative—see Exercise 6.3.5.

Dijkstra’s algorithm is an example of a greedy algorithm. At each step it makes
the best choice involving only local information, and never regrets its past choices.
It is easiest to describe in terms of a set S of nodes which grows to equalV (G).

Initially the only paths available are the one-arc paths from s to v, of weight c(s,v).
At this stage, the set S contains only the single node s. We choose the neighbour u
with c(s,u) minimal and add it to S. Now the fringe nodes adjacent to s and u must
be updated to reflect the new information (it is possible that there exists a path from
s to v, passing through u, that is shorter than the direct path from s). Now we choose
the node (at “level” 1 or 2) whose current best distance to s is smallest, and update
again. We continue in this way until all nodes belong to S.

The basic structure of the algorithm is presented in Figure 6.2.

Example 6.7. An application of Dijkstra’s algorithm on the second digraph of Fig-
ure 6.1 is given in Table 6.1 for each starting vertex s.

The table illustrates that the distance vector is updated at most n−1 times (only
before a new vertex is selected and added to S). Thus we could have omitted the lines
with S = {0,1,2,3} in Table 6.1.

Why does Dijkstra’s algorithm work? The proof of correctness is a little longer
than for previous algorithms. The key observation is the following result. By an S-
path from s to w we mean a path all of whose intermediate nodes belong to S. In
other words, w need not belong to S, but all other nodes in the path do belong to S.

Theorem 6.8. Suppose that all arc weights are nonnegative. Then at the top of the
while loop, we have the following properties:

Chapter 6: Weighted Digraphs and Optimization Problems 125

Table 6.1: Illustrating Dijkstra’s algorithm.

current S ⊆V distance vector dist
{0} 0,1,4,∞
{0,1} 0,1,4,3
{0,1,3} 0,1,4,3
{0,1,2,3} 0,1,4,3
{1} ∞,0,∞,2
{1,3} 4,0,∞,2
{0,1,3} 4,0,8,2
{0,1,2,3} 4,0,8,2
{2} ∞,2,0,5
{1,2} ∞,2,0,4
{1,2,3} 6,2,0,4
{0,1,2,3} 6,2,0,4
{3} 2,∞,∞,0
{0,3} 2,3,6,0
{0,1,3} 2,3,6,0
{0,1,2,3} 2,3,6,0

P1: if x ∈V (G), then dist[x] is the minimum cost of an S-path from s to x;

P2: if w ∈ S, then dist[w] is the minimum cost of a path from s to w.

Note. Assuming the result to be true for a moment, we can see that once a node u
is added to S and dist[u] is updated, dist[u] never changes in subsequent iterations.
When the algorithm terminates, all nodes belong to S and hence dist holds the cor-
rect distance information.

Proof. Note that at every step, dist[x] does contain the length of some path from s to
x; that path is an S-path if x ∈ S. Also, the update formula ensures that dist[x] never
increases.

To prove P1 and P2, we use induction on the number of times k we have been
through the while-loop. Let Sk denote the value of S at this stage. When k= 0, S0 = {s},
and since dist[s] = 0, P1 and P2 obviously hold. Now suppose that they hold after k
times through the while-loop and let u be the next special node chosen during that
loop. Thus Sk+1 = Sk ∪{u}.

We first show that P2 holds after k+ 1 iterations. Suppose that w ∈ Sk+1. If w �= u
then w ∈ S and so P2 trivially holds for w by the inductive hypothesis. On the other
hand, if w = u, consider any Sk+1-path γ from s to u. We shall show that dist[u] ≤ |γ|
where |γ| denotes the weight of γ. The last node before u is some y ∈ Sk. Let γ1 be the
subpath of γ ending at y. Then dist[u] ≤ dist[y] + c(y,u) by the update formula. Fur-
thermore dist[y]≤ |γ1| by the inductive hypothesis applied to y∈ Sk. Thus, combining
these inequalities, we obtain dist[u] ≤ |γ1|+ c(y,u) = |γ| as required. Hence P2 holds
for every iteration.

Now suppose x ∈ V (G). Let γ be any Sk+1-path to x. If u is not involved then γ is
an Sk path and so |γ| ≤ dist[x] by the inductive hypothesis. Now suppose that γ does
include u. If γ goes straight from u to x, we let γ1 denote the subpath of γ ending at
u. Then |γ|= |γ1|+ c(u,x)≥ dist[x] by the update formula. Otherwise, after reaching u,
the path returns into Sk directly, emerging from Sk again, at some node y before going
straight to x (see Figure 6.3). Let γ1 be the subpath of γ ending at y. Since P2 holds

126 Section 6.3: Single-source shortest path problem

s

x
y

S

u

β

Figure 6.3: Picture for proof of Dijkstra’s algorithm.

for Sk, there is a minimum weight Sk-path β from s to y of length dist[y]. Thus by the
update formula,

|γ|= |γ1|+ c(y,x)≥ |β|+ c(y,x)≥ dist[y]+ c(y,x)≥ dist[x].

Hence P1 holds for all iterations.

The study of the time complexity of Dijkstra’s algorithm leads to many interesting
topics.

Note that the value of dist[x] will change only if x is adjacent to u. Thus if we use a
weighted adjacency list, the block inside the second for-loop need only be executed
m times. However, if using the adjacency matrix representation, the block inside the
for-loop must still be executed n2 times.

The time complexity is of order an+m if adjacency lists are used, and an+n2 with
an adjacency matrix, where a represents the time taken to find the node with min-
imum value of dist. The obvious method of finding the minimum is simply to scan
through array dist sequentially, so that a is of order n, and the running time of Dijkstra
is therefore Θ(n2). Dijkstra himself originally used an adjacency matrix and scanning
of the dist array.

The above analysis is strongly reminiscent of our analysis of graph traversals in
Section 5.1, and in fact Dijkstra’s algorithm fits into the priority-first search frame-
work discussed in Section 5.5. The key value associated to a node u is simply the
value dist[u], the current best distance to that node from the root s. In Figure 6.4 we
present Dijkstra’s algorithm in this way.

It is now clear from this formulation that we need to perform n delete-min oper-
ations and at most m decrease-key operations, and that these dominate the running
time. Hence using a binary heap (see Section 2.5), we can make Dijkstra’s algorithm
run in time O((n+m) logn). Thus if every node is reachable from the source, it runs
in timeO(m logn).

The quest to improve the complexity of algorithms like Dijkstra’s has led to some
very sophisticated data structures that can implement the priority queue in such a
way that the decrease-key operation is faster than in a heap, without sacrificing the

Chapter 6: Weighted Digraphs and Optimization Problems 127

algorithm Dijkstra2
Input: weighted digraph (G,c); node s ∈V (G)

begin
priority queue Q
array colour[0..n−1], dist[0..n−1]
for u ∈V (G) do

colour[u]←WHITE
end for
colour[s]← GREY
Q.insert(s, 0)
while not Q.isEmpty() do

u←Q.peek(); t1←Q.getKey(u)
for each x adjacent to u do

t2← t1 + c(u,x)
if colour[x] = WHITE then

colour[x]← GREY
Q.insert(x,t2)

else if colour[x] = GREY and Q.getKey(x) > t2 then
Q.decreaseKey(x, t2)

end if
end for
Q.delete()
colour[u]← BLACK
dist[u]← t1

end while
return dist

end

Figure 6.4: Dijkstra’s algorithm, PFS version.

delete-min or other operations. Many such data structures have been found, mostly
complicated variations on heaps; some of them are called Fibonacci heaps and 2–3
heaps. The best complexity bound for Dijkstra’s algorithm, using a Fibonacci heap,
is O(m+n logn).

Bellman–Ford algorithm

This algorithm, unlike Dijkstra’s handles negative weight arcs, but runs slower than
Dijkstra’s when all arcs are nonnegative. The basic idea, as with Dijkstra’s algorithm,
is to solve the SSSP under restrictions that become progressively more relaxed. Di-
jkstra’s algorithm solves the problem one node at a time based on their current dis-
tance estimate.

In contrast, the Bellman–Ford algorithm solves the problem for all nodes at “level”
0,1, . . . ,n− 1 in turn. By level we mean the minimum possible number of arcs in a
minimum weight path to that node from the source.

Theorem 6.9. Suppose thatG contains no negative weight cycles. Then after the i-th
iteration of the outer for-loop, dist[v] contains the minimum weight of a path to v for
all nodes v with level at most i.

128 Section 6.3: Single-source shortest path problem

algorithm BellmanFord
Input: weighted digraph (G,c); node s

begin
array dist[0..n−1]
for u ∈V (G) do

dist[u]← ∞
end for
dist[s]← 0
for i from 0 to n−1 do

for x ∈V (G) do
for v ∈V (G) do

dist[v]←min(dist[v],dist[x]+ c(x,v))
end for

end for
end for
return dist

end

Figure 6.5: Bellman–Ford algorithm.

Proof. Note that as for Dijkstra, the update formula is such that dist values never
increase.

We use induction on i. When i = 0 the result is true because of our initialization.
Suppose it is true for i− 1. Let v be a node at level i, and let γ be a minimum weight
path from s to v. Since there are no negative weight cycles, γ has i arcs. If y is the
last node of γ before v, and γ1 the subpath to y, then by the inductive hypothesis
we have dist[y] ≤ |γ1|. Thus by the update formula we have dist[v] ≤ dist[y]+ c(y,v) ≤
|γ1|+ c(y,v)≤ |γ| as required.

The Bellman–Ford algorithm runs in time Θ(nm) using adjacency lists, since the
statement in the inner for-loop need only be executed if v is adjacent to x, and the
outer loop runs n times. Using an adjacency matrix it runs in time Θ(n3).

Exercises

Exercise 6.3.1. Run the Bellman–Ford algorithm on the digraph with weighted adja-
cency matrix given below. Choose each node as the source in turn as in Example 6.7.⎡

⎢⎢⎢⎢⎣
0 6 0 0 7
0 0 5 −4 8
0 −2 0 0 0
2 0 7 0 0
0 0 −3 9 0

⎤
⎥⎥⎥⎥⎦

Exercise 6.3.2. Explain why the SSSP problem makes no sense if we allow digraphs
with cycles of negative total weight.

Chapter 6: Weighted Digraphs and Optimization Problems 129

Exercise 6.3.3. The graph shows minimum legal driving times (in multiples of 5 min-
utes) between various South Island towns. What is the shortest time to drive legally
from Picton to (a) Wanaka, (b) Queenstown and (c) Invercargill? Explain which algo-
rithm you use and show your work.

PICTONNELSON

MURCHISON

BLENHEIM

CROMWELL

INVERCARGILL

QUEENSTOWN

OMARAMA

19

5

51

44

23

26

50

16

8

13

10

16

28

33

28

WANAKA

90

CHRISTCHURCH

GREYMOUTH

DUNEDIN

54

Exercise 6.3.4. Suppose the input to the Bellman–Ford algorithm is a digraph with
a negative weight cycle. How does the algorithm detect this, so it can exit gracefully
with an error message?

Exercise 6.3.5. Give an example to show that Dijkstra’s algorithm may fail to give the
correct answer if some weights are negative. Make your example as small as possible.
Then run the Bellman–Ford algorithm on the example and verify that it gives the
correct answer.

Exercise 6.3.6. Where in the proof of Dijkstra’s algorithm do we use the fact that all
the arc weights are nonnegative?

6.4 All-pairs shortest path problem

The problem is as follows: given a weighted digraph (G,c), determine for each u,v ∈
V (G) (the length of) a minimum weight path from u to v.

It is easy to present this information in a distance matrix.

Example 6.10. For the digraph of Figure 6.1, we have already calculated the all-pairs
distance matrix in Example 6.7: ⎛

⎜⎜⎝
0 1 4 3
4 0 8 2
6 2 0 4
2 3 6 0

⎞
⎟⎟⎠ .

Clearly we may compute this matrix as above by solving the single-source short-
est path problem with each node taken as the root in turn. The time complexity is
of course Θ(nA) where A is the complexity of our single-source algorithm. Thus run-
ning the adjacency matrix version of Dijkstra n times gives a Θ(n3) algorithm, and the
Bellman–Ford algorithm Θ(n2m).

130 Section 6.4: All-pairs shortest path problem

algorithm Floyd
Input: weighted digraph (G,c)

begin
array d[0..n−1,0..n−1]
for u ∈V (G) do

for v ∈V (G) do
d[u,v]← c(u,v)

end for
end for
for x ∈V (G) do

for u ∈V (G) do
for v ∈V (G) do

d[u,v]←min(d[u,v],d[u,x]+d[x,v])
end for

end for
end for
return d

end

Figure 6.6: Floyd’s algorithm.

There is a simpler method discovered by R. W. Floyd. Like the Bellman-Ford algo-
rithm, it is an example of an algorithm design technique called dynamic program-
ming . This is where smaller, less-difficult subproblems are first solved, and the so-
lutions recorded, before the full problem is solved. Floyd’s algorithm computes a
distance matrix from a cost matrix in time Θ(n3). It is faster than repeated Bellman–
Ford for dense digraphs and unlike Dijkstra’s algorithm, it can handle negative costs.
For sparse graphs with positive costs repeated Dijkstra is competitive with Floyd, but
for dense graphs they have the same asymptotic complexity. A key point in favour of
Floyd’s algorithm is its simplicity, as can be seen from the algorithm of Figure 6.6.
Floyd’s algorithm is basically a simple triple for-loop.

Note. Observe that we are altering the value of d[u,v] in the update formula. If we
already have a weighted adjacency matrix d, there is no need for the first double
loop. We simply overwrite entries in d via the update formula, and everything works.

Example 6.11. An application of Floyd’s algorithm on the third graph of Figure 6.1 is
given below. The initial cost matrix is as follows.

⎡
⎢⎢⎢⎢⎢⎢⎣

0 4 1 ∞ 4 ∞
4 0 ∞ 2 3 4
1 ∞ 0 ∞ 3 ∞
∞ 2 ∞ 0 ∞ 1
4 3 3 ∞ 0 2
∞ 4 ∞ 1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

In the matrices below, the index k refers to the number of times we have been
through the outer for-loop.

Chapter 6: Weighted Digraphs and Optimization Problems 131

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 ∞ 4 ∞
4 0 5 2 3 4
1 5 0 ∞ 3 ∞
∞ 2 ∞ 0 ∞ 1
4 3 3 ∞ 0 2
∞ 4 ∞ 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 6 4 8
4 0 5 2 3 4
1 5 0 7 3 9
6 2 7 0 5 1
4 3 3 5 0 2
8 4 9 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 6 4 8
4 0 5 2 3 4
1 5 0 7 3 9
6 2 7 0 5 1
4 3 3 5 0 2
8 4 9 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

k = 1 k = 2 k = 3

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 6 4 7
4 0 5 2 3 3
1 5 0 7 3 8
6 2 7 0 5 1
4 3 3 5 0 2
7 3 8 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 6 4 6
4 0 5 2 3 3
1 5 0 7 3 5
6 2 7 0 5 1
4 3 3 5 0 2
6 3 5 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 4 1 6 4 6
4 0 5 2 3 3
1 5 0 6 3 5
6 2 6 0 3 1
4 3 3 3 0 2
6 3 5 1 2 0

⎤
⎥⎥⎥⎥⎥⎦

k = 4 k = 5 k = 6

In the above matrices we list the entries that change in bold after each increment
of k. Notice that undirected graphs, as expected, have symmetric distance matrices.

Why does Floyd’s algorithm work? The proof is again by induction.

Theorem 6.12. At the bottom of the outer for loop, for all nodes u and v, d[u,v] con-
tains the minimum length of all paths from u to v that are restricted to using only
intermediate nodes that have been seen in the outer for loop.

Note. Given this fact, when the algorithm terminates, all nodes have been seen in
the outer for loop and so d[u,v] is the length of a shortest path from u to v.

Proof. To establish the above property, we use induction on the outer for-loop. Let
Sk be the set of nodes seen after k times through the outer loop, and define an Sk-path
to be one all of whose intermediate nodes belong to Sk. The corresponding value of d
is denoted dk. We need to show that for all k, after k times through the outer for-loop,
dk[u,v] is the minimum length of an Sk-path from u to v.

When k= 0, S0 = /0 and the result holds. Suppose it is true after k times through the
outer loop and consider what happens at the end of the (k+ 1)-st time through the
outer loop. Suppose that xwas the last node seen in the outer loop, so Sk+1 = Sm∪{x}.
Fix u,v∈V (G) and let L be the minimum length of an Sk+1-path from u to v. Obviously
L≤ dk+1[u,v]; we show that dk+1[u,v]≤ L.

Choose an Sk+1-path γ from u to v of length L. If x is not involved then the result
follows by inductive hypothesis. If x is involved, let γ1,γ2 be the subpaths from u to x
and x to v respectively. Then γ1 and γ2 are Sm-paths and by the inductive hypothesis,

L≥ |γ1|+ |γ2| ≥ dk[u,x]+dk[x,v]≥ dk+1[u,v].

The proof does not use the fact that weights are nonnegative—in fact Floyd’s al-
gorithm works for negative weights (provided of course that a negative weight cycle
is not present).

Exercises

Exercise 6.4.1. Run Floyd’s algorithm on the matrix of Exercise 6.3.1 and check your
answer against what was obtained there.

132 Section 6.5: Minimum spanning tree problem

Exercise 6.4.2. Suppose the input to Floyd’s algorithm is a digraph with a negative
weight cycle. How does the algorithm detect this, so it can exit gracefully with an
error message?

Exercise 6.4.3.

The matrix M shows costs of direct flights between towns A, B, C, D, E, F (where ∞, as
usual, means that no direct flight exists). You are given the job of finding the cheapest
route between each pair of towns. Solve this problem. Hint: save your working.

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 6 4 ∞
1 0 7 4 2 11
2 7 0 ∞ 6 4
6 4 ∞ 0 ∞ 1
4 2 6 ∞ 0 3
∞ 11 4 1 3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The next day, you are told that in towns D, E, F, political troubles mean that no
passenger is allowed to both take off and land there. Solve the problem with this
additional constraint.

6.5 Minimum spanning tree problem

In this section, we use “tree” to mean “free tree” throughout. Recall that a tree is a
connected acyclic graph. A spanning tree of a graph G is a spanning subgraph of G
that is itself a tree.

Definition 6.13. Let G be a weighted graph. A minimum spanning tree (MST) is a
spanning tree for G which has minimum total weight (sum of all edge weights).

Note. If all weights are nonnegative and we only want a spanning subgraph with
minimum total weight, this must be a tree anyway (if not, delete an edge from a
cycle and keep a spanning subgraph).

The problem we are concerned with is this: given a weighted graph G, find a MST
for G. There are obvious practical applications of this idea. For example, how can we
cheaply link sites with communication links so that they are all connected?

Example 6.14. In the third graph of Figure 6.1, the tree determined by the edges

{0,2},{1,3},{3,5},{4,5},{2,4}

has total weight 9. It is a tree and has the 5 smallest weight edges, so must be a MST.

One should not search naively through all possible spanning trees: it is known
that there are nn−2 spanning trees for the complete graph Kn, for example!

In this section we present two efficient algorithms to find a MST that (like Dijk-
stra’s algorithm) fall into the category of greedy algorithms.

Each builds up a MST by iteratively choosing an edge greedily, that is, choosing
one with minimum weight, subject to not obviously ruining our chance of extending
to a spanning tree. It turns out that this simple approach works for the MST problem
(obviously, not for all graph optimization problems!). There are other algorithms
with better theoretical complexity for the MST problem, but none is as simple to
understand.

Chapter 6: Weighted Digraphs and Optimization Problems 133

The algorithms can be described in an informal way very easily. The first, Prim’s
algorithm, starts at a root vertex and chooses at each step an edge of minimum
weight from the remaining edges, subject to: (a) adding the edge does not create
a cycle in the subgraph built so far, and (b) the subgraph built so far is connected. By
contrast, Kruskal’s algorithm does not start at a root: it follows rule (a) and ignores
(b). Prim’s algorithm is perhaps easier to program, but Kruskal’s is easier to perform
by hand.

Each algorithm clearly terminates when no more edges can be found that satisfy
the above condition(s). Since Prim’s algorithm maintains acyclicity and connected-
ness, at each stage it has built a subgraph that is a tree. Kruskal’s algorithm maintains
acyclicity, so it has a forest at each step, and the different trees merge as the algorithm
progresses.

We might first ask why does each algorithm even form a spanning tree (see Exer-
cise 6.5.2). However, even given that a spanning tree is formed, it is not at all obvious
that this spanning tree has minimum possible weight among all spanning trees of
the graph.

We now show the correctness of these algorithms. We may suppose that the graph
is connected. If it is not, we cannot find a spanning tree anyway, and must be sat-
isfied with a spanning forest. Prim’s algorithm will terminate when it has explored
the first component and must be restarted from a new root in another component.
Kruskal’s algorithm will find a spanning forest without modification.

Theorem 6.15. Prim’s and Kruskal’s algorithms are correct.

Proof. Define a set of edges to be promising if it can be extended in some way to
a MST. Then the empty set is promising since some MST exists. We claim that at
each step, the algorithms above have chosen a promising set of edges. When they
terminate, no further extension of the set is possible (by rule (a) above), and so we
must have a MST.

To prove the claim efficiently, we need a technical fact, as follows. Suppose that
B is a subset of V (G), not containing all the vertices of G, and T a promising set of
edges such that no edge in T leaves B. In other words, either both endpoints are in B
or neither endpoint is in B. Then if e is a minimum weight edge that does leave B (it
has one endpoint in B and one outside) then T ∪{e} is also promising.

To see this fact, note that since T is promising, it is contained in some MST,U say.
If e ∈U there is nothing to prove. Otherwise, when we add e to U we create exactly
one cycle. There must be at least one other edge, say e′, that leaves B, otherwise the
cycle could not close. If we remove e′ we obtain a new tree that spans G and whose
total weight is no greater than the total weight ofU . Thus V is also a MST, and since
it contains T ∪{e}, that set is promising.

Now to prove the claim, suppose that our algorithm has maintained a promising
set T of edges so far, and it has just chosen edge e = {u,v}. If we take B at each step
to be the set of vertices in the tree (Prim) or the set of vertices in the tree containing
u (Kruskal), then we may apply the fact above to conclude that T ∪{e} is promising.
This concludes the proof of correctness.

The above informal descriptions of MST algorithms can be converted easily to an
algorithm. In Figure 6.7 we present the algorithm. Note how similar Prim’s algorithm
is to Dijkstra’s. The main difference is in the update formula. We also store the PFS
tree, which we elected not to do for Dijkstra.

In Prim’s algorithm, we checked whether a cycle would be created by adding an
edge in the usual way: when exploring {u,v} from u, if v has already been seen and is
not the parent of u, then adding {u,v} creates a cycle. With Kruskal’s algorithm, we

134 Section 6.5: Minimum spanning tree problem

algorithm Prim
Input: weighted graph (G,c); vertex s ∈V (G)

begin
priority queue Q
array colour[0..n−1], pred[0..n−1]
for u ∈V (G) do

colour[u]←WHITE; pred[u]← NULL
end for
colour[s]←GREY
Q.insert(s, 0)
while not Q.isEmpty() do

u←Q.peek()
for each x adjacent to u do

t← c(u,x)
if colour[x] = WHITE then

colour[x]←GREY; pred[x]← u
Q.insert(x,t)

else if colour[x] = GREY and Q.getKey(x) > t then
Q.decreaseKey(x, t); pred[x]← u

end if
end for
Q.delete()
colour[u]← BLACK

end while
return pred

end

Figure 6.7: Prim’s algorithm.

must use another method, since the above test does not work. Both u and vmay have
been seen, but may be in different trees.

Observe that if we try to add an edge both of whose endpoints are in the same
tree in the Kruskal forest, this will create a cycle, so the edge must be rejected. On
the other hand, if the endpoints are in two different trees, a cycle definitely will not
be created; rather, the two trees merge into a single one, and we should accept the
edge. We need a data structure that can handle this efficiently. All we need is to be
able to find the tree containing an endpoint, and to merge two trees. The disjoint
sets or union-find ADT is precisely what is needed. It allows us to perform the find
and union operations efficiently (see Section D.1).

The complexity of the algorithm depends to a great extent on the data structures
used. The best known for Prim is the same as for Dijkstra, namely O(m+n logn), and
for Kruskal O(m logn). The disjoint sets ADT can be implemented in such a way that
the union and find operations in Kruskal’s algorithm runs in almost linear time (the
exact bound is very complicated). So if the edge weights are presorted, or can be
sorted in linear time (for example, if they are known to be integers in a fixed range),
then Kruskal’s algorithm runs for practical purposes in linear time.

Exercises

Exercise 6.5.1. Carry out each of these algorithms on the weighted graph of Fig-
ure 6.1. Do the two algorithms give the same spanning tree?

Chapter 6: Weighted Digraphs and Optimization Problems 135

algorithm Kruskal
Input: weighted graph (G,c)

begin
disjoint sets ADT A
initialize A with each vertex in its own set
sort the edges in increasing order of cost
for each edge {u,v} in increasing cost order do

if not A.set(u) = A.set(v) then
add this edge
A.union(A.set(u),A.set(v))

end if
end for
return A

end

Figure 6.8: Kruskal’s algorithm.

Exercise 6.5.2. Prove the assertion made above that when Kruskal’s or Prim’s algo-
rithm terminates, the current set of edges forms a spanning tree.

Exercise 6.5.3. Consider the following algorithm for the MST problem. Repeatedly
delete edges from a connected graph G, at each step choosing the most expensive
edge we can, subject to maintaining connectedness. Does it solve the MST problem
sometimes? always?

6.6 Hard graph problems

We have presented several efficient algorithms for some common digraph problems.
All of these algorithms have running time bounded above by a low degree poly-
nomial in the size of the input. However, there are many essential problems that
currently do not have known polynomial-time algorithms (so-called NP-hard prob-
lems). Some examples are:

• finding the longest path between two nodes of a digraph;

• finding a k-colouring of a graph, for fixed k≥ 3;

• finding a cycle that passes through all the vertices of a graph (a Hamiltonian
cycle);

• finding a minimum weight path that passes through all the vertices of a weighted
digraph (the travelling salesperson problem or TSP);

• finding the largest independent set in a graph — that is, a subset of vertices no
two of which are connected by an edge;

• finding the smallest vertex cover of a graph—that is, a special subset of vertices
so that each vertex of the graph is adjacent to one in that subset. (However,
from Exercise 5.9.3, this problem is polynomial-time solvable when restricted
to bipartite graphs.)

Investigating these problems is an active research area in computer science. In
many cases the only approach known is essentially to try all possibilities, with some
rules that prevent the listing of obviously hopeless ones. In some special cases (for

136 Section 6.7: Notes

example, graphs that are planar (they can be drawn in the plane without edges
crossing) or are in some sense “close to” trees, much faster algorithms can be de-
veloped.

Exercises

Exercise 6.6.1. Find a Hamiltonian cycle of the graph in Exercise 6.3.3. Try to solve
the TSP for this graph.

Exercise 6.6.2. What is the exact relation between the independent set and vertex
cover problems?

6.7 Notes

Dijkstra’s algorithm was proposed by E. W. Dijkstra in 1959. The Bellman–Ford al-
gorithm was proposed independently by R. Bellman (1958) and L. R. Ford, Jr (1956).
Floyd’s algorithm was developed in 1962 by R. W. Floyd. Prim’s algorithm was pre-
sented by R. C. Prim in 1957 and reinvented by E. W. Dijkstra in 1959, but had been
previously introduced by V. Jarnik in 1930. Kruskal’s algorithm was introduced by J.
Kruskal in 1956.

Part III

Introduction to Formal Languages

Chapter 7

An Introduction to Automata

In this chapter we study the most basic abstract model of computation. This model
deals with machines that have a finite memory capacity. Section 7.1 deals with ma-
chines that operate deterministically for any given input while Section 7.2 deals with
machines that are more flexible in the way they compute (that is, nondeterministic
choices are allowed). We also present two real-world practical applications: using
regular expressions for pattern matching (Section 7.4) and efficient string matching
(Section 7.7).

7.1 Deterministic finite-state machines

A computer’s ability to recognize specified patterns is desirable for many applica-
tions such as text editors, compilers, and databases. We will see that many of these
patterns can be efficiently recognized with the simple finite-state machines discussed
in this chapter.

The low budget elevators

What kind of machine has only a finite amount of memory? Of course, you may first
think that a desktop computer’s memory (for example, one with 256M RAM) is finite.
But this is not exactly true since we have external memory (hard drives, tape drives,
and floppy disks) that could extend the memory capacity to an arbitrary large limit.

We have a much simpler model in mind where a machine is viewed as a closed
computation box with only a read-only tape head (or toggle switches) for external
input. That is, the internal part of the machine can be in one of a finite number
of states. A certain subset of these states, called accepting states, will indicate that
the computation has been successful. If the machine halts in an accepting state, we
accept (or recognize) the input as valid.

To illustrate this further we consider an over-simplified construction of an eleva-
tor control mechanism. Of course, in this example, we are not planning to recognize
valid input, just to show how a real-world finite-state device operates.

First consider an elevator that moves between two levels. We will build a device
with two states {1,2}, where the state number corresponds with what floor the ele-
vator is currently located. To save cost we have two types of inputs UP and DOWN; a

140 Section 7.1: Deterministic finite-state machines

button on each floor indicating that a person on one of the floors wants to go to the
other. The state changes, called transitions, of this elevator can be depicted in the
following table format or graphical diagram format. The entries in the table denote
a new state of machine after an input is received (the directional arcs on the digraph
diagram denote the same thing). There are four cases to consider. For example, if
the elevator is on floor 2 and the DOWN button is pressed then the elevator should
move to floor 1.

(input buttons)
States DOWN UP

1 2 2
2 1 1 DOWN/UP

UP/DOWN

21

We can extend this low budget elevator example to handle more levels. With one
additional floor we will have more combinations of buttons and states to deal with.
Outside the elevator at floor 2 we need both an up button, U2, and a down button,
D2. Likewise, for floor 1 we just need an up button, U1, and for floor 3, we just need a
down button, D3. This particular elevator with three states is represented as follows.

(input buttons)
States U1 U2 D2 D3

1 2 2 2 3
2 1 3 1 3
3 1 2 2 2

U1, U2, D2

21

U1
U2, D2, D3

D3

3

U1, D2

U2, D3

The above elevator probably lacks functionality since to travel two levels one has
to press two buttons. Nevertheless, these two small examples should indicate what
we mean by a finite-state machine.

Finite-state machines that accept/reject strings

We now consider finite-state machines where the input is from some finite character
alphabet Σ. Our examples will mainly use simple character sets such as Σ = {0,1}
or Σ = {a,b,c,d} but in practice they may be as big as the set of 7-bit ASCII charac-
ters commonly used by computers. To do real computations we need a notion of an
initial or starting state; we also need some means to determine whether the result of
our computation is successful or not. To achieve this we need to designate an unique
starting state and classify each state as an accepting or rejecting state.

A formal definition of our (first) finite-state computation model is given next.

Definition 7.1. A deterministic finite automaton (DFA) is a five-tupleM= (Q,Σ,δ,s,F)
where

• Q is the finite set of machine states.

• Σ is the finite input alphabet.

• δ is a transition function from Q×Σ to Q.

• s ∈ Q is the start state.

Chapter 7: An Introduction to Automata 141

• F ⊆ Q is the set of accepting (membership) states.

Note. The set of rejecting states is determined by the set difference Q \ F . Other
authors sometimes define the next state function δ as a partial function (that is, not
all states accept all inputs). The convention of using the variable F for the set of
accepting states is that these are often referred to as final states.

Example 7.2. A very simple DFA example is M1 = (Q= {a,b,c},Σ= {1,2}, δ,s= a,F =
{c}), where δ is represented in two different ways below.

δ (input Σ)
States 1 2
a c b
b a a
c c b

ba

c

1, 2
1

2

2

1

In the graphical representation we use double circles to denote the accepting
states F of Q. Also the initial state s ∈ Q has an isolated arrow pointing at it.

Example 7.3. A more complicated DFA example is M2 below with Q = {a,b,c,d,e},
Σ = {1,2,3,4}, s= a, F = {c,e} and δ is represented by the following transition table.

δ (input Σ)
States 1 2 3 4
a a d a c
b a a c c
c c b e e
d c c d d
e c b b b

It is easy to generate a directed graph (loops allowed) representation from above.
We just view δ as an arc relationship on the states Q. Notice how we combine arcs
(into one) with different labels between the same two states for ease of presentation,
as done for this view of DFA M2.

a b

1,3

2

4

1,2

3,4

3,4

1,2
1

2

3,4

1
2,3,4

d e

c

Recognizing patterns with DFA

There are two main questions we have at this point concerning DFA and the process
of pattern recognition of strings of characters.

142 Section 7.1: Deterministic finite-state machines

• For a given DFA, what strings does it accept?
• For a given set of strings, can we build a DFA that recognizes just them?

Before proceeding we need a name for the set of inputs accepted by some au-
tomaton.

Definition 7.4. For a DFA M, the set of strings (words) accepted by M is called the
language decided (recognized) by M and denoted by L(M). The set L(M) is simply a
subset of Σ∗, all character sequences of the input alphabet Σ.

To compute L(M) we need to classify all possible strings that yield state transi-
tions to an accepting state from the initial state s of M. When looking at a graphical
representation of M, the strings are taken from the character sequence of traversed
arcs. The trace of a string (or character sequence) x = x1x2 · · ·xn for automaton M is
a sequence of states s0,s1,s2, . . . ,sn where s0 = s, and si = δ(si−1,xi). We say x ∈ L(M)
if and only if sn ∈ F , an accepting state of M. Note that more than one string may
correspond to a given trace because some arcs have more than one transition label.

We will see later in Section 7.4 that the languages recognizable by finite automata
are exactly those expressible as regular expressions.

Example 7.5. For the DFAM listed below, L(M) is the set of strings (over Σ= {1,2,3})
that contain the substring ‘123’.

a b

2,3

c d

1,2,3

1 2

3 1

3

1

2

Example 7.6. We construct a DFA that accepts all words with an even number of 0’s
and an odd number of 1’s. A 0/1 parity guide for each of the four states of the DFA is
given on the right.

a

b

d

c

0 0 0 0

1

1

1

1

Even/OddEven/Even

Odd/OddOdd/Even

We end this section by mentioning that there are some languages that are not
accepted by any finite-state automaton (see Exercise 7.1.3).

Exercises

Exercise 7.1.1. For input alphabet {a,b,c}, build a minimum DFA that accepts all
words with 3k b’s for some positive integer k.

Exercise 7.1.2. Show that there is no DFA that accepts the language L = {0n12n | n ≥
0}.

Chapter 7: An Introduction to Automata 143

Exercise 7.1.3. Shows that the language L = {0n1n | n > 0} is not accepted by any
finite automaton. Hint: if there are k states, what happens when n> k?

7.2 Nondeterministic finite-state machines

Nondeterminism allows a machine to select one of several state transitions randomly.
This includes a choice for initial state. This flexibility makes it easier (for a human
designer) to build an automaton that recognizes strings in a particular language. Be-
low we formally define this relaxed model of computation. We will see in the next
section how to (algorithmically) produce an equivalent deterministic machine from
a nondeterministic one.

Definition 7.7. A nondeterministic finite automaton (NFA) is a five-tuple (Q,Σ, δ,S,F)
where

• Q is the finite set of machine states.

• Σ is the finite input alphabet.

• δ is a function from Q×Σ to 2Q, the set of subsets of Q.

• S⊆ Q is a set of start (initial) states.

• F ⊆ Q is the set of accepting (membership) states.

Note. The state transition function δ is more general for NFAs than DFAs. Besides
having transitions to multiple states for a given input symbol, we can have δ(q,c)
undefined for some q ∈ Q and c ∈ Σ. This means that we can design automata such
that no state moves are possible when in some state q and the next character read is
c (that is, the human designer does not have to worry about all cases).

An NFA accepts a string w if there exists a nondeterministic path following the
legal moves of the transition function δ on input w to an accept state.

Other authors sometimes allow the next state function δ for NFA to include spe-
cial epsilon transitions, ε, such that an NFA’s state may change to another state with-
out needing to read the next character of the input string. These state jumps do not
make NFAs any more powerful in recognizing languages because we can always add
more transitions to bypass the epsilon moves (or add further start states if an epsilon
leaves from a start state). For this introduction, we do not consider epsilon transi-
tions further.

Using nondeterministic automata

We now present two examples of nondeterministic finite-state automata (NFAs).

Example 7.8. An NFA N with four states Q = {a,b,c,d}, input alphabet Σ = {1,2,3},
start states S= {a}, accepting states F = {c} and transition function δ is given below.

δ (input Σ)
States 1 2 3
a {a,b} {a,c} {d}
b {b,d} /0 {b}
c {c} {c} {c}
d /0 /0 {c}

144 Section 7.2: Nondeterministic finite-state machines

Note that there are no legal transitions from state b on input 2 (or from state d on
inputs 1 or 2) in the above NFA. The corresponding graphical view is given below.

a

d

2

1

3 1

3

1,2

1,2,3

1,3

c

b

We can see that the language L(N) accepted by this NFA N is the set of strings that
start with any number of 1’s and 2’s, followed by a 2 or 33 or (1 and (1’s and/or 3’s)
and 13). We will see how to describe languages such as L(N) more easily when we
cover regular expressions in Section 7.4 of these notes.

Example 7.9. An example NFA N2 with multiple start states S= {a,c} out of six states
Q = {a,b,c,d,e, f}, input alphabet Σ = {1,2,3}, and accepting states F = {c,d} and
transition function δ that is presented below.

δ (input Σ)
States 1 2 3
a {b,c} /0 {a}
b /0 {e} {b}
c /0 {b} /0
d /0 {e} {c,e}
e { f} {c} {d}
f {e} /0 /0

a

ec

b

d

3

2

3

21

1

2

2,3

3

3

f
1

1

The above example is somewhat complicated. What set of strings will this au-
tomata accept? Is there another NFA of smaller size (number of states) that recog-
nizes the same language? We have to develop some tools to answer these questions
more easily.

The reverse R(L) of a language L

If we have an automaton (either DFA or NFA) M that recognizes a language L we
can systematically construct an NFA M′ that recognizes the reverse language R(L) =
{w′ | w′ is the reverse of some w ∈ L}. The reverse of a string w = c1c2c3 . . .cn is the
string w′ = cncn−1 . . .c2c1. The automaton M accepts w if and only if M′ accepts w′.

Definition 7.10. The reverse machine (or dual machine) M′ of an NFA M is con-
structed as follows:

• The start states of M′ are the accept states of M.

• The accept states of M′ are the initial states of M.

Chapter 7: An Introduction to Automata 145

• If δ(q1,c) = q2 is in M then δ(q2,c) = q1 is in M′. That is, all transitions are re-
versed.

It is easy to see that the dual machine M′ of an automaton M recognizes the re-
verse strings that M accepts.

Example 7.11. The dual machine of Example 7.5 is given below.

a b

2,3

c d

1,2,3

1 2

3 1

3

1

2

Notice that the dual machine may not be the simplest machine for recognizing
the reverse language of a given automaton.

The closureC(L) of a language L

We want to introduce another useful NFA associated with a given automaton. The
closure, C(L) of a language L is defined to be the set of strings that can be formed
by concatenating together any number of strings of L. Given a DFA (or NFA) M that
recognizes a language L we can build an NFA M′ that recognizes the closure of L
by simply adding transitions from all accept state(s) to the neighbours of the initial
state(s).

Example 7.12. The DFA displayed on the left below accepts only the word 11. The
closure of this language, C(L) = {12k | k ≥ 1}, is accepted by the NFA on the right.

ba

c

1

0,1

1

d
0

0

0,1

ba

c

1

0,1

1

d
0

0

0,1

1

In the above example only one transition arc δ(d,1) = bwas added since the tran-
sition δ(d,0) = c already existed.

Exercises

Exercise 7.2.1. For each of the following three automata, indicate (true/false) whether
the machine accepts each of the following input strings abaa, ababbaaa, or bbababbab.

146 Section 7.3: Recognition capabilities of NFAs and DFAs

A1 A2

A3

a

a,ba,b

a,b

a,b

a,b

a,b

a
a

a

a

a

a

a

a
a

b b

b

b

b

bbb

Exercise 7.2.2. For words over the alphabet Σ= {0,1}, show that there is no automa-
ton that accepts all words containing only a prime number of 0’s.

7.3 Recognition capabilities of NFAs and DFAs

Although NFAs are easier than DFAs for the human to design, they are not as usable
by a (deterministic) computer. This is because nondeterminism does not give pre-
cise steps for execution. This section shows how one can take advantage of both the
convenience of NFAs and the practicality of DFAs. The algorithm NFAtoDFA given in
Figure 7.1 can be used to convert an NFA N to a DFA M that accepts the same set of
strings.

The idea behind algorithm NFAtoDFA is to create potentially a state in M for every
subset of states of N. Many of these states are not reachable so the algorithm often
terminates with a smaller deterministic automaton than the worst case of 2|N| states.
The running time of this algorithm is O(|QM| · |Σ|) if the correct data structures are
used.

The algorithm NFAtoDFA shows us that the recognition capabilities of NFAs and
DFAs are equivalent. We already knew that any DFA can be viewed as a special case of
an NFA; the above algorithm provides us with a method for mapping NFAs to DFAs.

Example 7.13. For the simple NFA N given on the left below we construct the equiv-
alent DFA M on the right, where L(N) = L(M).

Chapter 7: An Introduction to Automata 147

algorithm NFAtoDFA
Input: NFA N

begin

We construct a DFA M as follows.

sM = SN Initial state is the set of initial states of N
QM = {sM}
while QM has not increased in size do

for each new state qM = {a1,a2, . . . ,ak} ∈ QM do
for each input x ∈ Σ do
δM(qM,x) is the set q′M of all states of N reachable from ai on input x.
(That is, q′M = {a j | δN(ai,x) = a j,1≤ i≤ k})
QM = QM ∪{q′M}
end for

end for
end while
The accepting states FM is the set of states that have an accepting state of N.
(FM = {qM | ai ∈ qM and ai ∈ FN})
return M

end

Figure 7.1: An algorithm to convert an NFA to a DFA.

a
1

2

c

b

1
1,2

1

{b,c}

{a,b,c}

2

{c}

1

{a,c}{a}

1

2

1 1

2
1

2

2

Notice how the resulting DFA from the previous example has only 5 states com-
pared with the potential worst case of 8 states. This often happens as is evident in
the next example too.

Example 7.14. For the NFA N2 given on the left below we construct the equivalent
DFA M2 on the right, where L(N2) = L(M2).

a

d

1

1
0

c

b
0

0

{b,c}

0

{d} {a,d}

/0

0,1

{c}

{a,c} 0

1

1

1

0

1

0

0,1

In the above example notice that the empty subset /0 is a state. This is sometimes

148 Section 7.4: Regular expressions

called the dead state since no transitions are allowed out of it (and it is a non-accept
state).

Exercises

Exercise 7.3.1. Convert all of the NFA from Exercise 7.2.1 into DFA.

Exercise 7.3.2. Convert the following NFA into a DFA that accepts the same lan-
guage. (Hint: you need only 5 states.)

a b

cd

0

1

0,1

0,1

0

Exercise 7.3.3. Let L1 and L2 be two languages accepted by DFA M1 and M2. Explain
how you would build a DFA M that accepts the language L1∩L2.

Exercise 7.3.4. Let L1 and L2 be two languages accepted by DFA M1 and M2. Explain
how you would build a DFAM that accepts the language L2 \L1 (i.e. accepts words in
L2 but not in L1).

7.4 Regular expressions

In this section we present a method for representing sets of strings over a fixed al-
phabet Σ. We begin with some formal definitions.

Definition 7.15. A word w over a given alphabet Σ is an element of Σ∗ =
S∞
i=0Σ

i. The
empty word ε contains no symbols of Σ. A language L is a subset of words. The
concatenation of two words w1 and w2, denoted w1w2, is formed by juxtaposing the
symbols. A product of languages L1 and L2 is L1L2 = {w1w2 | w1 ∈ L1,w2 ∈ L2}. The
(Kleene) closure of a language L is defined by L∗ =

S∞
i=0L

i.

The following property holds for the empty word ε and any word w ∈ Σ∗, εw= w=
wε. For any language L, L0 = {ε}, L1 = L and L2 = LL.

Example 7.16. If Σ = {0,1} and L = {0,10} then L∗ is the set of words, including ε,
that have at least one 0 following each 1.

Definition 7.17. The standard regular expressions over alphabet Σ (and the sets they
designate) are as follows:

• Each c ∈ Σ∪{ε} is a regular expression (set {c}).

• If E1 (for some set S1) and E2 (for some set S2) are regular expressions then so
are:

◦ E1|E2 (union S1∪S2).
Often denoted E1 +E2.

◦ E1E2 (language concatenation S1S2).

Chapter 7: An Introduction to Automata 149

◦ E∗1 (Kleene closure S∗1).

Table 7.1 illustrates several regular expressions over the alphabet Σ = {a,b,c} and
the sets of strings, which we will shortly call regular languages, that they represent.

Table 7.1: Sample regular expressions and their corresponding languages.

regular expression regular language
a {a}
ab {ab}
a|bb {a,bb}
(a|b)c {ac,bc}
c∗ {ε,c,cc,ccc, . . .}
(a|b|c)cba {acba,bcba,ccba}
a∗|b∗|c∗ {ε,a,b,c,aa,bb,cc,aaa,bbb,ccc, . . .}
(a|b∗)c(c∗) {ac,acc,accc, . . . ,c,cc,ccc, . . . ,bc,bcc,bbccc, . . .}
a(ε|ba∗)a {aa,aba,abaa,abaaa, . . .}

Definition 7.18. A regular language (regular set) over an alphabet Σ is either the
empty set /0 or the set of words designated by some regular expression.

The UNIX extensions to regular expressions

For the users’ convenience, the UNIX operating system extends (for programs such
as vi, bash, grep, lex and perl) the regular expressions mentioned above for pattern
matching. However, these new operators do not extend the sets of languages that
are recognizable. Some of the most common new features are listed below for the
alphabet Σ being the set of ASCII characters.

Character Classes and Wild Card Symbol. A range of characters can be enclosed in
square brackets. For example [a-z] would denote the set of lower case letters.
A period . is a wild card symbol used to denote any character except a newline.

Line Beginning and Ending. To match a string that begins the line use the hat ˆ
as the first character of the pattern string. To match a string that ends the line
use the dollar sign $ as the last character of the pattern string. For example
^[0-9]*$will match both empty lines or lines containing only digits.

Additional Operators. Let E be a regular expression. The regular expression E?
denotes exactly 0 or 1 matches ofE. This is shorthand for the regular expression
(ε |E). The regular expression E+ denotes EE∗, that is, 1 or more occurrences
of E.

Note to match one of the special symbols above like * or . (instead of invoking
its special feature) we have to escape it with a preceding backslash \ character. For
example, big.*\. will match “biggest.” and “biggy.” where the period is matched.
The line beginning and ending characters were added since, by default, most UNIX
programs do substring matching.

150 Section 7.5: Regular sets and finite-state automata

Exercises

Exercise 7.4.1. Give a regular expression that describes all date strings given in the
form DD/MM/YYYY , where 01≤ DD≤ 31, 01≤MM ≤ 12 and 1800≤ YYYY ≤ 2099.

Exercise 7.4.2. Give a regular expression that describes all character strings over Σ=
{0,1} that represent the set of even binary numbers {0,10,100, 110, 1000, . . .}. (Note
that we do not want strings with leading zeros, except for the one representing 0.)

7.5 Regular sets and finite-state automata

We now want to present a characterization of the computational power of finite state
automata. We have already seen that DFAs and NFAs have the same computational
power. The set of languages accepted/decided by automata are precisely the set of
regular languages (sets). We show how to build an NFA that recognizes the set of
words depicted by any regular expression.

Theorem 7.19 (Kleene’s Theorem; part 1). For each regular language L there is a DFA
M such that L(M) = L.

Proof. It suffices to find an NFA N that accepts L since we have already seen how to
convert NFAs to DFAs. (See Section 7.3.)

An automaton for L= /0 and an automaton for L= {ε} are given below.

Σ

a
Σ

a

Σ

b

Now suppose E is a regular expression for L. We construct N based on the length
of E. If E = {c} for some c ∈ Σ we can use the following automaton.

a

Σ

b

Σ−{c}

c

c

Σ
By induction we only need to show how to construct N for E being one of E1 +E2,

E1E2 or E∗1 , for smaller regular expressions E1 and E2. Let us assume we have correct
automata M1 and M2 for E1 and E2.

Case 1: E = E1 +E2

We construct a (nondeterministic) automaton N representing E simply by taking
the union of the two machines M1 and M2.
Case 2: E = E1E2

We construct an automaton N representing E as follows. We do this by altering
slightly the union of the two machines M1 and M2. The initial states of N will be the
initial states ofM1. The initial states ofM2 will only be initial states ofN if at least one
of M1’s initial states is an accepting state. The final states of N will be the final states
of M2. (I.e., the final states ofM1 become ordinary states.) For each transition (q1,q2)
to a final state q2 of M1 we add transitions to the initial states of M2. That is, for c ∈ Σ,
if q1 j ∈ δ1(q1i,c) for some final state q1 j ∈ F1 then q2k ∈ δN(q1i,c) for each start state
q2k ∈ S2.

Chapter 7: An Introduction to Automata 151

Case 3: E = E∗1
The closure of an automaton was seen in Section 7.2. An automaton representing

E is the union of the closureC(M1) and the automaton representing {ε} given above.

We now give some an example of how to apply the construction rules given in the
proof of Kleene’s Theorem.

Example 7.20. For the regular expression (01)∗+ 1 we construct an automaton that
accepts the strings matched. First we build automata M1 and M2 that accept the
simple languages {0} and {1}.

a b
0

c

a b

c
0,1 0,10

1

1

M1: M2:

0,1 0,1

We next construct an automaton M12 that accepts the language {01}. We can
easily reduce the number of states of M12 to create an equivalent automaton M3.

a1 b1
0

c1

a2 b2

c2
0,1 0,1

0

1

1

M12:

0,1 0,1

0

a1 b1
0

b2

c2

0,11

M3:

0,1

1

0

We next construct an automatonM4 that accepts the language represented by the
regular expression (01)∗.

a1 b1
0

b2

c2
1

M4:

0,1

1

0

0

0,1
a b

0,1
0,1

The union of the automataM2 and M4 is an automatonN that accepts the regular
language depicted by the expression (01)∗+ 1. In the next section we show how to
minimize automata to produce the following final deterministic automaton (from
the output of algorithm NFAtoDFA on N) that accepts this language.

152 Section 7.5: Regular sets and finite-state automata

a

b

d

c

0,1

1
1

1

0

0,1

e

0
0

Usually more complicated (longer length) regular expressions require automata
with more states. However, this is not true in general.

Example 7.21. The DFA for the regular expression (01)∗(ε+ 1), displayed below, has
one fewer state than the previous example.

a

b

d

c

0,1

1
01

0

0,1

Kleene’s Theorem is actually stronger than what we mentioned above. He also
proved that for any finite automaton M there exists a regular expression that repre-
sents the language decided by M. The construction is simple and is illustrated next.

Theorem 7.22 (Kleene’s Theorem; part 2). For each NFAN there is a regular language
L (expression E) such that L(N) = L= L(E).

Proof. We give a constructive algorithm to find E based on the following induced
languages of the automatonN. We assume the statesQ of N are numbered 1 to n. For
p,q ∈ Q and 0≤ j ≤ n let

L(p,q, j) be a regular expression for {x ∈ Σ∗ | δ∗j(p,x) = q}
where δ∗j(p,x) = q represents a transition path from p to q using only intermediate
states numbered at most j.

The regular expression E corresponding to L(N) will be the union of all L(s, f ,n)
for s ∈ S and f ∈ F .

The following dynamic-programming algorithm computes L(p,q, j).
Base case: j = 0
The strings x that are recognized correspond to a single transition δ(p,x) = q for x ∈ Σ
and x= ε if p= q.
Inductive case: j = k+ 1
Suppose a machine for L(p,q,k+ 1) consumes some string x. It either uses state k+ 1
or not. In the first case, x= abc:

• processing a the machine moves from state p to k+ 1
• processing b the machine loops from/to state k+ 1
• processing c the machine moves from state k+ 1 to q

Chapter 7: An Introduction to Automata 153

Thus, taking either of the two cases, we get

L(p,q,k+ 1) = L(p,k+ 1,k)L(k+ 1,k+ 1,k)∗L(k+ 1,q,k) | L(p,q,k)

Example 7.23. We want to convert the following NFA to a regular expression.

1 2

b

a

a

The entry L(1,2,2) in the following table denotes the regular expression for the
automaton. We systematically build a table of regular expressions starting with k= 0.
Also, for convenience, we reduce L(p,q,k) to smaller regular expressions whenever
possible as we proceed.

p,q,k L(p,q,k)
1 1 0 ε
1 2 0 a
2 1 0 b
2 2 0 a
1 1 1 εε∗ε|ε = ε
1 2 1 εε∗a|a= a
2 1 1 bε∗ε|b= b
2 2 1 bε∗a|(ε|a) = ba|ε|a
1 1 2
1 2 2 a(ba|a)∗(ba|ε|a)|a= a(ba|a)∗
2 1 2
2 2 2

Exercises

Exercise 7.5.1. Give a regular expression that is equivalent to automaton A1 of Exer-
cise 7.2.1.

Exercise 7.5.2. Give a concise regular expression that denotes the language accepted
by the following automaton.

a b
a

b

b

0 1

2

3 4

b

154 Section 7.6: Minimizing deterministic finite-state machines

Exercise 7.5.3. Build a NFA that accepts the closure of the language accepted by the
following automaton.

a

a

a

b
a, b

q0

q1

q2

q3

Exercise 7.5.4. Give regular expressions for the two automata of Exercise 7.5.3.

Exercise 7.5.5. Build a NFA that accepts the language represented by concatenation
of L(M1) and L(M2).

a

a

a

b
a, b

q0

q1

q2

q3

a

a

a

b
a, b

q0

q1

q2

q3

M1
M2

7.6 Minimizing deterministic finite-state machines

There are standard techniques for minimizing deterministic automata. We present
an efficient algorithm based on finding (and eliminating) equivalent states.

Definition 7.24. For a DFA M = (Q,Σ,δ,s,F) and each q ∈ Q define the DFA Mq =
(Q,Σ,δ,q,F), that is, s is replaced with q in Mq. We say two states p and q of M are
distinguishable (k-distinguishable) if there exists a string w ∈ Σ∗ (of length k) such
that exactly one of Mp or Mq accepts w. If there is no such string w then we say p and
q are equivalent .

Note that the empty string ε may also be used to distinguish two states of an au-
tomaton.

Lemma 7.25. If a DFAM has two equivalent states p and q then there exists a smaller
DFA M′ such that L(M) = L(M′).

Proof. Assume M = (Q,Σ,δ,s,F) and p �= s. We create an equivalent DFA M′ = (Q \
{p},Σ,δ′,s,F \{p}) where δ′ is δwith all instances of δ(qi,c)= p replaced with δ′(qi,c)=
q and all instances of δ(p,c) = qi deleted. The resulting automatonM′ is deterministic
and accepts language L(M).

Lemma 7.26. Two states p and q are k-distinguishable if and only if for some c ∈ Σ,
the states δ(p,c) and δ(q,c) are (k−1)-distinguishable.

Proof. Consider all strings w = cw′ of length k in Σ∗. If δ(p,c) and δ(q,c) are (k− 1)-
distinguishable by some string w′ then the states p and q must be k-distinguishable
by w. Likewise, p and q being k-distinguishable by w implies there exists two states
δ(p,c) and δ(q,c) that are (k−1)-distinguishable by the shorter string w′.

Chapter 7: An Introduction to Automata 155

Our algorithm minimizeDFA (see Figure 7.2) to find equivalent states of a DFA
M = (Q,Σ,δ,s,F) begins by defining a series of equivalence relations ≡0, ≡1, . . . on
the states of Q.

p ≡0 q if both p and q are in F or both not in F .
p ≡k+1 q if p≡k q and, for each c ∈ Σ, δ(p,c)≡k δ(q,c).

We stop generating these equivalence classes when ≡n and ≡n+1 are identical.
Lemma 7.26 guarantees no more non-equivalent states. Since there can be at most
|Q| non-equivalent states this bounds the number of equivalence relations ≡k gen-
erated. We can eliminate one state from M (using Lemma 7.25) whenever there exist
two states p and q such that p ≡n q. In practice, we often eliminate more than one
(that is, all but one) state per equivalence class.

algorithm minimizeDFA
Input: DFA M = (Q,Σ,δ,s,F)

begin
Dictionary Ek[Q] initialized as follows:

if q ∈ F then Ek[q]← 1
else Ek[q]← 0

1 Dictionary Ek+1[q]←−1 for all q ∈Q
Dictionary EC[Q] of vectors (uninitialized work space)
for each p ∈ Q do

for each c ∈ Σ do
EC[p].append(Ek[δ(p,c)])

end for
end for
i← 0
for each p ∈ Q do

if Ek+1[p] �=−1 then next p
Ek+1[p]← i; i← i+ 1
for each q ∈ Q do

if Ek[p] �= Ek[q] or Ek+1[q] �=−1 then next q
if EC[p] = EC[q] then Ek+1[q]← Ek+1[p]

end for
end for
if |Ek+1.values()|> |Ek.values()| then

Ek← Ek+1

goto line 1
end if
for j← 0 to i−1 do

R[j] = Ek.findFirstKey(j)
end for
Build automaton M′ = (Q′,Σ,δ′,s′ = R[Ek[s]],F ′ = F ∩Q′)
where Q′ = {R[j] | 0≤ j < i} and

δ′(q,c) = R[Ek[δ(q,c)]] for all q ∈ Q′ and c ∈ Σ.
return M′

end

Figure 7.2: An algorithm to minimize a DFA.

Theorem 7.27. There exists a polynomial-time algorithm to minimize a DFA.

156 Section 7.6: Minimizing deterministic finite-state machines

Proof. To compute ≡k+1 from ≡k we have to determine the equivalence (or non-
equivalence) for at most

(|Q|
2

) ∈ O(|Q|2) possible pairs of states p and q. Each equiva-
lence check requires 2|Σ| transitions look-ups. Since we have to compute this for at
most n ≤ |Q| different equivalence classes ≡k, the preceding algorithm minimizeDFA
runs in time O(|Σ| · |Q|3).

Currently there are no direct, efficient minimization algorithms for the nondeter-
ministic counterparts of DFA. Note that the minimized equivalent DFA for an NFA
may be larger than the original (nonminimized) NFA.

We end our introduction to automata theory by showing how to use this min-
imization algorithm. The first example shows how to verify that an automaton is
minimal and the second shows how to find equivalent states for elimination.

Example 7.28. We use algorithm minimizeDFA to show that the following automaton
M has the smallest number of states for the regular language it represents.

a b

d

01

0

1

1

c

0

e f

01

0

0,1

1

The initial equivalence relation≡0 is {a,c,d, f}{b,e}based solely on the accepting
states of M. We now calculate≡1 using the recursive definition:

δ(a,1) = c �≡0 δ(c,1) = e =⇒ a �≡1 c.
δ(a,0) = b �≡0 δ(d,0) = f =⇒ a �≡1 d.
δ(a,1) = c �≡0 δ(f ,1) = e =⇒ a �≡1 f .
δ(c,0) = b �≡0 δ(d,0) = f =⇒ c �≡1 d.

(δ(c,0) = b≡0 δ(f ,0) = e and δ(c,1) = e≡0 δ(f ,1) = e) =⇒ c≡1 f .
δ(d,0) = f �≡0 δ(f ,0) = e =⇒ d �≡1 f .
δ(b,0) = b �≡0 δ(e,0) = a =⇒ b �≡1 e.

So ≡1 is {a}{b}{c, f}{d}{e}. We now calculate ≡2 to check the two possible remain-
ing equivalent states:

δ(c,0) = b �≡1 δ(f ,0) = e =⇒ c �≡2 f .

This shows that all states of M are non-equivalent (that is, our automaton is mini-
mum).

Example 7.29. We use the algorithm minimizeDFA to show that the following au-
tomaton M2 can be reduced.

Chapter 7: An Introduction to Automata 157

a

d

0

1

1

c

00,1
b

e

0,1

1

0

The initial equivalence relation ≡0 is {a,b,d}{c,e}. We now calculate≡1:

δ(a,0) = b �≡0 δ(b,0) = c =⇒ a �≡1 b.
δ(a,0) = b �≡0 δ(d,0) = c =⇒ a �≡1 d.

(δ(b,0) = c≡0 δ(d,0) = c and δ(b,1) = c≡0 δ(d,1) = e) =⇒ b≡1 d.
(δ(c,0) = c≡0 δ(e,0) = e and δ(c,1) = e≡0 δ(e,1) = e) =⇒ c≡1 e.

So≡1 is {a}{b,d}{c,e}. We calculate≡2 in the same fashion and see that it is the same
as ≡1. This shows that we can eliminate, say, states d and e to yield the following
minimum DFA that recognizes the same language as M2 does.

c
0,1

b

0,1

a
0,1

Exercises

Exercise 7.6.1. Reproduce the final automaton of Example 7.20 by using the algo-
rithms NFAtoDFA and minimizeDFA.

Exercise 7.6.2. Convert the regular expression (aa|bb)∗|(a|b) into an NFA, then into a
DFA, then minimize the DFA.

Exercise 7.6.3. For the following DFA find a string of minimum length that distin-
guishes each pair of states, if one is possible.

a

b

b

b

b
a

a

a

0

1

2

3

4

a, b

a

b

5

7.7 String searching algorithms

String searching algorithms or string matching algorithms are an important class of
string algorithms that try to find a place where one or several strings (also called
patterns) are found within a larger searched text (string). As computer scientists, we

158 Section 7.7: String searching algorithms

want do this efficiently since many applications need to do this task repeatedly: such
as searching for text strings within an text editor or searching for a DNA string within
a database of DNA samples.

As with automata, we will use Σ to represent our alphabet (a finite set of char-
acters). Formally, both the pattern and searched text are concatenation of elements
of Σ. The alphabet Σ may be the usual human alphabet (for example, the letters A
through Z in English). Other applications may use binary alphabet (Σ = {0,1}), say,
in image processing, or the DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.

Throughout this section, we let m be the length of the pattern and let n be the
length of the searchable text. The running times of several popular string matching
algorithms are given in the Table 7.2. In this section, after presenting a naive search-
ing algorithm, we will cover in detail two popular algorithms inspired by finite state
machines.

Table 7.2: Some common string searching algorithms and their running times.

Algorithm Preprocess & Matching time
Naive string search algorithm 0 (none) Θ(n ·m)
Finite state automaton search Θ(m|Σ|) Θ(n)
Knuth-Morris-Pratt algorithm Θ(m) Θ(n)
Rabin-Karp string search Θ(m) avg Θ(n+m)

worst Θ(n ·m)
Boyer-Moore algorithm Θ(m+ |Σ|) Ω(n/m), O(n)
Bit based (approximate) Θ(m+ |Σ|) Θ(n)

The remaining three algorithms listed in the table are briefly mentioned here.
The practical Rabin-Karp algorithm is based on hash functions, where a key ingre-
dient in its design is the ability to quickly (in constant-time) rehash a substring of the
text when shifting a fixed-length window of the text one position to the right. The
Boyer-Moore algorithm is a slightly more advance algorithm than Knuth-Morris-
Pratt algorithm (discussed later) where it uses two shift functions (bad character
found and good suffix). The bit based string searching algorithms are often used
when the search pattern length is not longer than the memory-word size; these come
in various flavours (e.g., Shift-AND, Shift-OR, Wu-Manber) and exploit the efficient
bitwise operations of the hardware.

Naive (brute-force) string search algorithm

We first present a slow text searching algorithm that runs in time O(nm). This naive
searching algorithm simply checks every substring of length m in the searched text
string. Some good features of this algorithm include: no preprocessing phase, only
constant extra space needed, and always shifts the search window by exactly one
position to the right.

The execution of the naiveStringSearchingalgorithm with input strings X=abaa
andY=ababbaabaaab is illustrated below. (We use uppercase letters to denote matches
and dots ‘.’ to denote unchecked characters in the search window.)

Chapter 7: An Introduction to Automata 159

algorithm naiveStringSearching
Input: string X [m], Y [n]

begin
for j← 0 to n−m do

for i← 0 to m−1 do
if X [i] �= Y [i+ j] then next j

end for
return j

end for
return NULL

end

Figure 7.3: A simple string searching algorithm.

ababbaabaaab

ABAa
a... <- window attempt 2
ABa.
a...
a... <- window attempt 5
Ab..
ABAA <- return j=6
a...
a...

For this example, it runs with 9 window attempts and 19 character comparisons.
In fact, the worst case of running in time Θ(mn) may not be too frequent if the inner
loop of the algorithm finds a mismatch and breaks (see next j in Figure 7.3).

Automaton based string searching

Recall the discussion earlier regarding the use of regular expressions for pattern match-
ing (see Section 7.4). Our string searching problem is equivalent to deciding (for pat-
tern string X) if the text string Y is in the language L = {AXB | A,B ∈ Σ∗}. That is, if Y
consists of any string A (possibly empty), followed by X , and followed by any string B.
Note that if we ever match strings A and X in a prefix of Y , we can stop the algorithm
with an affirmative answer and do not need to continue processing.

Thus, the main features of our automata-based string searching algorithm is to
build a deterministic automaton for the language Σ∗X . If the automaton ever reaches
an accepting state, we have detected a string match.

The preprocessing phase takes O(m|Σ|) time complexity (m = |X |), which is the
time needed to build our automaton. It is easy to see the following minimal DFA
(Q,Σ,δ : Q×Σ→Q,q0 ∈ Q,F ⊆ Q) recognizes the language Σ∗X .

• The states Q is precisely the set of all the prefixes of X :
Q= {ε,X [0],X [0..1], ...,X [0..m−2],X}
• Initial state q0 = ε, the state representing the empty prefix;

• Final states F = {X}, the state representing all of X ;

• For q ∈ Q and c ∈ Σ, δ(q,c) = qc if and only if qc is also a prefix of x, otherwise
δ(q,c) = p such that p is the longest suffix of qc which is a prefix of x.

160 Section 7.7: String searching algorithms

Once the DFA is built, searching for a pattern word X in a textY consists of input-
ing the string Y into the DFA, beginning at the initial state q0. Each time an accepting
state (which is unique above) is encountered an occurrence of X is reported. The
searching phase will be proportional to the length of Y , if the automaton is stored in
a direct access table.

We now illustrate the above procedure by building the indicated DFA for search-
ing for the pattern X=abaa.

0 1 2 3 4

a

a a

b

a

a b

bb

Here we have initial state q0 = 0, accepting statesF = {4} and transitions:

δ a b
0 1 0
1 1 2
2 3 0
3 4 2
4 1 2

When we run this finite-state machine with the text Y=ababbaabaaab the algo-
rithm uses 9 window attempts and 19 character comparisons, as shown below.

ababbaabaaab

| 0.a -> a

Ababbaabaaab

| a.b -> ab

ABabbaabaaab

| ab.a -> aba

ABAbbaabaaab

| aba.b -> ab

abABbaabaaab

| ab.b -> 0

ababbaabaaab

| 0.a -> a

ababbAabaaab

| a.a -> a

ababbaAbaaab

| a.b -> ab

ababbaABaaab

| ab.a -> aba

ababbaABAaab

| aba.a -> abaa

ababbaABAAab

| abaa.a -> a

ababbaabaaAb

| a.b -> ab

Before proceeding to our next algorithm, we note that this ‘optimal’ automata-
based string algorithm is recommended when we need to repeatedly search within
many different text strings Y for some fixed pattern X .

Chapter 7: An Introduction to Automata 161

Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt (KMP) algorithm searches text strings for occurrences of a
pattern X within a main textY by employing the simple observation that when a mis-
match occurs, the word itself embodies sufficient information to determine where
the next match could potentially begin, thus bypassing re-examination of previously
matched characters.

Some properties of this automata-inspired algorithm are now given:

• preprocessing phase in O(m) time and space complexity;

• searching phase in O(n+m) time complexity (independent from the alphabet
size);

• performs at most 2n−m character comparisons during the scan of the text;

This KMP algorithm uses a novel idea of shifting the search window forward (as
much as possible) whenever a mismatch is detected. Suppose we are trying to match
a pattern X starting at index position j of the text string Y . Let offset i be the first
mismatch, b �= c, as illustrated below.

Y

X

j i + j

b

c

u

u− v

v

?X

v

v

u

We want to find the largest substring v that is a prefix and suffix of u. The length of
v gives us the next search index next[i] of X that will be compared against character
b. We set next[i]=−1 to denote the case that the whole window needs to be shifted
(i.e. we will next compare position i+ j+ 1 of Y against position 0 of X).

Surprisingly, we can actually compute all the shift distances next[i] for 0 ≤ i≤ m
in total timeO(m). A concise implementation of the KMP algorithm using Java is given
at the end of Appendix A. Comparing with the earlier automata-based algorithm,
the preprocessing time to compute next[i] is only a function of the size of X (and
independent of the alphabet size). In this case our “state transitions” are either one
character forward for a match or move back to a position indicated by next[i] for a
mismatch. The main search portion of KMP also runs in time O(n). In fact, we can
provide a good exact upper bound of 2n−m comparisons needed in the worst case.
The main algorithm either moves forward our reference position in Y (increasing
variable j) or our search window X is shifted by at least one character (decreasing
variable i). So the total time of the KMP algorithm is O(m+n).

An illustration of this algorithm with X=abaa and Y=ababbaabaaab is now given.

x a b a a -
i 0 1 2 3 4

next[i] -1 0 -1 1 1

ababbaabaaab
ABAa Shift by 2 (next[3]=1)

162 Section 7.8: Notes

.Ba. Shift by 3 (next[2]=-1)

Ab.. Shift by 1 (next[1]=0)

ABAA Shift by 3 (match found)

Exercises

Exercise 7.7.1. For the naiveStringSearchingalgorithm, give example input strings
such that the algorithm does exactly nm character comparisons.

Exercise 7.7.2. With alphabet Σ= {a,b,c}, for searching for text pattern X=abaabc in
an arbitrary text stringY build a finite-state automaton search algorithm that decides
whether an input string Y contains X .

Exercise 7.7.3. Give a simple algorithm that runs in time O(m2|Σ|) that builds a DFA
for the language Σ∗X , where m = |X |. That is, for each pair q ∈ Q and c ∈ Σ show how
one can compute δ(q,c) in time O(m).

Exercise 7.7.4. Prove or show by counter-example that the construction method
given for building search automaton is minimum (in terms of fewest number of
states).

Exercise 7.7.5. For the KMP searching algorithm, complete the following next value
table for mismatches at the i-th position of X .

X a b a a b c -
i 0 1 2 3 4 5 6

next[i] -1

Exercise 7.7.6. Prove that the auxiliary function computeNext of KMP runs in time
O(m).

7.8 Notes

The theory of automata became widely known via the seminal book [19] with con-
tributions from many workers in the area, such as W. R. Ashby, J. T. Culbertson, M.
D. Davis, K. De Leeuw, S. C. Kleene, D. M. MacKay, J. McCarthy, M. L. Minsky, E. F.
Moore, J. Von Neumann, C. E. Shannon, N. Shapiro, and A. M. Uttley. Kleene’s the-
orem was published first in this book. Many related problems (such as Turing ma-
chines) were studied in the theory of algorithms and the theory of switching circuits
even in the 1930s.

The notions of ”machine” and ”automaton” are typically applied to the infinite
state and the finite state automata, respectively. A number of automata named after
their inventors differ by definitions or construction algorithms. For example, in the
finite Mealy automaton defined by G. H. Mealy, the output at any moment depends
on both the state and the input, whereas the output of the finite Moore automaton
defined by E. F. Moore depends only on the state but not the input. The Glushkov or
position automaton of a regular expression of length n is built by transforming the
expression into a finite automaton with n+1 states using an algorithm developed by
V. M. Glushkov.

The Knuth-Morris-Pratt string search algorithm was invented in 1977 by D. E.
Knuth and V. Pratt and independently by J. Morris, but the three published it jointly
in [14] almost simultaneously with the Boyer-Moore string search algorithm [4].

Chapter 8

An Introduction to Grammars and
Parsing

In the previous chapter, two equivalent ways of describing patterns were discussed.
One was graph-theoretic, using the labels on paths in a kind of graph called an “au-
tomaton”. The other was algebraic, using the regular expression notation. In this
chapter, we look at more powerful ways of describing patterns using (1) a recursive
definition called a “context-free grammar” and (2), briefly, a more flexible “context-
sensitive grammar”. We also look at the task of parsing input for a set of strings rep-
resented by a grammar.

Context-free grammars are important for the specification of programming lan-
guages, building data translators (for example, XML to RTF files) and extracting data
from structured reports. They provide a succinct notation for describing the syn-
tax of a typical programming language or structured data file/stream. Furthermore,
there are mechanical ways of turning a grammar into a “parser”, one of the key com-
ponents for a compiler for the language.

8.1 A grammar for arithmetic expressions

Arithmetic expressions can be defined naturally with a recursive definition. We will
consider arithmetic expressions that involve numbers (positive integers), the four
binary operators +, −, ∗ and /, and parentheses. The usual definition of such an
expression is an induction of the following form:

BASIS A number is an expression.

INDUCTION If E1 and E2 are expressions, then each of the following items is also an
expression:

• (E1). That is, we may place parentheses around an expression to get a new
expression.

• E1 +E2. That is, two expressions connected by a plus sign is also an ex-
pression. The following three rules cover connections using the other op-
erators.

• E1−E2.

164 Section 8.1: A grammar for arithmetic expressions

• E1 ∗E2.

• E1/E2.

Grammars allow us to write down such rules succinctly and with a precise mean-
ing. Next is a grammar (sequence of rules of productions) for the definition of arith-
metic expressions above.

〈Expression〉 → number

〈Expression〉 → (〈Expression〉)
〈Expression〉 → 〈Expression〉+ 〈Expression〉
〈Expression〉 → 〈Expression〉− 〈Expression〉
〈Expression〉 → 〈Expression〉∗ 〈Expression〉
〈Expression〉 → 〈Expression〉/〈Expression〉

The symbol 〈Expression〉 is called a syntactic category; it stands for any string in the
language of arithmetic expressions. The symbol→means “can be composed of”. For
example, the second line states that an expression can be composed of a left paren-
thesis followed by any string that is an expression followed by a right parenthesis.
The first line is different because the symbol number on the right of the arrow is not
intended to be a literal string, but a placeholder for any string that can be interpreted
as a number.

There are three kinds of symbols that can appear in grammars. The first are meta-
symbols that play a special role and do not stand for themselves. The→ symbol is
a meta-symbol, which is used to separate the syntactic category being defined from
the strings from which it can be composed. The second kind of symbol is a syntactic
category, which represents a set of strings being defined. The third kind of symbol is
a terminal. Terminals can be characters, such as + or (, or they can be abstract sym-
bols such as number, that stand for one or more strings that we may wish to define
at a later time.

A number could be defined using a regular expression, as in

digit = [0-9]
number = [1-9]digit∗ | digit

The same idea can be expressed in grammatical notation, as in

〈Digit〉 → 0 |1 |2 |3 |4 |5 |6 |7 |8 |9
〈PosDigit〉 → 1 |2 |3 |4 |5 |6 |7 |8 |9
〈Number〉 → 〈PosDigit〉〈Digits〉 | 〈Digit〉
〈Digits〉 → 〈Digit〉〈Digits〉 | ε

The above example also introduces the meta-symbol |which abbreviates the ten pro-
ductions

〈Digit〉 → 0

〈Digit〉 → 1

. . .

〈Digit〉 → 9

We could similarly have combined the two productions for 〈Number〉 into one line.
Also the symbol ε denotes the empty string.

Chapter 8: An Introduction to Grammars and Parsing 165

What is a grammar?

This notation for describing grammars is sometimes referred to as Backus-Naur
Form or BNF for short. We can summarize the various components that make up
a grammar as follows:

Definition 8.1.

• A grammar is a collection of rules that describe how a language is structured.

• A rule is a collection of productions that list the alternative ways parts of a
language can appear.

• A production is a list of syntactic categories and/or terminals that must appear
in the text being parsed if the surrounding rule is to match.

• A syntactic category (nonterminal) is a reference to some other rule that must
be matched as part of the matching of the surrounding rule.

• A terminal is something that can literally appear in a text (a character or word
in the grammar’s vocabulary).

Exercises

Exercise 8.1.1. Revise the grammar for arithmetic expressions to also allow negative
integers as numbers.

Exercise 8.1.2. Give a grammar for representing floating point numbers of the form
a× 10b, where −10 < a < 10. Assume scientific notation where the character ‘E’ is
used to separate the two real numbers a and b.

8.2 A grammar for Java statements

We can describe the structure of Java control flow constructs using a grammar. The
syntactic category 〈Statement〉will be used to describe Java statements.

The first production describes a while-loop. That is, if we have a statement to
serve as the body of the loop, we can precede it with the keyword while, an opening
parenthesis, a condition (which also needs a grammar rule), and a closing parenthe-
sis.

〈Statement〉 → while(〈condition〉) 〈Statement〉
Another way to build statements is using an if -construct. These constructs take

two forms, depending on whether or not there is an else-part.

〈Statement〉 → if(〈condition〉) 〈Statement〉
〈Statement〉 → if(〈condition〉) 〈Statement〉else 〈Statement〉

Other constructs such as for-loops and switch statements are similar in spirit,
and are left as exercises.

However, one other important formation rule is the block. A block uses the de-
limiters { and } around a list of zero or more statements. To describe blocks, we
need an auxiliary syntactic category, which we call 〈StmtList〉. The productions for
〈StmtList〉 are given below.

〈StmtList〉 → ε

〈StmtList〉 → 〈StmtList〉 〈Statement〉

166 Section 8.3: Parse trees

Note. The first production is an empty production; that is, a 〈StmtList〉 can be the
empty string.

We can now define statements that are blocks as a statement list enclosed in curly
braces:

〈Statement〉 → {〈StmtList〉 }

Finally, a Java statement can be an expression or a declaration followed by a semi-
colon. The grammar for Java expressions and declarations is left as an exercise.

〈Statement〉 → 〈Declaration〉 ;
〈Statement〉 → 〈Expression〉 ;

Exercises

Exercise 8.2.1. Give a grammar to specify the syntactic category 〈Identifier〉 of Java
identifiers.

Exercise 8.2.2. Add productions for 〈Statement〉 to include for-loops, do-loops, and
switch statements.

Exercise 8.2.3. Extend the grammar of arithmetic expressions to include identifiers,
method calls, and array indices.

Exercise 8.2.4. Give a grammar for Java expressions. Include assignment statements,
method calls, new, throw, case-labels, break, continue and the conditional expres-
sion ‘?:’.

Exercise 8.2.5. Give a grammar for Java declarations.

8.3 Parse trees

A given string belongs to the language generated by a grammar if it can be formed
by repeated application of the productions. The grammar of arithmetic expressions
below is used to illustrate this process.

〈E〉 → (〈E〉) | 〈E〉+ 〈E〉 | 〈E〉− 〈E〉 | 〈E〉∗ 〈E〉 | 〈E〉/〈E〉 | 〈N〉
〈N〉 → 〈N〉〈D〉 | 〈D〉
〈D〉 → 0 |1 |2 |3 |4 |5 |6 |7 |8 |9

The productions involved in generating the string 3*(2+14) are as follows. One
production is applied on each line, with the underlined syntactic category being ex-
panded on the following line.

Chapter 8: An Introduction to Grammars and Parsing 167

〈E〉 → 〈E〉∗ 〈E〉
→ 〈N〉 ∗ 〈E〉
→ 〈D〉 ∗ 〈E〉
→ 3 ∗ 〈E〉
→ 3 ∗ (〈E〉)
→ 3 ∗ (〈E〉+ 〈E〉)
→ 3 ∗ (〈N〉+ 〈E〉)
→ 3 ∗ (〈D〉+ 〈E〉)
→ 3 ∗ (2 + 〈E〉)
→ 3 ∗ (2 + 〈N〉)
→ 3 ∗ (2 + 〈N〉〈D〉)
→ 3 ∗ (2 + 〈D〉〈D〉)
→ 3 ∗ (2 + 1〈D〉)
→ 3 ∗ (2 + 14)

A parse tree is a concise representation of these productions:

〈E〉

〈E〉

〈N〉

〈D〉

3

* 〈E〉

(〈E〉

〈E〉

〈N〉

〈D〉

2

+ 〈E〉

〈N〉

〈N〉

〈D〉

1

〈D〉

4

)

Every interior node v in a parse tree represents the application of a production.
That is, there must be some production such that

• The syntactic category labeling v is the head of the production, and

168 Section 8.4: Ambiguity and the design of grammars

• The labels of the children of v, from the left, form the body of the production.

In the example above, the root and its children represent the production

〈E〉 → 〈E〉 ∗ 〈E〉

8.4 Ambiguity and the design of grammars

Consider the expression 1− 2 + 3. It has two parse trees, as shown if Figure 8.1, de-
pending on whether we group operators from the left or from the right.

〈E〉

〈E〉

〈E〉

〈N〉

〈D〉

1

− 〈E〉

〈N〉

〈D〉

2

+ 〈E〉

〈N〉

〈D〉

3

〈E〉

〈E〉

〈N〉

〈D〉

1

− 〈E〉

〈E〉

〈N〉

〈D〉

2

+ 〈E〉

〈N〉

〈D〉

3

Figure 8.1: A correct parse tree and an incorrect parse tree.

This ambiguity is related to the associativity of operators. Conventionally, a se-
quence of expressions combined with the operators + and - is evaluated left-to-right,
so that 1-2+3 is equivalent to (1-2)+3.

Another form of ambiguity arises with operators of different precedence. Con-
vention has it that multiplications and divisions are done before additions and sub-
tractions, so that 1+2*3 is equivalent to 1+(2*3).

Sometimes ambiguity makes no difference. All the parse trees for the expression
1+2+3 +4 are equivalent for the purposes of evaluating the sum. However, this is not
true in general.

Note. Of course, fully parenthesizing expressions obviates the need for conventions
regarding associativity and precedence, as does adopting an unambiguous notation
such as reverse polish. The language Lisp adopts the former approach, and the Forth
group of languages (a group that includes PostScript) adopts the latter.

An unambiguous grammar for expressions

It is possible to construct an unambiguous grammar for arithmetic expressions. The
“trick” is to define three syntactic categories, with the following intuitive meanings:

Chapter 8: An Introduction to Grammars and Parsing 169

• 〈Factor〉 generates expressions that cannot be “pulled apart”, that is, a factor is
either a single operand or any parenthesized expression.

• 〈Term〉 generates a product or quotient of factors. A single factor is a term, and
thus is a sequence of factors separated by the operators * or /. For example,
12*2/5 and (4+2)*3 are two terms.

• 〈Expression〉 generates a sum or difference of one or more terms. A single term
is an expression, and thus is a sequence of terms separated by the operators +
or -. Examples of expressions are 12, 12/3*45 and 12+3*45-6.

The grammar is given below, using the shorthands 〈E〉 for 〈Expression〉, etc.

〈E〉 → 〈E〉+ 〈T〉 | 〈E〉− 〈T〉 | 〈T〉
〈T〉 → 〈T〉 ∗ 〈F〉 | 〈T〉/〈F〉 | 〈F〉
〈F〉 → (〈E〉) | 〈N〉
〈N〉 → 〈N〉〈D〉 | 〈D〉
〈D〉 → 0 |1 |2 |3 |4 |5 |6 |7 |8 |9

To see how the grammar works, consider how the expression 1-2+3 can be parsed.
The original, ambiguous grammar had the option of choosing for the first production
either 〈E〉→ 〈E〉−〈E〉 or 〈E〉→ 〈E〉+ 〈E〉. The former parses 1 and 2+3 as expressions,
while the latter parses 1-2 and 3 as expressions.

Our new grammar makes it clear that the 〈E〉 → 〈E〉− 〈T〉 production cannot be
used, since 2+3 cannot be parsed as a term. The only option left is to use the produc-
tion 〈E〉 → 〈E〉+ 〈T〉, taking 3 as the 〈T〉.

Note how the causes of ambiguity, associativity and precedence, are resolved.

associativity A production of the form 〈E〉 → 〈E〉 ⊕ 〈T〉 generates a left-associative
expression. Changing this to 〈E〉→ 〈T〉⊕〈E〉makes the operator right-associative,
so that 1⊕2⊕3 is parsed as 1⊕ (2⊕3).

To make a non-associative expression (that is, one in which a⊕ b⊕ c is not
valid), use a production of the form 〈E〉 → 〈T〉⊕ 〈T〉

precedence The distinction among expressions, terms and factors enforces the cor-
rect grouping of operators at different levels of precedence. For example, the
expression 1-2*3 has only one parse tree, which groups the subexpression 2*3
first.

Exercises

Exercise 8.4.1. Using the unambiguous grammar for arithmetic expressions, give
the unique parse tree for the following expressions:

• (1 + 2)/3

• 1 ∗ 2−3

• (1 + 2)∗ (3 + 4)

Exercise 8.4.2. Extend the unambiguous grammar to include an exponentiation op-
erator, ^, which is at a higher level of precedence than * and /. Do this by introducing
a new syntactic category primary to be an operand or parenthesized expression, and

170 Section 8.5: Constructing parse trees

re-define a factor to be one or more primaries connected by the exponentiation op-
erator. Note that exponentiation groups from the right, not the left, so that 2^3^4
means 2^(3^4). How do we force grouping from the right among primaries?

Exercise 8.4.3. Extend the unambiguous grammar to allow the comparison opera-
tors =, <=, etc., which are all at the same level of precedence. Their precedence is
below that of + and -, so that 1+2<3 is equivalent to (1+2)<3. Note that the compari-
son operators are non-associative; that is, 1<2<3 is not a legal expression.

Exercise 8.4.4. Extend the unambiguous grammar to include the unary minus sign.
This operator is at a higher precedence to any other operator, so that -2*-3 is grouped
as (-2)*(-3).

Exercise 8.4.5. Extend the unambiguous grammar to include the logical operators
&&, || and !. Give || a lower precedence to &&, and && a lower precedence to !, and
make all three logical operators have a lower precedence to the comparison opera-
tors =, <=, etc.. Thus, 1<2&&3>4||1=4parses as

((1<2)&&(3>4))||(1=4)

8.5 Constructing parse trees

Grammars are similar to regular expressions in that both notations describe lan-
guages but do not give directly an algorithm for determining whether a string is in
the language being defined. For regular expressions, we have seen how to convert a
regular expression into a nondeterministic finite automaton and then to a determin-
istic one; the latter can be implemented directly, as a program.

There is a somewhat analogous process for grammars. However, grammars are a
more expressive notation than regular expressions, and we cannot, in general, con-
vert a grammar into a deterministic finite automaton. However, it is often possible
to convert a grammar to a program that, like an automaton, reads the input from
beginning to end and judges whether the input string is in the language of the gram-
mar. The most important such technique, called “LR parsing,” is beyond the scope
of our introduction to the topic.

Instead, we will look at a simpler, but less powerful parsing technique called “re-
cursive descent,” which uses a collection of mutually recursive functions, each cor-
responding to one of the syntactic categories of the grammar.

We will build a recursive descent parser for a simple grammar of balanced paren-
theses, given below.

〈B〉 → ε (8.1)

〈B〉 → (〈B〉) 〈B〉 (8.2)

Production 8.1 states that an empty string, denoted by ε, is balanced.

Production 8.2 states that one way to find a string of balanced parentheses is to
fulfill the following four goals in order:

1. Find the character (, then

2. Find a string of balanced parentheses, then

3. Find the character), and finally

4. Find another string of balanced parentheses.

Chapter 8: An Introduction to Grammars and Parsing 171

To write a parser for this we need the following preliminary items to handle the
input string. An input cursor object will keep track of the next character in the input
stream. We define a method peek to return this character. The end of the input is
marked by a special endmarker , which indicates that the entire string has been read.
A method next is used to advance to the next input character. If the input is a string
s we can implement the input cursor as an integer, pos, and define these methods as
follows (since they are simple we use Java).

void next() { pos++; }

char peek()
{

return pos < s.length() ? s.charAt(pos) : (char) 0;
}

It is useful to define a method check to test whether the next character matches
an expected given terminal.

void check(char c) throws ParseError
{

if (peek() != c)
throw new ParseError(s, pos, "Expected: "+c);

next();
}

We now can build a simple parser, which stores the parsing results in a tree, by
recursively calling the parser whenever a substring of balanced parenthesis is ex-
pected.

Tree parseB() throws ParseError
{

if (peek() == ’(’)
{

next();
Tree b1 = parseB();
check(’)’);
Tree b2 = parseB();
return new Tree("B -> (B) B", b1, b2);

}
else return new Tree("B -> ");

}

Limitations of recursive descent parsing

Recursive descent can be applied to many grammars, but not to all. This can be ob-
served with the unambiguous grammar for arithmetic expressions. Naively coding
the productions for this grammar as mutually recursive functions will result in an
infinite recursion on each of the left-recursive rules. Furthermore, even if a grammar
does not have left-recursive rules, the recursive descent method may be unsuitable.
The basic requirement is that, for each syntactic category 〈S〉 that has more than one
production, we need to be able to select the correct production for 〈S〉 by looking at
only the next terminal (the lookahead symbol).

172 Section 8.6: Template for building recursive descent parsers

It is possible to contort the unambiguous grammar for arithmetic expressions
into a form that allows it to be parsed using recursive descent, but the procedure re-
quires introducing a large number of non-intuitive syntactic categories. Faced with
such a grammar, the correct course of action is invariably to use a more powerful
“bottom up” parsing method, such as LR-parsing (“scan Left, expanding Rightmost
subrule in reverse”). These are usually implemented as a series of states, encoded in
a lookup table. The parser moves from state to state by examining the next available
token in the text and then consulting the table to see what to do next. The choices
are: perform an action, change to a new state, or reject input. More information, for
the interested reader, about parsing can be found in the references [1, 17].

Tokenizing the input stream

Keen observers may have noticed that none of the grammars given in these notes
are able to cope with the presence of white space or comments in the input. For
example, the parser for balanced parentheses will fail on the input string "()" (try
it!). Re-writing the grammar to permit white space and comments results in not only
a more complicated grammar but parse trees that contain a potentially large number
of uninteresting nodes.

To avoid these problems, it is usual to tokenize the input to the parser, using a
finite automaton. A finite automaton can be used to identify substrings in the in-
put that are of interest to the parser, and return a code (usually a small integer) for
the token type. Token types typically include “integer constant”, “identifier”, “open
parenthesis”, etc. The actual token can be placed by the automaton in temporary
storage for the parser to retrieve when building the parse tree.

Example 8.2. Given the input “for (i = 0; i < 100; i++)”, the finite automa-
ton might return a sequence of codes “reserved word for”, “open parenthesis”, “iden-
tifier”, “equals”, “integer constant”, “semicolon”, etc.

Finite automata are powerful enough to be able to distinguish between white
space and comments that appears in strings (and must therefore be preserved) and
white space and comments appearing elsewhere (which it can ignore).

Exercises

Exercise 8.5.1. Another common way to remove ambiguity of arithmetic expressions
is to encode them in postfix notation which does not require parentheses. This is a
stack based representation, so that reading operands (numbers) and binary opera-
tors (+,-,*,/) from left to right corresponds to reading the stack from bottom to top.

Write a parser that decides whether a sequence of tokens corresponding to operands
and operators is a valid postfix expression. Hint: what changes are needed to your
parser so that it can also evaluate a valid postfix expression?

8.6 Template for building recursive descent parsers

We now want to formalize a procedure for building a generic parser for a simple type
of grammars. The main assumption on these grammars is that we need to be able to
uniquely match each nonterminal to a production by initially looking only at the next
token of the input stream. Thus each nonterminal production should be written in
the form 〈Ni〉 → Tj . . . where Tj is a token and ‘. . .’ denotes optional further terminals
(tokens) or nonterminals. We further require that if the rule for a nonterminal 〈Ni〉

Chapter 8: An Introduction to Grammars and Parsing 173

has alternative productions then each initial token Tj is different for each of these
productions. We allow one special case 〈Ni〉→ ε to match the end of an input stream.

We build a parser for these simple grammars by writing a parsing method for each
production. Each of these methods use auxiliary methods to read (that is, peek) and
advance (that is, next) an input cursor object and return a subtree of the parse tree,
if successful. For each nonterminal that needs to be matched we call recursively the
corresponding production method based on the current input token. Our recursive
descent parser, which begins in Figure 8.2, starts with a special starting nonterminal
〈SN〉 being known in advance.

algorithm mainParser
Input: start nonterminal SN and input stream

begin
Parse Tree PT = new Tree(parseNonterminal[SN])
“do something useful with PT”
return PT

end end

Figure 8.2: Sample entry algorithm for a recursive descent parser.

We have omitted any processing of the parse tree PT in the template given in Fig-
ure 8.2. Next, we need to write top-level code for each of the possible nonterminals.
One copy of the method illustrated in Figure 8.3 is needed for each possible nonter-
minal 〈Ni〉when the productions are of the form 〈Ni〉 → Tj

algorithm parseNonterminal[Ni]
begin

Token T = peek()
if T is invalid for Ni then throw Exception
return parseProduction[Ni][T]

end

Figure 8.3: How to design a parse code to handle nonterminals.

The method parseNonterminal is written so that it knows what are the possible
look-ahead tokens in order to match a string for the nonterminal Ni. For each of
these cases we need to write a separate method parseProduction (see Figure 8.4) to
handle the production with T known to be the next available token.

The only tricky part in the method parseProduction, given in Figure 8.4, is that
we need to add subtrees to the parse tree for each nonterminal object O in this cur-
rent production for Ni. This is where the recursive descent happens. We assume that
both the tree methods addLeaf and addSubtree add a new branch to the right side
under the parent node S.

Note. The special terminal ε may be matched with a special endmarker token; in
this case the implicitly called next method does not need to advance the current
position.

Example 8.3. We show how to use the templates of this section to parse input ac-
cording to some simple grammar. Consider the following grammar that recognizes

174 Section 8.6: Template for building recursive descent parsers

algorithm parseProduction[Ni][T]
begin

Tree S = new Tree()
check(T) // advances input cursor
S.addLeaf(T)
for each object O in “expected list” do

if O is a terminal then
check(O)
S.addLeaf(O)

else
S.addSubtree(parseNonterminal[O])

end if
end for
return S

end

Figure 8.4: How to design a parse code to handle productions.

balanced parentheses and square brackets with pairs of parenthesized objects.

〈B〉 → ε

〈B〉 → (〈B〉) 〈B〉
〈B〉 → [〈C〉]
〈C〉 → (〈B〉),(〈B〉)

We need to define the two nonterminal methods parseNonterminalBand parse-
NonterminalC, along with two methods parseProductionB1and parseProductionB2
for 〈B〉. Since there is only one production for the nonterminal 〈C〉 we do not need
to use the look-ahead token and can move the production code to the nontermi-
nal method. See Appendix C for the templated pseudo-code and also a final imple-
mented Java program.

Exercises

Exercise 8.6.1. Show the sequence of method calls made by parseB on the inputs

• (())

• (()())

• ())(

Exercise 8.6.2. The following grammar defines non-empty lists, which are elements
separated by commas and surrounded by parentheses. An element can be either an
atom or a list structure. Here, 〈E〉 stands for element, 〈L〉 for list, and 〈T〉 for “tail,”
that is, either a closing), or pairs of commas and elements ended by).

Write a recursive descent parser for this grammar.

〈L〉 → (〈E〉 〈T〉
〈T〉 → , 〈E〉 〈T〉
〈T〉 →)
〈E〉 → 〈L〉
〈E〉 → atom

Chapter 8: An Introduction to Grammars and Parsing 175

Exercise 8.6.3. Write a recursive descent parser for the grammar of Java statements
given in Section 8.2. Start by writing a tokenizer that recognizes Java reserved words,
identifiers, number, string and character constants, and symbols (parentheses, braces,
etc.). Define a suitable Tree class to return the parse tree.

Exercise 8.6.4. Consider the following simple grammar.

〈A〉 → ε | a〈A〉 | b〈B〉a | c〈C〉b〈B〉a
〈B〉 → ε | b〈B〉a | c〈C〉b〈B〉a
〈C〉 → ε | c〈C〉b〈B〉a

Note that the right-hand side of several of the productions are the same. Use this ob-
servation and the techniques of Section 8.6 to give a simple recursive descent parser.

Exercise 8.6.5. We want to extend the simple types of grammars recognized by our
recursive descent parser templates. Suppose we now allow grammar rules of the
form 〈Ni〉 → 〈Nj〉 . . ., where the nonterminal 〈Ni〉 is not on the left-hand side of any
other productions. (We assume the reduced production denoted by ‘〈dummy〉 → . . .’
also satisfies our new definition of a simple grammar.)

• Show this is possible by providing a parsing template for these cases.

• Show this is possible by converting such a grammar to the restricted type al-
ready given in the section.

8.7 Computational power of grammars

One natural question is whether grammars are really more expressive than regular
expressions in terms of the languages that can be recognized. (Recall that a lan-
guage in this situation refers to any set of strings.) To do this we show that all regular
languages (that is, those languages that can be accepted by automata) can be repre-
sented by a grammar. We also show that there are non-regular languages that are
represented by a context-free grammar .

We illustrate that any regular language can be represented by a grammar by tak-
ing a concrete example. Let L denote any regular language. Now there is a regular
expression EL that can be used as a pattern matcher for exactly those strings of L.
Take as an example EL = bb+(a+b)a((ab)∗+a)∗, which contains at least one of each
of the basic regular expression operators (union, star, concatenation). We can build
a grammar for L by breaking up EL into its “regular expression” components and hav-
ing a syntactic category for each recursively defined component.

〈L〉 → bb

〈L〉 → 〈N1〉a〈N2〉
〈N1〉 → a | b
〈N2〉 → ε

〈N2〉 → 〈N3〉〈N2〉
〈N3〉 → 〈N4〉 | a
〈N4〉 → ε

〈N4〉 → ab〈N4〉

176 Section 8.7: Computational power of grammars

This process can be repeated for any regular expression E. Thus we have illus-
trated that any regular language can be pattern matched by a (at least one) context-
free grammar.

To complete the observation that grammars are more powerful than regular ex-
pressions we consider the following classic non-regular language L = {0n1n | n ≥ 0}.
Below is a simple grammar that describes the strings in the language L.

〈L〉 → ε

〈L〉 → 0〈L〉1
Note. This grammar is a simple variation of the grammar we presented earlier for the
language of balanced parentheses.

The next natural question about grammars is whether there are any languages
that are not definable by a context-free grammar. The answer turns out to be yes
since there are languages that we can prove that no program can decide member-
ship. One example is the set Halt of all Java programs (written as strings) that halt
for every possible input string.

A harder question is whether there are languages that can be decided by a com-
puter program (that is, a Java program) but is not represented by a context-free gram-
mar. Again the answer turns out to be yes and relatively simple examples exist like
the language L= {anbncn | n> 0}. In this case we need to use a more powerful context-
sensitive grammar to represent L. A context-sensitive grammar allows productions
of the form α→ β where the “α” part may contain more than one syntactic category
(nonterminal) and terminals (provided |α| ≤ |β|). It is not hard to see that the follow-
ing context-sensitive grammar represents L.

〈L〉 → abc

〈L〉 → a〈L〉〈Q〉
b〈Q〉c → bbcc

c〈Q〉 → 〈Q〉c
There are actually four classes of grammars, forming the Chomsky hierarchy of

grammars. We have seen the first three levels of this hierarchy (regular, context-
free and context-sensitive languages). The fourth level (and most general) is called a
phrase structure (unrestricted) grammar, where the only restriction on productions
is that the “α” part contains at least one syntactic category. These grammars gener-
ate exactly all languages that can be recognized by a Turing machine. A language L
is recognized by a Turing machine (that is, some computer program as described in
the chapter notes) if there exists a machine that halts if and only if it is given an input
string x ∈ L.

Exercises

Exercise 8.7.1. Give a regular expression (and context-free grammar) that can be
used to tokenize whitespace and comments of a Java program. That is, we have a
language of Java program substrings that are whitespace or comments.

Exercise 8.7.2. Write context-free grammars for the following languages.

• L1 = {0n1n | n is an even natural number}
• L2 = {0n1m | 0≤ n< m}

Chapter 8: An Introduction to Grammars and Parsing 177

Exercise 8.7.3. Write context-free grammars for the languages represented by the
following regular expressions.

• E1 = aa+b∗+ cc

• E2 = (a+b)∗aa+(bbaa)∗

Exercise 8.7.4. What language does the following context-free grammar represent?
(Explain in English.)

〈L〉 → a〈L〉 | a〈B〉〈C〉
〈B〉 → 〈B〉bc | bc
〈C〉 → 〈C〉c | c

Exercise 8.7.5. Give a context-sensitive grammar for the language L = {x#y | y is a
substring of x, where x,y ∈ {0,1}∗}.

8.8 Notes

In this chapter we have only briefly introduced the topic of formal languages. The
study of the formal languages, complexity of recognizing strings, and computability
are all important, interrelated topics in theoretical computer science, which may be
found in many other references such as [20, 22, 2].

Formal mathematical models of grammars and languages were introduced first
by Noam Chomsky in [6]. The Chomsky hierarchy consists of four types of formal
grammars: free, or unrestricted (Type 0); context-sensitive (Type 1); context-free
(Type 2), and regular (Type 3) grammars. The Type 0 and Type 1 grammars have
much higher expressive power than the two other types, but lack efficient parsers
(compilers). The latter exist for many of Type 2 and all Type 3 grammars. Thus, pro-
gramming languages are typically designed using Type 2, or context-free grammars
(CFG).

All computer compilers before the early 1960s were written without a formal def-
inition of the programming language to be parsed (an implicit definition was hidden
in the compiler’s code). Formal grammars entered the picture via the BNF. This was
was introduced in 1960 by John Backus, one of the developers of the programming
language FORTRAN, and Peter Naur, one of the developers of Algol60. This signif-
icantly simplified both updating and verification of compilers to follow changes in
the languages.

A Turing machine, introduced by A. M. Turing in 1936, has an infinite tape, or
chain, of memory cells and a sensing-and-writing head that can travel along the tape,
one cell a time. The head can read from or write to a cell a symbol from a finite al-
phabet (for example, binary digits “0” and “1”), has a finite set of possible states, and
is governed by a state-transition diagram containing instructions on what should be
done. At each step, the machine only looks at a particular symbol under the tape
head and, depending on the current state, transforms the symbol into one of the
available symbols, changes state, and moves one cell left or right. In spite of such
extreme simplicity, Turing machines are capable of solving any problem that is com-
putable today [20].

Appendices

Appendix A

Java code for Searching and Sorting

This appendix contains Java implementations for many of the common search and
sorting algorithms presented in the book.

A.1 Sorting and selection

The Java class below contains class methods for sorting integer arrays and for se-
lecting an array element of a given rank. These algorithms insertion sort, Shellsort,
mergesort, quicksort, heapsort, and quickselect are described in detail in Chapter 2.
We may place them all in a Java public class or they may be cut-and-pasted, as
needed, into a Java application.

// Insertion sort of an input array a of size n
//

public static void insertionSort(int [] a)
{

for(int i = 1; i < a.length; i++) {
int tmp = a [i];
int k = i - 1;
while(k >= 0 && tmp < a[k]) {

a [k + 1] = a[k];
k--;

}
a[k + 1] = tmp;

}
}

// Selection sort of an input array a of size n
//
public static void selectionSort(int [] a)
{

for(int i = 0; i < a.length - 1; i++) {
int posMin = i;
for(int k = i + 1; k < a.length; k++) {

if (a[i] > a[k]) posMin = k;
}
if (posMin != i) swap(a, i, posMin);

}
}

182 Section A.1: Sorting and selection

// Bubble sort of an input array a of size n
//
public static void bubbleSort(int [] a)
{

for(int i = a.length - 1; i > 0; i--) {
for(int k = 0; k < i; k++) {

if (a[k] > a[k + 1]) swap(a, k, k + 1);
}

}
}

// Insertion sort of an input array a of size n:
// a private method used by quicksort and quckselect:
// sorting between the indices lo and hi: 0 <= lo <= hi < n
//
private static void insertionSort(int [] a, int lo, int hi)
{

if (lo > hi || lo < 0 || hi >= a.length) {
lo = 0;
hi = a.length - 1;

}
for (int i = lo + 1; i <= hi; i++) {

int tmp = a[i];
int k = i - 1;
while(k >= lo && tmp < a[k]) {

a[k + 1] = a[k];
k--;

}
a[k + 1] = tmp;

}
}

// Shell’s sort of an input array a of size n
// using a sequence of gaps by G. Gonnet
//
public static void shellSort(int [] a)
{

for(int gap = a.length/2; gap > 0;
gap = (gap == 2) ? 1 : (int)(gap/2.2))

for(int i = gap; i < a.length; i++) {
int tmp = a[i];
int k = i;
while(k >= gap && tmp < a [k - gap]) {

a[k] = a[k - gap];
k -= gap;

}
a[k] = tmp;

}
}

// Mergesort of an input array a of size n
// using a temporary array to merge data
//
public static void mergeSort(int [] a)
{

int [] tmp = new int[a.length];
mergeSort(a, tmp, 0, a.length - 1);

}

private static void mergeSort(int [] a, int [] tmp,
int left, int right)

{
if (left < right) {

int centre = (left + right) / 2;
mergeSort(a, tmp, left, centre);

Appendix A: Java code for Searching and Sorting 183

mergeSort(a, tmp, centre + 1, right);
merge(a, tmp, left, centre + 1, right);

}
}

private static void merge(int [] a, int [] tmp,
int left, int right, int rend)

{
int lend = right - 1;
int tpos = left;
int lbeg = left;

// Main loop
while(left <= lend && right <= rend)

if (a[left] < a[right])
tmp[tpos++] = a[left++];

else
tmp[tpos++] = a[right++];

// Copy the rest of the first half
while(left <= lend)

tmp[tpos++] = a[left++];

// Copy the rest of the second half
while(right <= rend)

tmp[tpos++] = a[right++];

// Copy tmp array back
for(tpos = lbeg; tpos <= rend; tpos++)

a[tpos] = tmp[tpos];
}

// Quicksort of an input array a of size n using a median-of-three pivot
// and insertion sort of subarrays of size less than CUROFF threshold:
//
static public int CUTOFF = 10;

public static void quickSort(int [] a)
{

quickSort(a, 0, a.length - 1);
}

private static void quickSort(int [] a, int lo, int hi)
{

if (lo + CUTOFF > hi)
insertionSort(a, lo, hi);

else {
// Sort low, middle, high
int mi = (lo + hi) / 2;
if (a[mi] < a[lo]) swap(a, lo, mi);
if (a[hi] < a[lo]) swap(a, lo, hi);
if (a[hi] < a[mi]) swap(a, mi, hi);

// Place pivot p at position hi - 1
swap(a, mi, hi - 1);
int p = a[hi - 1];

// Begin partitioning
int i, j;
for (i = lo, j = hi - 1; ;) {

while(a[++i] < p);
while(p < a[--j]);
if (i < j) swap(a, i, j);
else break;

}

184 Section A.1: Sorting and selection

// Restore pivot
swap(a, i, hi - 1);
// Sort small elements
quickSort(a, lo, i - 1);

// Sort large elements
quickSort(a, i + 1, hi);

}
}

private static void swap(int [] a, int i, int j)
{

int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}

// Heapsort of an input array a of size n
// using percolateDown() and swap() methods
//
public static void heapSort(int [] a)
{

// build a heap
for (int i = a.length / 2 - 1; i >= 0; i--)

percolateDown(a, i, a.length);
// successively delete the max and restore the heap
for(int i = a.length - 1; i >= 1; i--) {

swap(a, 0, i);
percolateDown(a, 0, i);

}
}

// Heapifying method to restore a heap a[0],...,a[size-1]
// after changing a[i]; a child / parent position is one
// greater than an index of the same array element
private static void percolateDown(int [] a, int i, int size)
{

int child;
int parent = i + 1;

for (child = parent * 2; child < size; child = parent * 2) {
if (a[parent - 1] < a[child - 1] ||

a[parent - 1] < a[child]) {
if (a[child - 1] < a[child]) {

swap(a, parent - 1, child);
parent = child + 1;

} else {
swap(a, parent - 1, child - 1);
parent = child;

}
} else break;

}
if (child == size && a[parent - 1] < a[child - 1])

swap(a, parent - 1, child - 1);
}

// Counting sort of an input array a of size n
// with elements such that min <= a[i] <= max
// (assuming that this condition holds)
//
public static void countSort(int [] a, int min, int max)
{

int i, j;
int m = max - min + 1;
int [] accum = new int[m];

Appendix A: Java code for Searching and Sorting 185

for (j = 0; j < m; j++) accum[j] = 0;
for (i = 0; i < a.length; i++) accum[a[i]]++;
for (i = j = 0; j < m; j++) {

if (accum[j] == 0) continue;
while((accum[j]--) > 0)

a[i++] = j + min;
}

}

// Quick select in an input array a of size n:
// returns the k-th smallest element in a[k - 1]
//
public static void quickSelect(int[] a, int k)
{

quickSelect(a, 0, a.length - 1, k);
}

private static void quickSelect(int[] a, int lo, int hi, int k)
{

if (lo + CUTOFF > hi) {
insertionSort(a, lo, hi);

} else {
// Sort low, middle, high

int mi = (lo + hi) / 2;
if (a[mi] < a[lo]) swap(a, lo, mi);
if (a[hi] < a[lo]) swap(a, lo, hi);
if (a[hi] < a[mi]) swap(a, mi, hi);

// Place the pivot p into the rightmost place
swap(a, mi, hi - 1);
int p = a[hi - 1];

// Begin partitioning
int i, j;
for(i = lo, j = hi - 1; ;) {

while(a[++i] < p);
while(p < a[--j]);
if (i < j) swap(a, i, j); else break;

}

// Restore pivot
swap(a, i, hi - 1);

// Selection by recursion (the only changed part!)
if (k - 1 < i) quickSelect(a, lo, i - 1, k);
else if (k - 1 > i) quickSelect(a, i + 1, hi, k);

}
}

186 Section A.2: Search methods

A.2 Search methods

We now present several Java methods for searching in an integer array. The algo-
rithms (sequential search and binary search) are described in detail in Chapter 3.

// Sequential search for key in an array a
//
public static int sequentialSearch(int[] a, int key)
throws ItemNotFound
{

for(int i = 0; i < a.length; i++)
if (a[i] == key) return i;

throw new ItemNotFound(‘‘SequentialSearch fails’’);
}

// Binary search for key in a sorted array a
//

public static int binarySearch(int[] a, int key)
throws ItemNotFound
{

int lo = 0;
int hi = a.length - 1;
int mi;

while(lo <= hi) {
mi = (lo + hi) / 2;
if (a[mi] < key) lo = mi + 1;
else if(a[mi] > key) hi = mi - 1;
else return mi;

}
throw new ItemNotFound("BinarySearch fails");

}

// Binary search using two-way comparisons
//
public static int binarySearch2(int[] a, int key)
throws ItemNotFound
{

if (a.length == 0)
throw new ItemNotFound("Zero-length array");

int lo = 0;
int hi = a.length - 1;
int mi;

while(lo < hi) {
mi = (lo + hi) / 2;
if (a[mi] < key) lo = mi + 1;
else hi = mi;

}
if (a[lo] == key) return lo;
throw new ItemNotFound("BinarySearch fails");

}

Appendix A: Java code for Searching and Sorting 187

The Knuth-Morris-Pratt KMP algorithm, as described in Section 7.7, for searching
for a substring X within a string Y is now implemented using Java.

void computeNext(String X, int[] next)
{

int i=0;
int j=next[0]=-1; // end of window marker

while (i < X.length())
{

if (j > -1 && X[i] != X[j]) { j=next[j]; continue; }

i++; j++;

if (i==X.length()) { next[i]=j; break; }

next[i]= X[i]==X[j] ? next[j] : j;
}

}

int KMP(String X, String Y)
{

int m=X.length();
int n=Y.length();
int[m+1] next;

computeNext(X,next);

int i = 0; int j = 0; // indices in x and y
while (j < n)
{

while (i > -1 && X[i] != Y[j]) i=next[i];
i++;
j++;
if (i >= m) return j-i; // Match

}
return -1; // Mismatch

}

Appendix B

Java graph ADT

This appendix presents a simplified abstract class for representing a graph abstract
data type (ADT). Although it is fully functional, it purposely omits most exception
handling and other niceties that should be in any commercial level package. These
details would distract from our overall (introductory) goal of showing how to imple-
ment a basic graph class in Java.

Our plan is to have a common data structure that represents both graphs and
digraphs. A graph will be a digraph with anti-parallel arcs; that is, if (u,v) ∈ E then
(v,u) ∈ E also. The initial abstract class presented below requires a core set of meth-
ods needed for the realized graph ADT. It will be extended with the actual internal
data structure representation in the form of adjacency matrix or adjacency lists (or
whatever the designer picks).

package graphADT;

import java.util.ArrayList;
import java.io.BufferedReader;

/*
* Current Abstract Data Type interface for (di)graph classes.

*/
public interface Graph
{

// Need default, copy and BufferedReader constructors
// (commented since Java doesn’t allow abstract constructors!)
//
// public GraphADT();
// public GraphADT(GraphADT);
// public GraphADT(BufferedReader in);

Right from the beginning we get in trouble since Java does not allow abstract con-
structors. We will leave these as comments and hope the graph class designer will
abide by them. We want to create graphs from an empty graph, copy an existing
graph, or read in one from some external source. In the case of a BufferedReader
constructor the user has to attach one to a string, file or keyboard. We will see exam-
ples later.

190

We now proceed by presenting the alteration methods required for our graph
class interface.

// data structure modifiers
//
void addVertices(int i); // Add some vertices
void removeVertex(int i); // Remove vertex

void addArc(int i, int j); // Add directed edge
void removeArc(int i, int j); // Remove directed edge

void addEdge(int i, int j); // Add undirected edge
void removeEdge(int i, int j); // Remove undirected edge

This small set of methods allows one to build the graph. We will soon explicitly
define the methods for adding or deleting edges in terms of the two arc methods. An
extended class can override these to improve efficiency if it wants. We now list a few
methods for extracting information from a graph object.

// data structure queries
//
boolean isArc(int i, int j); // Check for arcs
boolean isEdge(int i, int j); // Check for edges

int degree(int i); // Number of neighbours (outgoing)
int inDegree(int i); // Number of incoming arcs

ArrayList<Integer> neighbours(int i); // List of (out-)neighbours

int order(); // Number of vertices
int size(); // Number of edges

// output (default same as representation)
//
String toString();

} // end of interface Graph

For our implementation, we want a vertex’s degree to equal the number of ver-
tices returned by the neighbours method, which in our implementations will cor-
respond to degree(i). Also, the method isEdge(i,j) will most likely just check
whether isArc(i,j) && isArc(j,i) is true.

Finally, one nice thing to offer is a method to view/save/print a graph. Tradition-
ally in Java we define a toString method for this. Our two actual implementations
will return human viewable adjacency lists or adjacency matrices, depending on the
internal representation.

We have the toStringmethod as an interface requirement for the derived classes
to define. We want a BufferedReader constructor for a graph class to accept its own
toString output. Two common external graph representations are handled by the
methods given below.

public String toStringAdjMatrix()
{

StringBuffer o = new StringBuffer();
o.append(order()+"\n");

for(int i = 0; i < order(); i++)
{

for(int j = 0; j < order(); j++)

Appendix B: Java graph ADT 191

{
if (isArc(i,j)) o.append("1 ");
else o.append("0 ");

}
o.append("\n");

}
return o.toString();

}

public String toStringAdjLists()
{

StringBuffer o = new StringBuffer();
o.append(order()+"\n");

for(int i = 0; i < order(); i++)
{

for(int j = 0; j < order(); j++)
{

if (isArc(i,j)) o.append(j+" ");
}
o.append("\n");

}
return o.toString();

}

To make things convenient for ourselves we require that the first line of our (two)
external graph representations contain the number of vertices. Strictly speaking, this
is not needed for an 0/1 adjacency matrix. This makes our parsing job easier and this
format allows us to store more than one graph per input stream. (We can terminate
a stream of graphs with a sentinel graph of order zero.)

B.1 Java adjacency matrix implementation

We now define our first usable graph class based on an adjacency matrix representa-
tion (for graphs and digraphs). This class extends our graph interface Graph.

package graphADT;

import java.io.*;
import java.util.*;

/* Current implementation uses adjacency matrix form of a graph.

*/
public class GraphAdjMatrix implements Graph
{

// Internal Representation and Constructors
//
protected int order; // Number of vertices
protected boolean adj[][]; // Adjacency matrix of graph

public GraphAdjMatrix() // default constructor
{

order = 0;
}

public GraphAdjMatrix(GraphAdjMatrix G) // copy constructor
{

int n = G.order();
if (n>0) { adj = new boolean[n][n]; order = n; }

for (int i = 0; i < n; i++)

192 Section B.1: Java adjacency matrix implementation

for (int j = 0; j < n; j++)
adj[i][j] = G.adj[i][j];

}
public GraphAdjMatrix(Graph G) // conversion constructor
{

int n = G.order();
if (n>0) { adj = new boolean[n][n]; order = n; }

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

if (G.isArc(i,j)) adj[i][j] = true;
}

The default constructor simply creates an empty graph and thus there is no need
to allocate any space. The two copy constructors simply copy onto a new n-by-nma-
trix the boolean adjacency values of the old graph. Notice that we want new storage
and not an object reference for the copy.

An alternative implementation (as given in the first edition of this textbook) would
also keep an integer variable space to represent the total space allocated. Whenever
we delete vertices we do not want to reallocate a new matrix but to reshuffle the en-
tries into the upper sub-matrix. Then whenever adding more vertices we just extend
the dimension of the sub-matrix.

Our last input constructor for GraphAdjMatrix is now given.

public GraphAdjMatrix(BufferedReader buffer)
{

try
{

String line = buffer.readLine().trim();
String[] tokens = line.split("\\s+");

if (tokens.length != 1)
{

throw new Error("bad format: number of vertices");
}
int n = order = Integer.parseInt(tokens[0]);

if (n>0) adj = new boolean[n][n];

for (int i = 0; i < n; i++)
{

line = buffer.readLine().trim();
tokens = line.split("\\s+");
if (tokens.length != n)
{

throw new Error("bad format: adjacency matrix");
}

for (int j = 0; j < n; j++)
{

int entry = Integer.parseInt(tokens[j]);
adj[i][j] = entry != 0;

}
}

}
catch (IOException x)
{ throw new Error("bad input stream"); }

}

Appendix B: Java graph ADT 193

We have tried to minimize the complexity of this BufferedReader constructor.
We do however throw a couple of errors if something does go wrong. Otherwise, this
method simply reads in an integer n denoting the dimension of the adjacency matrix
and then reads in the 0/1 matrix. Notice how the use of the String.splitmethod to
extract the integer inputs.

We next define several methods for altering this graph data structure. The first
two methods allow the user to add or delete vertices from a graph.

// Mutator Methods
//
public void addVertices(int n)
{

assert(0 <= n);
boolean matrix[][] = new boolean[order+n][order+n];

for (int i = 0; i < order; i++)
{

for (int j = 0; j < order; j++)
{

matrix[i][j] = adj[i][j];
}

}
order += n;
adj = matrix;

}

public void removeVertex(int v)
{

assert(0 <= v && v < order);
order--;

for (int i = 0; i < v; i++)
{

for (int j = v; j < order; j++)
{

adj[i][j] = adj[i][j+1];
}

}

for (int i = v; i < order; i++)
{

for (int j = 0; j < v; j++)
{

adj[i][j] = adj[i+1][j];
}
for (int j = v; j < order; j++)
{

adj[i][j] = adj[i+1][j+1];
}

}
}

The removeVertex method is somewhat complicated in that we have to remove
a row and column from the matrix corresponding to the vertex being deleted. We
decided to do this in two passes. The first pass (for variable i < v) simply shifts all
column indices j ≥ v to the left. The second pass (for variable i ≥ v) has to shift en-
tries up by one while also shifting column indices j ≥ v to the left. The user of the
graph should realize that the indices of the vertices change!

194 Section B.1: Java adjacency matrix implementation

Next, we have four relatively trivial methods for adding and deleting arcs (and
edges). Like the mutator methods for checking for valid vertex indices we add some
important assert statements that can be turned on with an option to the java com-
piler for debugging graph algorithms.

// Mutator Methods (cont.)

public void addArc(int i, int j)
{

assert(0 <= i && i < order);
assert(0 <= j && j < order);
adj[i][j] = true;

}

public void removeArc(int i, int j)
{

assert(0 <= i && i < order);
assert(0 <= j && j < order);
adj[i][j] = false;

}

public void addEdge(int i, int j)
{

assert(0 <= i && i < order);
assert(0 <= j && j < order);
adj[i][j] = adj[j][i] = true;

}

public void removeEdge(int i, int j)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
adj[i][j] = adj[j][i] = false;

}

The methods to access properties of the graph are also pretty straightforward.

// Access Methods
//
public boolean isArc(int i, int j)
{

assert(0 <= i && i < order);
assert(0 <= j && j < order);
return adj[i][j];

}

public boolean isEdge(int i, int j)
{

return isArc(i,j) && isArc(j,i);
}

public int degree(int i) // row count
{

assert(0 <= i && i < order);
int sz = 0;
for (int j = 0; j < order; j++)
{

if (adj[i][j]) sz++;
}
return sz;

}

public int inDegree(int i) // column count
{

Appendix B: Java graph ADT 195

assert(0 <= i && i < order);
int sz = 0;
for (int j = 0; j < order; j++)
{

if (adj[j][i]) sz++;
}
return sz;

}

Our constant-time method for checking whether an arc is present in a graph is
given above in the method isArc. Unfortunately, we have to check all neighbours for
computing the in- and out- degrees. Also the method, given below, for returning a
list of neighbours for a vertex will need to scan all potential vertices.

public ArrayList<Integer> neighbours(int i)
{

assert(0 <= i && i < order);
ArrayList<Integer> nbrs = new ArrayList<Integer>();

for (int j = 0; j < order; j++)
{

if (adj[i][j]) nbrs.add(j);
}

return nbrs;
}

public int order()
{

return order;
}

public int size() // Number of arcs (edges count twice)
{

int sz = 0;
// boolean undirected = true;

for (int i = 0; i< order; i++)
{

for (int j = 0; j< order; j++)
{

if (adj[i][j]) sz++;
// if (adj[i][j] != adj[j][i]) undirected = false;

}
}
return sz; // undirected ? sz / 2 : sz;

}

The order of the graph is stored in an integer variable _order. However, we have
to count all true entries in the boolean adjacency matrix to return the size. Notice
that if we are working with an undirected graph this returns twice the expected num-
ber (since we store each edge as two arcs). If we specialize this class we may want
to uncomment the indicated statements to autodetect undirected graphs (whenever
the matrix is symmetric). It is probably safer to leave it as it is written, with the under-
standing that the user knows how size is defined for this implementation of Graph.

// default output is readable by constructor
//
public String toString() { return toStringAdjMatrix(); }

} // end class GraphAdjMatrix

196 Section B.2: Java adjacency lists implementation

We finish our implementation by setting our output method toString to return
an adjacency matrix. Recall the method toStringAdjMatrix was presented earlier
on page 190.

B.2 Java adjacency lists implementation

We now present an alternate implementation of our graph ADT using the adjacency
lists data structure. We will use the Java API class Vector to store these lists.

package graphADT;

import java.io.*;
import java.util.*;

/* Current implementation uses adjacency lists form of a graph.

*/
public class GraphAdjLists implements Graph
{

// Internal Representation and Constructors
//
protected ArrayList<ArrayList<Integer>> adj;

public GraphAdjLists()
{

adj = new ArrayList<ArrayList<Integer>>();
}

public GraphAdjLists(Graph G)
{

int n = G.order();
adj = new ArrayList<ArrayList<Integer>>();
for (int i = 0; i < n; i++)
{

adj.add(G.neighbours(i));
}

}

We use an ArrayList that contains an ArrayList of Integer for our representa-
tion. We decided that the copy constructor for Graph is sufficient in terms of effi-
ciency so do not need to define a specialized copy constructor for GraphAdjLists,
handled automatically by the Java runtime environment. The default constructor
creates a list of no lists (that is, no vertices). For better efficiency, the copy construc-
tor takes over the role of our allocator and appends the neighbour lists of the graph
parameter G directly onto a new adjacency list.

public GraphAdjLists(BufferedReader buffer)
{

try
{

String line = buffer.readLine().trim();
String[] tokens = line.split("\\s+");

if (tokens.length != 1)
{

throw new Error("bad format: number of vertices");
}

adj = new ArrayList<ArrayList<Integer>>();
int n = Integer.parseInt(tokens[0]);

for (int u = 0; u < n; u++)

Appendix B: Java graph ADT 197

{
ArrayList<Integer> current = new ArrayList<Integer>();
line = buffer.readLine().trim();
int limit = 0;
if (!line.equals(""))
{

tokens = line.split("\\s+");
limit = tokens.length;

}

for (int i = 0; i < limit; i++)
{

current.add(Integer.parseInt(tokens[i]));
}
adj.add(current);

}
}
catch (IOException x)
{ throw new Error("bad input stream"); }

}

Our stream constructor reads in an integer denoting the order n of the graph and
then reads in n lines denoting the adjacency lists. Notice that we do not check for
correctness of the data. For example, a graph of 5 vertices could have erroneous
adjacency lists with numbers outside the range 0 to 4. We leave these robustness
considerations for an extended class to fulfil, if desired. Also note that we do not list
the vertex index in front of the individual lists and we use white space to separate
items. A blank line indicates an empty list (that is, no neighbours) for a vertex.

// Mutator Methods
//
public void addVertices(int n)
{

assert(0 <= n);
if (n > 0)
{

for (int i = 0; i < n; i++)
{

adj.add(new ArrayList<Integer>());
}

}
}

public void removeVertex(int i)
{

assert(0 <= i && i < order());
adj.remove(i);
Integer I = new Integer(i);
for (int u = 0; u < order(); u++)
{

ArrayList<Integer> current = adj.get(u);
current.remove(I); // remove i from adj lists
for (Integer num: current)
{

if (num > i) // relabel larger indexed nodes
{

int index = current.indexOf(num);
current.set(index, num-1);

}
}

}
}

198 Section B.2: Java adjacency lists implementation

Adding vertices is easy for our adjacency lists representation. Here we just expand
the internal _adj list by appending new empty lists. The removeVertex method is a
little complicated in that we have to scan each list to remove arcs pointing to the
vertex being deleted. We also have chosen to relabel vertices so that there are no
gaps (that is, we want vertex indexed by i to be labeled Integer(i)). A good question
would be to find a more efficient removeVertex method. One way would be to also
keep an in-neighbour list for each vertex. However, the extra data structure overhead
is not desirable for our simple implementation.

public void addArc(int i, int j)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
if (isArc(i,j)) return;
(adj.get(i)).add(j);

}

public void removeArc(int i, int j)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
if (!isArc(i,j)) return;
(adj.get(i)).remove(new Integer(j));

}

public void addEdge(int i, int j)
{

addArc(i,j);
addArc(j,i);

}

public void removeEdge(int i, int j)
{

removeArc(i,j);
removeArc(j,i);

}

Adding and removing arcs is easy since the methods to do this exist in the Vector
class. All we have to do is access the appropriate adjacency list. We have decided to
place a safe guard in the addArc method to prevent parallel arcs from being added
between two vertices.

// Access Methods
//
public boolean isArc(int i, int j)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
return (adj.get(i)).contains(new Integer(j));

}

public boolean isEdge(int i, int j)
{

return isArc(i,j) && isArc(j,i);
}

public int inDegree(int i)
{

assert(0 <= i && i < order());
int sz = 0;
for (int j = 0; j < order(); j++)
{

Appendix B: Java graph ADT 199

if (isArc(j,i)) sz++;
}
return sz;

}

public int degree(int i)
{

assert(0 <= i && i < order());
return (adj.get(i)).size();

}

Note how we assume that the contains method of a Vector object does a data
equality check and not just a reference check. The outDegree method probably
runs in constant time since we just return the list’s size. However, the inDegree
method has to check all adjacency lists and could have to inspect all arcs of the
graph/digraph.

public ArrayList<Integer> neighbours(int i)
{

assert(0 <= i && i < order());
ArrayList<Integer> nei = new ArrayList<Integer>();
for (Integer vert : adj.get(i))
{

nei.add(vert);
}
return nei;
//return (ArrayList<Integer>)(adj.get(i)).clone();

}

public int order()
{

return adj.size();
}

public int size() // Number of arcs (counts edges twice)
{

int sz = 0;
for (int i=0; i<order(); i++)
{

sz += (adj.get(i)).size();
}
return sz;

}

We do not want to have any internal references to the graph data structure being
available to non-class members. Thus, we elected to return a clone of the adjacency
list for our neighboursmethod. We did not want to keep redundant data so the order
of our graph is simply the size of the adj list.

// default output readable by constructor
//
public String toString() { return toStringAdjLists(); }

} // end class GraphAdjLists

Again, we have the default output format for this class be compatible with the
constructor BufferedReader. (The method toStringAdjLists is defined on page 190.)

B.3 Standardized Java graph class

We now have two implementations of a graph class as specified by our interface
(abstract class) Graph. We want to write algorithms that can handle either format.

200 Section B.4: Extended graph classes: weighted edges

Since Java is object-oriented we could have all our algorithms take a Graphobject and
the run-time dynamic mechanism should ascertain the correct adjacency matrix or
adjacency lists methods. For example, we could write a graph coloring algorithm
prototyped as public int color(Graph G) and pass it either a GraphAdjMatrixor a
GraphAdjLists. And it should work fine!

We next present a simple test program for how one would use our graph imple-
mentations. We encourage the reader to trace through the steps and to try to obtain
the same output.

import java.io.*; import graphADT.*;

public class test {

public static void main(String argv[])
{

Graph G1 = new GraphAdjLists();

G1.addVertices(5);
G1.addArc(0,2); G1.addArc(0,3); G1.addEdge(1,2);
G1.addArc(2,3); G1.addArc(2,0); G1.addArc(2,4);
G1.addArc(3,2); G1.addEdge(4,1); G1.addArc(4,2);

System.out.println(G1);

Graph G2 = new GraphAdjMatrix(G1);

G2.removeArc(2,0); G2.removeArc(4,1); G2.removeArc(2,3);

System.out.println(G2);

Graph G3 = new GraphAdjLists(G2);

G3.addVertices(2);
G3.addArc(5,4); G3.addArc(5,2); G3.addArc(5,6);
G3.addArc(2,6); G3.addArc(0,6); G3.addArc(6,0);

System.out.println(G3);

Graph G4 = new GraphAdjLists(G3);

G4.removeVertex(4); G4.removeEdge(5,0); G4.addVertices(1);
G4.addEdge(1,6);

System.out.println(G4);
}
} // test

The expected output, using JDK version 1.6, is given in Figure B.1. Note that the
last version of the digraph G has a vertex of out-degree zero in the adjacency lists.
(To compile our program we type ‘javac test.java’ and to execute it we type ‘java test’
at our command-line prompt ‘$’.)

B.4 Extended graph classes: weighted edges

The graph ADT presented in the previous sections can be easily extended to provide
a customized data type. For example, if one only wants undirected graphs then a
more restrictive class can be developed to prevent arc operations. In this section
we want to illustrate how one can develop an ADT for arc-weighted graphs. We first
want to define a new graph interface that allows for these weights.

Appendix B: Java graph ADT 201

$ javac test.java
$ java test
5
2 3
2 4
1 3 0 4
2
1 2

5
0 0 1 1 0
0 0 1 0 1
0 1 0 0 1
0 0 1 0 0
0 0 1 0 0

7
2 3 6
2 4
1 4 6
2
2
4 2 6
0

7
2 3
2 6
1 5
2
2 5

1

Figure B.1: Sample output of the graph test program.

public interface wGraph extends Graph
{

class Weight<X>
{

private X value;
public Weight(X arg)
{

value = arg;
}
public X getValue()
{

return value;
}
public void setValue(X arg)
{

value = arg;
}
public String toString()

202 Section B.4: Extended graph classes: weighted edges

{
return value.toString();

}
}

void addArc(int i, int j); // overridden with "default weight"
void addArc(int i, int j, Weight weight);

void setArcWeight(int i, int j, Weight weight);
//assumes edge i-j exists; and replaces the weight of edge i-j

Weight getArcWeight(int i, int j);

ArrayList<Weight> neighbourWeights(int i);
// If you call neighbours(i) and neighbourWeights(i) then
// the k-th element of both lists are correlated

}

In the above interface, we define a class to represent arbitrary weights. Usually
one uses Weight<Integer> as the arc attributes. Since wGraph extends Graph, the
existing graph algorithms, written for non-weighted graphs, should still work.

We can implement a wGraph in several ways just like we had GraphAdjMatrixand
GraphAdjLists for the interface Graph. We can then create a wGraph object by creat-
ing an implementation object, such as:

wGraph wG = new wGraphMatrix(Buffer);
An adjacency matrix implementation for this interface is given below. Note that

the BufferedReader constructor assumes weights of type Integer. If one wants a
floating point data type then another constructor (or creation method) is required.

package graphADT;

import java.util.ArrayList; import java.io.*;

public class wGraphMatrix implements wGraph
{

protected int order;
protected Weight[][] adjW; // null entry means no arc

public wGraphMatrix()
{

order = 0;
}

public wGraphMatrix(wGraphMatrix G)
{

int n = order = G.order();
if (n > 0)
{

adjW = new Weight[n][n];
}

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++)
{

adjW[i][j] = G.adjW[i][j];
}

}
}

public wGraphMatrix(wGraph G) //convert implementation
{

int n = order = G.order();

Appendix B: Java graph ADT 203

adjW = new Weight[n][n];

for (int i = 0; i < n; i++)
{

ArrayList<Integer> nbrs = G.neighbours(i);
ArrayList<Weight> wNbrs = G.neighbourWeights(i);
for (int j = 0; j < nbrs.size(); j++)
{

int index = nbrs.get(j);
adjW[i][index] = wNbrs.get(j);

}
}

}

public wGraphMatrix(Graph G) // promote and/or copy
{

int n = order = G.order();
if (n > 0)
{

adjW = new Weight[n][n];
}

for (int i = 0; i < n; i++)
{

for (int j = 0; j < n; j++)
{

if (G.isArc(i, j))
{

adjW[i][j] = new Weight<Integer>(1);
}

}
}

}

public wGraphMatrix(BufferedReader buffer)
{

try
{

String line = buffer.readLine().trim();
String[] tokens = line.split("\\s+");

if (tokens.length != 1)
{

throw new Error("bad format: number of vertices");
}
int n = order = Integer.parseInt(tokens[0]);

if (n > 0)
{

adjW = new Weight[n][n];
}

for (int i = 0; i < n; i++)
{

line = buffer.readLine().trim();
tokens = line.split("\\s+");
if (tokens.length != n)
{

throw new Error("bad format: adjacency matrix");
}

for (int j = 0; j < n; j++)
{

int entry = Integer.parseInt(tokens[j]);
if (entry != 0)

204 Section B.4: Extended graph classes: weighted edges

{
adjW[i][j] = new Weight<Integer>(entry);

}
}

}
}
catch (IOException x)
{

throw new Error("bad input stream");
}

}

// mutator methods

public void addVertices(int n)
{

assert(0 <= n);
Weight weights[][] = new Weight[order+n][order+n];

for (int i = 0; i < order; i++)
{

for (int j = 0; j < order; j++)
{
weights[i][j] = adjW[i][j];
}

}
order += n;
adjW = weights;

}

public void removeVertex(int v)
{

assert(0 <= v && v < order);
order--;

for (int i = 0; i < v; i++)
{

for (int j = v; j < order; j++)
{

adjW[i][j] = adjW[i][j+1];
}

}

for (int i = v; i < order; i++)
{

for (int j = 0; j < v; j++)
{

adjW[i][j] = adjW[i+1][j];
}
for (int j = v; j < order; j++)
{

adjW[i][j] = adjW[i+1][j+1];
}

}
}

public void addArc(int i, int j)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
adjW[i][j] = new Weight<Integer>(1); //default weight

}

public void removeArc(int i, int j)

Appendix B: Java graph ADT 205

{
assert(0 <= i && i < order());
assert(0 <= j && j < order());
adjW[i][j] = null;

}

public void addEdge(int i, int j)
{

addArc(i,j); addArc(j,i);
}

public void removeEdge(int i, int j)
{

removeArc(i,j); removeArc(j,i);
}

public void addArc(int i, int j, Weight weight)
{

assert(0 <= i && i < order());
assert(0 <= j && j < order());
adjW[i][j] = weight;

}

public void setArcWeight(int i, int j, Weight weight)
{

assert(isArc(i, j));
adjW[i][j] = weight;

}

public Weight<?> getArcWeight(int i, int j)
{

assert(isArc(i, j));
return adjW[i][j];

}

// accessor methods

public boolean isArc(int i, int j)
{

assert(0 <= i && i < order);
assert(0 <= j && j < order);
return adjW[i][j] != null;

}

public boolean isEdge(int i, int j)
{

return isArc(i,j) && isArc(j,i);
}

public int inDegree(int i) // column count
{

assert(0 <= i && i < order);
int sz = 0;
for (int j = 0; j < order; j++)
{

if (adjW[j][i] != null) sz++;
}
return sz;

}

public int degree(int i) // row count
{

assert(0 <= i && i < order);
int sz = 0;
for (int j = 0; j < order; j++)

206 Section B.4: Extended graph classes: weighted edges

{
if (adjW[i][j] != null) sz++;

}
return sz;

}

public int order()
{

return order;
}

public int size() // Number of arcs (edges count twice)
{

int sz = 0;
for (int i = 0; i< order; i++)
{

for (int j = 0; j< order; j++)
{

if (adjW[i][j] != null) sz++;
}

}
return sz; // undirected ? sz / 2 : sz;

}

public ArrayList<Integer> neighbours(int i)
{

assert(0 <= i && i < order);
ArrayList<Integer> nbrs = new ArrayList<Integer>();

for (int j = 0; j < order; j++)
{

if (adjW[i][j] != null) nbrs.add(j);
}
return nbrs;

}

public ArrayList<Weight> neighbourWeights(int i)
{

ArrayList<Weight> nbrsWei = new ArrayList<Weight>();

for (int j = 0; j < order(); j++)
{

if (adjW[i][j] != null)
{

nbrsWei.add(adjW[i][j]); // corresponding weight
}

}
return nbrsWei;

}

public String toString() // print weights in n-by-n matrix
{

StringBuffer o = new StringBuffer();
o.append(order()+"\n");

for (int i = 0; i < order(); i++)
{

for (int j = 0; j < order(); j++)
{

if (adjW[i][j] != null)
{

o.append(adjW[i][j] + " ");
}
else
{

Appendix B: Java graph ADT 207

o.append(0 + " ");
}

}
o.append("\n");

}
return o.toString();

}

}

One thing to note is that if one wants to output the underlying graph represen-
tation (that is, without weights) one can simply call the toString method of Graph
reference.

We conclude by mentioning that the details for an adjacency lists implementa-
tion, wGraphLists, are included in the graph library accompanying this book. We
note that this adjacency lists version of the ADT is more suitable when one expects
weights of numerical value 0 or has sparse graphs.

Appendix C

Recursive Descent Parsing

C.1 Templated parsing code for balanced parentheses grammar

In this appendix we illustrate how to design a recursive descent parser for the follow-
ing simple grammar.

〈B〉 → ε

〈B〉 → (〈B〉) 〈B〉
〈B〉 → [〈C〉]
〈C〉 → (〈B〉),(〈B〉)

First we need to generate the overall recursive flow of the parser using the tem-
plates given earlier in Section 8.6. We need to define two methods parseNonterminalB,
and parseNonterminalC, along with two auxiliary methods parseProductionB1 and
parseProductionB2 for the nonterminal 〈B〉. These are given in Figure C.1. The
reader may also want to review Example 8.3.

C.2 Java implementation for balanced parentheses grammar

We now want to convert the template parsing code of the previous section into a
working Java program. We first need to define the stream input and parse tree helper
classes. Our simple tokenizer for this example will be the builtin Java StringTokenizer,
which will break up the input at white spaces.

In the code that follows we write our check method to return a boolean value
instead of throwing an exception so that we can easily illustrate the location of errors
in the bad input strings.

210 Section C.2: Java implementation for balanced parentheses grammar

method parseNonterminalB
begin

Token T = peek()
if T==‘(’ then

return parseProductionB1
elseif T==‘[’ then

return parseProductionB2
else Check for 〈B〉 → ε case.
endif

end

method parseProductionB1
begin

Tree S = new Tree()
check(’(’); S.addLeaf(’(’)
S.addSubtree(parseNonterminalB)
check(’)’); S.addLeaf(’)’)
S.addSubtree(parseNonterminalB)
return S

end

method parseProductionB2
begin

Tree S = new Tree()
check(’[’); S.addLeaf(’[’)
S.addSubtree(parseNonterminalC)
check(’]’); S.addLeaf(’]’)
return S

end

method parseNonterminalC
begin

Tree S = new Tree()
check(’(’); S.addLeaf(’(’)
S.addSubtree(parseNonterminalB)
check(’)’); S.addLeaf(’)’)
check(’,’); S.addLeaf(’,’)
check(’(’); S.addLeaf(’(’)
S.addSubtree(parseNonterminalB)
check(’)’); S.addLeaf(’)’)

end

Figure C.1: A recursive descent parser for a simple grammar.

Appendix C: Recursive Descent Parsing 211

import java.util.StringTokenizer;

public class ParseInput
{

String str, curToken;
boolean haveCurToken;
StringTokenizer tokens;

public ParseInput(String s)
{

str = new String(s);
haveCurToken = false;
tokens = new StringTokenizer(str);

}

String peek()
{

if (haveCurToken) return curToken;
else
{

if (tokens.hasMoreTokens())
{

curToken = tokens.nextToken();
haveCurToken=true;
return curToken;

}
else return new String(); // end of input indicator

}
}

boolean check(String s)
{

if (haveCurToken)
{

haveCurToken=false;
return s.equals(curToken);

}
else
{

if (tokens.hasMoreTokens()) return s.equals(tokens.nextToken());
else return false;

}
}

boolean checkEndInput()
{

if (haveCurToken) return false;
else return tokens.hasMoreTokens()==false;

}
}

Our data structure for the returned parse trees will be an ordered rooted tree of
strings. The methods addLeaf and addSubtree do what is expected by appending
children to an ArrayList of siblings. The only complicated part of our implemen-
tation is the toString method which outputs the parse tree in a readable format,
where we indent to the right for each depth level of the parse tree. Lines printed with
the same indentation (top-to-bottom order) correspond to the left-to-right ordering
of the siblings.

212 Section C.2: Java implementation for balanced parentheses grammar

import java.util.*;

public class PTree
{

String obj;
ArrayList subtrees;

public PTree(String root)
{

obj = new String(root);
subtrees = new ArrayList();

}

public void addLeaf(String leaf)
{

subtrees.add(new PTree(leaf)); // with empty subtree
}

public void addSubtree(PTree subtree)
{

subtrees.add(subtree); // note: reference to subtree
}

static int tabpos=0;
//
public String toString()
{

StringBuffer sb = new StringBuffer(obj);

if (subtrees.size()>0)
{

tabpos += obj.length()+3;
sb.append("-->");
for (int i=0; i<subtrees.size(); i++)
{

if (i>0) for (int j=0; j<tabpos; j++) sb.append(" ");
sb.append(subtrees.get(i).toString());
if (i<subtrees.size()-1) sb.append("\n");

}
tabpos -= obj.length()+3;

}

return sb.toString();
}

}

Next we write Java code for the recursive descent parser. Notice the close corre-
spondence between this and to the pseudo-code of the previous section. To make
things slightly more sophisticated we add error strings to the constructed parse tree,
whenever our method check does not match an input token.

import java.io.*;
import java.lang.*;

public class ParseBP
{

static ParseInput in;

static public PTree ParseBP(String s) // mainParser
{

in = new ParseInput(s); // start token input stream from s

PTree PT = ParseNonterminalB();
if (! in.checkEndInput()) PT.addLeaf("errorEOI");

Appendix C: Recursive Descent Parsing 213

return PT;
}

static public PTree ParseNonterminalB()
{

String T=in.peek();

// match epsilon or non-processed)
//
if (T.length()==0 || T.equals(")"))
{

return new PTree("B-->null");
}
if (T.equals("(")) return ParseProductionB1();
if (T.equals("[")) return ParseProductionB2();
return new PTree("errorChar");

}

static public PTree ParseProductionB1()
{

PTree S = new PTree("B1");
if (in.check("(")) S.addLeaf("("); else S.addLeaf("error(");
S.addSubtree(ParseNonterminalB());
if (in.check(")")) S.addLeaf(")"); else S.addLeaf("error)");
S.addSubtree(ParseNonterminalB());
return S;

}

static public PTree ParseProductionB2()
{

PTree S = new PTree("B2");
if (in.check("[")) S.addLeaf("["); else S.addLeaf("error[");
S.addSubtree(ParseNonterminalC());
if (in.check("]")) S.addLeaf("]"); else S.addLeaf("error]");
return S;

}

static public PTree ParseNonterminalC()
{

PTree S = new PTree("C");
if (in.check("(")) S.addLeaf("("); else S.addLeaf("error(");
S.addSubtree(ParseNonterminalB());
if (in.check(")")) S.addLeaf(")"); else S.addLeaf("error)");
if (in.check(",")) S.addLeaf(","); else S.addLeaf("error,");
if (in.check("(")) S.addLeaf("("); else S.addLeaf("error(");
S.addSubtree(ParseNonterminalB());
if (in.check(")")) S.addLeaf(")"); else S.addLeaf("error)");
return S;

}
}

One thing to observe in the above method parseNonterminalB is that the gram-
mar is designed so that we do not need to check for ‘]’ when matching the 〈B〉 → ε
case.

214 Section C.2: Java implementation for balanced parentheses grammar

Finally, in the same class ParseBP that is given above (note the static modifiers)
we write a main method to do some testing on some input strings of whitespace
separated tokens.

public static void main(String[] args)
{

// testing simple case
System.out.println("Input 1: ()");
System.out.println(ParseBP("()"));

// testing nested B
System.out.println("Input 2: (() ())");
System.out.println(ParseBP("(() ())"));

// testing simple B followed by C
System.out.println("Input 3: () [() , ()]");
System.out.println(ParseBP("() [() , ()]"));

// error since things after the last bracket]
System.out.println("Input 4: [(() ()) , ()] ()");
System.out.println(ParseBP("[(() ()) , ()] ()"));

// testing nested nonterminal C
System.out.println("Input 5: [(() [() , ()]) , ()]");
System.out.println(ParseBP("[(() [() , ()]) , ()]"));

// error with bad character
System.out.println("Input 6: ((x))");
System.out.println(ParseBP("((x))"));

// error inside evaluation of nonterminal C
System.out.println("Input 7: () [() ,]");
System.out.println(ParseBP("() [() ,]"));

}

We show the output of our special parentheses parser on some input examples in
Figure C.2.

Appendix C: Recursive Descent Parsing 215

Input 1: ()

B1-->(

B-->null

)

B-->null

Input 2: (() ())

B1-->(

B1-->(

B-->null

)

B1-->(

B-->null

)

B-->null

)

B-->null

Input 3: () [() , ()]

B1-->(

B-->null

)

B2-->[

C-->(

B-->null

)

,

(

B-->null

)

]

Input 4: [(() ()) , ()] ()

B2-->[

C-->(

B1-->(

B-->null

)

B1-->(

B-->null

)

B-->null

)

,

(

B-->null

)

]

errorEOI

Input 5: [(() [() , ()]) , ()]

B2-->[

C-->(

B1-->(

B-->null

)

B2-->[

C-->(

B-->null

)

,

(

B-->null

)

]

)

,

(

B-->null

)

]

Input 6: ((x))

B1-->(

B1-->(

errorChar

error)

B-->null

)

B-->null

errorEOI

Input 7: () [() ,]

B1-->(

B-->null

)

B2-->[

C-->(

B-->null

)

,

error(

B-->null

error)

error]

Figure C.2: Sample parse trees obtained from our program parseBP.

Appendix D

Background on Data Structures

We assume that the reader is familiar with basic data structures such as arrays and
with the basic data types built in to most programming languages (such as integer,
floating point, string, etc). Many programming applications require the program-
mer to create complicated combinations of the built-in structures. Some languages
make this easy by allowing the user to define new data types (for example Java or C++
classes), and others do not (for example C, Fortran). These new data types are con-
crete implementations in the given language of abstract data types (ADT s), which
are mathematically specified.

D.1 Informal discussion of ADTs

An ADT consists of a set with certain operations on it. How those operations are
to be carried out is not our concern here. It is up to the programmer to choose an
implementation that suits the given application.

Some of the key ADTs are: list, stack, queue, priority queue, dictionary, disjoint
sets. We discuss them each below in turn, semi-formally.

A container is a collection of objects from some universal setU . Basic operations
are to create a new empty container, insert an element, check whether the container
is empty (the isEmpty operation). We assume that each element when inserted re-
turns a locator that identifies its position uniquely.

We can then try to find an element. Depending on the additional operations
defined, this may be easy or difficult. We may need to enumerate all locators. We
can also find the size of a container by enumerating all locators. Again, this may be
very inefficient, and for certain applications a special size operation may be defined.
Similarly, many container ADTs have a delete operation. Some of these allow quick
removal of an element, while others have to find it first, which may be slower.

Other operations can be expressed in terms of the basic ones. For example, we
can sometimes modify or update an element by finding it, remembering its loca-
tor, deleting it, then inserting the new value at the given location. This procedure is
sometimes very inefficient, so a special update operation may be required in some
situations. We normally try to have as few basic operations as possible, and other
operations such as sorting are expressed in terms of these (this is the aim of “generic
programming”).

218 Section D.1: Informal discussion of ADTs

As we see a container is very general. Some of the important container ADTs are
listed below.

A list is a container that stores elements in a linear sequence. Some basic oper-
ations are to insert in a given position in the sequence, to delete an element at a
given position. To find an element requires sequential search, enumerating all loca-
tors until the element is found or we run out of locators. The first element of a list is
called the head and the last is the tail. A sublist is a contiguous piece of the list, that
can be traversed by the iterator with no gaps. If we divide the list into two sublists
by choosing an element x and letting the head sublist consist of all elements before
x, and the tail sublist consist of all elements after it (either sublist, or neither, may
contain x, depending on the situation).

The main data structures used for implementing a list are arrays and singly- and
doubly-linked lists. They have different properties. For example, to find the middle
element of a list implemented as an array is a constant-time operation but this is not
true for the linked lists, since one must traverse the list, not having direct access to
the middle element as in an array. On the other hand, to insert an element in a given
(nonempty) position in an array takes longer than with the linked list implementa-
tion.

A sorted list is a container of elements from a totally ordered setU , with the same
basic operations as a list, except that the elements are kept sorted in ascending order.

A stack is a restricted kind of list in which insertion and deletion occur at the
same end (“top”) of the list, and at no other position. The basic operations are insert
(also called push), delete (also called pop), and getTop (also called peek) which re-
turns the element at the top of the list without removing it.

A queue is a restricted kind of list in which insertion occurs at one end (the “tail”)
and deletion occurs at the other end (the “head”). The basic operations are insert
(also called enqueue or push), delete (also called dequeue or pop), and getHead (also
called peek) which returns the element at the head without removing it.

A priority queue is a container of elements from a totally ordered set U that al-
lows us to insert an element, to find the smallest element with peek, and to remove
the smallest element with delete. A more advanced operation is decreaseKeywhich
finds and makes an element smaller. A general delete operation is not usually de-
fined.

A priority queue can be well implemented using a binary heap, if the operation
decreaseKey is not required to be particularly efficient. Otherwise, more sophisti-
cated implementations are normally used.

A dictionary (also called table, associative array or map) is a a container with
basic operations find, insert, and delete. It is usually also desired to perform an
updateoperation many times, since dictionaries are often used for dynamic databases.

Some of these ADTs can be used to simulate other ones. For example, a dictionary
can be implemented using a list. Insertion occurs after the last element, and finding
is via sequential search. For practical situations where a dictionary is used, the find
operation is used a lot, so such an inefficient implementation would not normally
be used. Similarly, one can use a list to simulate a priority queue. Insertion occurs at
one end and finding the maximum element by sequential search. Or we could use a
sorted list, where insertion occurs at the correct point and removing the minimum
element is particularly easy, since it is just removing the first element.

Appendix D: Background on Data Structures 219

D.2 Notes on a more formal approach

The discussion above still doesn’t define the various ADTs in a completely satisfac-
tory way. As in abstract algebra, we must specify not only the basic operations but
also their properties using a set of axioms. It can be quite difficult to do this suc-
cinctly. Also, whereas in the case of algebra the basic structures (group, ring, field
. . .) have been agreed on for many decades, the axiomatic definitions of the main
ADTs do not seem to be completely standardized yet. So we shall not give a com-
plete axiomatic presentation, but limit ourselves to an example.

The stack ADT could be defined as follows.
A stack on a setU is a set S with operations push, pop, peek, isEmpty. There is an

empty stack called ε which corresponds to S being the empty set. These operations
do the following: push takes an ordered pair consisting of a stack and an element of
U as an argument, and returns a stack; pop takes a stack as an argument and returns
an element ofU ; peek takes a stack as an argument and returns either an element of
u or “ERROR”; isEmpty returns either 0 (false) or 1 (true). The axioms for every stack
S and element x ofU are as follows.

• isEmpty(ε) = 1

• pop(push(S, x)) = S

• peek(push(S, x)) = x

Appendix E

Mathematical Background

We collect here some basic useful facts, all of which can be found in standard text-
books on calculus and discrete mathematics, to which the reader should refer for
proofs.

E.1 Sets

A set is a collection of distinguishable objects (its elements) whose order is unimpor-
tant. Two sets are the same if and only if they have the same elements. We denote
the statement that x is an element of the set X by x ∈ X and the negation of this state-
ment by x �∈ X . We can list finite sets using the braces notation: for example, the set S
consisting of all integers between 1 and 10 that are divisible by 3 is denoted {3,6,9}.
A subset of a set X is a set all of whose elements are also elements of X . Each set has
precisely one subset with zero elements, the empty set which is denoted /0. A subset
can be described by set-builder notation; for example, the subset of S consisting of
all multiples of 3 between 1 and 7 can be written {s | s ∈ S and s≤ 7}.

For sets X and Y , the union and intersection of X and Y are, respectively, the sets
defined as follows (note that the “or” is inclusive, so “P or Q” is true if and only if P is
true, Q is true, or both P and Q are true):

X ∪Y = {x|x ∈ X or x ∈ Y}
X ∩Y = {x|x ∈ X and x ∈ Y}.

The set difference X \Y is defined by X \Y = {x | x ∈ X and x �∈ Y}. The complement
of a subset S of X is the subset S= X \S of S. The number of elements (often called its
cardinality) of a set X is often denoted by |X |.

E.2 Mathematical induction

A common way of proving that a statement P(n) is true for all integers n after some
threshold n0 is as follows. It is called the principle of mathematical induction and
is equivalent to the fact that there are no infinite chains of nonnegative integers x1 >
x2 >

The principle of mathematical induction states that if

222 Section E.3: Relations

• P(n0) is true and

• for each n≥ n0, if P(n) is true then P(n+ 1) is true

then P(n) is true for all n≥ n0.
For example, suppose we wish to prove that there exists some constant c> 0 such

that (n+1)4/n4 ≤ c for all n≥ 1 (see below for motivation). We notice that when n= 1
the ratio is 16 and that it appears to get smaller with increasing n (the next few values
of the ratio are 81/16∼= 5 and 256/81∼= 3). So we may guess that c = 16 will work (or
any larger number). So we have that n0 = 1, P(n) is the statement “(n+1)4/n4 ≤ 16 for
all n≥ 1”.

We already know that P(n0) is true. Now suppose that P(n) is true for some n≥ n0.
We need to show that P(n+ 1) is true. We know that

(n+ 1)4 ≤ 16n4

and wish to show that
(n+ 2)4 ≤ 16(n+ 1)4.

Taking 4th roots we have n+1≤ 2n and we want n+2≤ 2(n+1). Now using the fact
that P(n) is true (this is called the inductive hypothesis), we have n+ 2 = n+ 1 + 1≤
2n+ 1 < 2(n+ 1) so the result follows. Thus P(n) is true for all n by the principle of
mathematical induction.

An alternative form of the principle of mathematical induction, which is equiva-
lent to it, is called complete induction:

• P(n0) is true and

• for each n≥ n0, if P(i) is true for each i with n0 ≤ i≤ n, then P(n+ 1) is true

then P(n) is true for all n≥ n0.

E.3 Relations

A relation on a set S is a set R of ordered pairs of elements of S, that is, a subset of
S×S. If (x,y) is a such a pair, we say that y is related to x and sometimes write yRx. An
example is the relation of divisibility on the positive integers; yRx if and only if y is a
multiple of x. Here 2R12, 1Rx for every x, and xR1 only if x= 1.

There are some special types of relations that are important for our purposes.
An equivalence relation is a relation that is reflexive, symmetric and transitive.

That is, we have for every x,y,z ∈ S
• xRx
• if xRy then yRx

• if xRy and yRz then xRz

An equivalence relation amounts to the same thing as a partition: a decomposi-
tion of S as a union of disjoint subsets. Each subset consists of all elements that are
related to any one of them, and no elements in different subsets of the partition are
related.

Examples of equivalence relations: “having the same mother” on the set of all
humans; “being divisible by 7” on the set of all positive integers; “being mutually
reachable via a path in a given graph”.

Appendix E: Mathematical Background 223

Another important type of relation is a partial order . This is a relation that is re-
flexive, antisymmetric and transitive. Antisymmetry means that if xRy and yRx then
x = y. Examples are: xRy if and only if x is a factor of y , where x and y are positive
integers.

A linear order or total order is a partial order where every pair of elements is
related. For example, the usual relation ≤ on the real numbers. The elements of a
finite set with a total order can be arranged in a line so that each is related to the next
and none is related to any preceding element.

E.4 Basic rules of logarithms

For x > 1,y> 0, the logarithm logx y to base x of y satisfies the equality: xlogx y = y and
has the following properties:

• logx(a ·b) = logx a+ logx b

• logx(a/b) = logx a− logx b

• logx(a
b) = b logx a

Using the definition and the properties of the logarithm, it is easy to show that
the following rules hold for x> 1,y> 0,z> 0.

logx y = 1
logy x

logx z =
logy z
logy x

zlogx y = ylogx z

The last rule is easily proven by taking logarithm to base x of each side of the equality.

The notation loge = ln is commonly used, as also is log2 = lg.
Often we want to convert the real values returned from functions like logarithms

to integers. Let x be a real number. The floor �x	 of x is the greatest integer not greater
than x, and the ceiling �x� of x is the least integer not less than x. If x is an integer,
then �x	= x= �x�.

E.5 L’Hôpital’s rule

This rule was in fact proved by J. Bernoulli and sold to G. de L’Hôpital for inclusion in
the first calculus textbook, published in 1696. The form that we need for asymptotics
is as follows.

Theorem E.1. If limx→∞ f (x)=∞= limx→∞ g(x) and f ,g are positive differentiable func-
tions for x> 0, then

lim
x→∞

f (x)/g(x) = lim
x→∞

f ′(x)/g′(x).

As an example, to compute the limit of ex/x3 as x→ ∞, we use the rule repeatedly:

lim
x→∞

ex

x3 = lim
x→∞

ex

3x2 = lim
x→∞

ex

6x
= lim

x→∞

ex

6
= ∞.

224 Section E.6: Arithmetic, geometric, and other series

E.6 Arithmetic, geometric, and other series

A general arithmetic series is specified by the recurrence an = an−1 + c, where c is a
constant. The sum of its n terms is

a1 +a2 + . . .+an =
n
2
(a1 +an) = na1 + c

n(n−1)
2

.

When a1 = 1 and c= 1,

1 + 2 + · · ·+n=
n(n+ 1)

2

A general geometric series is specified by the recurrence an = can−1, where c �= 1 is
a constant. The sum of its n terms is

a1 +a2 + . . .+an = a1
cn−1
c−1

If 0 < c< 1, it is better to rewrite the sum as

a1 +a2 + . . .+an = a1
1− cn
1− c

When n goes to infinity, the sum of the latter infinite geometric series is

∞

∑
k=1

ak =
a1

1− c

provided |c|< 1, otherwise the infinite sum does not exist.
The sum of squares has an easily guessed explicit formula

n

∑
i=1

i2 = 1 + 22 + 32 + . . .+n2 =
n(n+ 1)(2n+ 1)

6

which can be proved by induction. Similar explicit formulae hold for the sum ∑n
i=1 i

p

where p is a fixed positive integer, but they become rather complicated. More useful
for our purposes is the asymptotic formula for large n

n

∑
i=1

ip ∈ Θ(np+1)

which also holds for negative integers p provided p �= −1. When p = −1 we have an
asymptotic statement about the harmonic numbers Hn = ∑n

i=1 i
−1,

n

∑
i=1

1/i ∈ Θ(logn).

A similar sum of interest to us is

log(n!) =
n

∑
i=1

log i.

This is in Θ(n logn) for any base of the logarithm.
A more complicated formula (Stirling’s approximation), which we do not prove

here, is
n! > nne−n

√
2πn

Appendix E: Mathematical Background 225

Figure E.1: Approximation of an integral by lower rectangles.

and in fact, as n→ ∞, we have
n!≈ nne−n

√
2πn,

where f ≈ g is a stronger result than f ∈Θ(g), namely limn→∞ f (n)/g(n) = 1.
The above asymptotic results can all be proved in the following way using inte-

gral calculus. The method works for any continuous function that is increasing or
decreasing (a monotone function) for x> 0. For example, consider f (x) = x3 which is
increasing. Then we may approximate the integral

R n
0 f (x)dx from below by the sum

of rectangles with base length 1 and height f (i), the sum going from 0 to n− 1. See
Figure E.1. Similarly we can approximate it from above by the same sum from 1 to n.
This gives after rearrangement:

Z n

1
x3 dx≤

n

∑
i=1

i3 ≤
Z n+1

1
x3 dx

and so we have
n4−1

4
≤

n

∑
i=1

i3 ≤ (n+ 1)4−1
4

.

This easily yields that ∑n
i=1 i

3 is Θ(n4) since (n+ 1)4/n4 ≤ 16 for n ≥ 1 and n4− 1 ≥
15n4/16 for n≥ 2.

E.7 Trees

A rooted ordered tree is what computer scientists call simply a “tree”. These trees are
defined recursively. An ordered rooted tree is either a single node or a distinguished
node (the root) attached to some ordered rooted trees given in a fixed order (hence
such a tree is defined recursively). In a picture, these subtrees are usually drawn from
left to right below the parent node. The parent of a node is defined as follows. The
root has no parent. Otherwise the node was attached in some recursive call, and
the root it was attached to at that time is its parent. The roots of the subtrees in the
definition are the children of the root. A rooted ordered tree can be thought of as a
digraph in which there is an arc from each node to each of its children.

A node with no children is called a leaf . The depth of a node is the distance from
the root to that node (the length of the unique path between them). The height of a
node is the length of a longest path from the node to a leaf. The height of tree is the

226 Section E.7: Trees

height of the root. Note that a tree with a single node has height zero. Some other
books use a definition of height whose value equals the value given by our definition,
plus one.

A binary tree is an ordered rooted tree where the number of children of each node
is always 0,1, or 2.

A free tree (what mathematicians call a tree) has no order (so a mirror image of
a picture of a tree is a picture of the same tree) and no distinguished root. Every
free tree can be given a root arbitrarily (in n ways, if the number of nodes is n), and
ordered in many different ways.

A free tree can be thought of as the underlying graph of an ordered rooted tree. A
free tree is a very special type of graph. First, if n is the number of nodes and e the
number of edges, then e = n−1. To see this, note that in the underlying graph of an
ordered rooted tree, each edge connects a node with its parent. Each node except
one has a parent. Thus there is a one-to-one correspondence between nodes other
than the root and edges, yielding the result.

One can easily show that the following are equivalent for a graph G:

• G is a free tree.

• G is a connected graph with e= n−1.

• G is an acyclic graph with e= n−1.

Appendix F

Solutions to Selected Exercises

SOLUTION TO EXERCISE 1.1.1 ON PAGE 11:
The equation T (n) = cn2 has only one unknown, c, to be found from T (10) = c×102 =
500, so c = 500/100 = 5. Then T (1000) = 5× (1000)2 = 5× 106, that is, the algorithm
takes 5 million elementary operations to process 1000 data items.

In fact we do not need to compute c. We first compute T (1000)/T(10) which
equals 106c/100c= 104. Thus the answer is 500×104, or 5 million.

SOLUTION TO EXERCISE 1.1.2 ON PAGE 11:
As above, the constants cA and cB have to be found in order to work out how many
elementary operations each algorithm takes with n = 220 and find the fastest algo-
rithm for processing 220 data items. For n = 210, TA(210) = cA × 210 lg(210) = 10, so
cA× 210× 10 = 10, or cA = 1/210 = 2−10, and TB(210) = cB× (210)2 = 1, so cB = 2−20.
Hence,

TA(220) = 2−10×220× lg(220) = 210×20 < 215

TB(220) = 2−20× (220)2 = 220

and TA(220) < TB(220), so the algorithm A processes 220 data items the fastest.

SOLUTION TO EXERCISE 1.2.1 ON PAGE 12:
The running time is linear because when j = m= 1 the assignment statement makes
m equal to n− 1. Then when j = n− 1, the assignment statement makes m equal to
(n−1)2. As the inner loop runs once every time j = m, it runs in total only two times
and does n operations each loop. The outer loop runs n times. Let ci be the constant
number of elementary operations in the inner loop, and let co be the number of el-
ementary operations in the outer loop other than the operations in the inner loop.
Then T (n) = con+ 2cin ∈ O(n).

SOLUTION TO EXERCISE 1.3.1 ON PAGE 16:
We have 10n3− 5n+ 15 ∈ O(n2) if and only if (iff) there exist a positive real constant
c and a positive integer n0 such that the inequality 10n3− 5n+ 15≤ cn2 holds for all
n ≥ n0 . Reducing it to n− 0.5n−1 + 1.5n−2 ≤ 0.1c shows that for any value of c this
inequality does not hold true for all n > k+ 1, where k is the closest integer greater
than 0.1c. Therefore, 10n3−5n+ 15 /∈ O(n2).

SOLUTION TO EXERCISE 1.3.2 ON PAGE 16:
As above, 10n3− 5n+ 15∈ Θ(n3) iff there exist positive real constants c1 and c2 and a

228

positive integer n0 such that the inequalities c1n3≤ 10n3−5n+15≤ c2n3, or what is the
same, c1 ≤ 10−5n−2 + 15n−3 ≤ c2, hold true for all n ≥ n0 . We know that limn→∞(10−
5n−2 + 15n−3) = 10, so there always will be a value n0 > 3 such that for n > n0, c1 ≤
10−5n−2 +15n−3≤ c2 where c1 ≤ 10−ε and c2 ≥ 10−ε where ε= 5n−2

0 −15n−3
0 > 0, say

c1 = 1 and c2 = 20. Therefore, 10n3−5n+ 15∈ Θ(n3).
Note that Lemma 1.19, the Limit Rule, can be used instead. In this case f (n) =

10n3−5n+ 15; g(n) = n3, and f (n) ∈ Θ(g(n)) because limn→∞
f (n)
g(n) = 10.

SOLUTION TO EXERCISE 1.3.3 ON PAGE 16:
As above, 10n3− 5n+ 15 ∈ Ω(n4) iff there exist a positive real constant c and a posi-
tive integer n0 such that the inequality 10n3− 5n+ 15 ≥ cn4 holds for all n > n0. We
need to show that for any value of c and n0 this inequality, or what is the same, the
reduced one, 10n−1− 5n−3 + 15n−4 ≥ c, does not hold true for all n > n0. We know
limn→∞(10n−1−5n−3 +15n−4) = 0, so no matter which values c and n0 are picked, the
inequality cannot be true for all n> n0. Therefore, 10n3−5n+ 15 /∈Ω(n4).

SOLUTION TO EXERCISE 1.3.5 ON PAGE 17:
To show that each function f (n) in Table 1.2 stands in “Big Oh” relation to the preced-
ing one, g(n), that is, f (n) ∈O(g(n)), it is sufficient to use the Limit Rule (Lemma 1.19)
and show that limn→∞ f (n)/g(n) = 0:

n ∈ O(n logn) because n/(n logn) = (logn)−1 and limn→∞(logn)−1 = 0;

n logn∈O(n1.5) because n logn/n1.5 = logn/n0.5 and any positive power of n grows faster
than any logarithm (Example 1.14): limn→∞ logn/n0.5 = 0;

n1.5 ∈ O(n2) and n2 ∈ O(n3) because higher powers of n grow faster than lower powers
(Example 1.20);

n3 ∈ O(2n) because exponential functions with base greater than 1 grow faster than
any positive power of n (Example 1.13): so limn→∞ n3/2n = 0.

SOLUTION TO EXERCISE 1.3.6 ON PAGE 17:
Lemma 1.16

Proof. It follows from h(n)∈O(g(n)) and g(n)∈O(f (n)) that h(n)≤ c1g(n) for all n> n1

and g(n) ≤ c2 f (n) for all n > n2 where c1 and c2 are positive real constants and n1

and n2 are positive integers. Then h(n) ≤ c1g(n) ≤ c1c2 f (n) for n ≥ max{n1,n2}, so the
relationship h(n) ≤ c f (n) for all n ≥ n0 is also true for c = c1c2 and n0 = max{n1,n2}.
Therefore “Big Oh” is transitive.

Lemma 1.17

Proof. It follows from g1(n) ∈ O(f1(n)) and g2(n) ∈ O(f2(n)) that g1(n)≤ c1 f1(n) for all
n > n1 and g2(n) ≤ c2 f2(n) for all n > n2, respectively, with positive real constants c1

and c2 and positive integers n1 and n2. Then for all n≥max{n1,n2} this is also true:

g1(n)+g2(n)≤ c1 f1(n)+ c2 f2(n)≤max{c1,c2}(f1(n)+ f2(n))

But f1(n)+ f2(n) ≤ 2max{ f1(n), f2(n)}, so g1(n)+g2(n) ≤ cmax{ f1(n), f2(n)} where c =
2max{c1,c2}. Therefore, g1(n)+g2(n) ∈ O(max{ f1(n), f2(n)}), and the rule of sums for
“Big Oh” is true.

Appendix F: Solutions to Selected Exercises 229

Lemma 1.18

Proof. It follows from g1(n) ∈ O(f1(n)) and g2(n) ∈ O(f2(n)) that g1(n)≤ c1 f1(n) for all
n > n1 and g2(n) ≤ c2 f2(n) for all n > n2, respectively, with positive real constants c1

and c2 and positive integers n1 and n2. Then for all n ≥ max{n1,n2} this is also true:
g1(n)g2(n)≤ c f1(n) f2(n) where c= c1c2. Therefore the rule of products for “Big Oh” is
true.

SOLUTION TO EXERCISE 1.3.7 ON PAGE 17:
The rule of sums for “Big Omega” and “Big Theta” is similar to that for “Big Oh”,
namely,

If g1 ∈Ω(f1) and g2 ∈Ω(f2), then g1 +g2 ∈Ω(max{ f1, f2}), and

If g1 ∈Θ(f1) and g2 ∈ Θ(f2), then g1 +g2 ∈Θ(max{ f1, f2}).

SOLUTION TO EXERCISE 1.3.8 ON PAGE 17:
The Lemmas and proofs are similar to the “Big Oh” ones, except the inequalities are
“greater than” instead of “less than”.
Lemma 1.15 (Scaling). For all constants c> 0, c f ∈Ω(f), in particular, f ∈Ω(f).

Proof. The relationship c f (n) ≥ c f (n) holds for all n > 0. Thus, constant factors are
ignored.

Lemma 1.16 (Transitivity). If h ∈Ω(g) and g ∈Ω(f), then h ∈Ω(f).

Proof. It follows from h(n)∈Ω(g(n)) and g(n)∈Ω(f (n)) that h(n)≥ c1g(n) for all n> n1

and g(n)≥ c2 f (n) for all n > n2 where c1 and c2 are positive real constants and n1 and
n2 are positive integers. Then h(n)≥ c1g(n)≥ c1c2 f (n), or h(n)≥ c f (n) is also true for
c= c1c2 and all n≥ n0 = max{n1,n2}. Therefore Big Omega is transitive.

Lemma 1.17 (Rule of sums). If g1 ∈Ω(f1) and g2 ∈Ω(f2), then g1 +g2∈Ω(max{ f1, f2}).

Proof. It follows from g1(n) ∈Ω(f1(n)) and g2(n) ∈Ω(f2(n)) that g1(n)≥ c1 f1(n) for all
n > n1 and g2(n) ≥ c2 f2(n) for all n > n2, respectively, with positive real constants c1

and c2 and positive integers n1 and n2. Then for all n≥max{n1,n2} this is also true:

g1(n)+g2(n)≥ c1 f1(n)+ c2 f2(n)≥min{c1,c2}(f1(n)+ f2(n))

But f1(n) + f2(n) ≥ max{ f1(n), f2(n)}, so g1(n)+ g2(n) ≥ cmax{ f1(n), f2(n)} where c =
min{c1,c2}. Therefore, g1(n)+ g2(n) ∈ Ω(max{ f1(n), f2(n)}), and the rule of sums for
“Big Omega” is true.

Lemma 1.18 (Rule of products). Similar to the above lemmas.

SOLUTION TO EXERCISE 1.4.1 ON PAGE 19:
You can make n the subject of the equation for all f (n) except for n lgn. To work out
n lgn, simply guess n until you find the correct value for 1 millennium.

Length of time to run an algorithm
f (n) 1 century 1 millennium
n 5.26×109 5.26×109

n lgn 6.72×107 5.99×108

n1.5 1.40×106 6.51 ·106

n2 72 522 229 334
n3 3 746 8 071
2n 35 39

230

SOLUTION TO EXERCISE 1.4.2 ON PAGE 19:

Time complexity Input size n Time T (n)
Function Notation 10 30 100 1000
“loglogn” lg lgn 1 1.23 1.42 1.68 lg lgn/ lg lg10
“n2 logn” n2 lgn 1 13.29 200 30000 n2 lgn/100lg10

SOLUTION TO EXERCISE 1.5.1 ON PAGE 24:
The recurrence T (n) = T (n−1)+n; T (0) = 0, in Example 1.29 implies that T (n)≥ 0 for
n≥ 0, so T (n)≥ n for all n> 0. Therefore, T (n) ∈Ω(n) for general n. Similarly, T (n)≥ 0
for all n ≥ 0, so T (n) ≥ n for all n > 0 and therefore, T (n) ∈ Ω(n) in Examples 1.31
and 1.32.

Conversely, in Example 1.30 T (n) /∈ Ω(n) because T (n) ≤ �lgn� < lg(n+ 1) for all
n≥ 2, and the logarithmic function grows slower than n (Example 1.14).

SOLUTION TO EXERCISE 1.5.2 ON PAGE 24:
The base case holds for n = 2: T (2) = T (1)+T (1)+ 2 = 2 < 3 = 2lg2 + 2− 1. By the
inductive hypothesis, T (m)≤ m lgm+m−1 = m(lgm+1)−1 for all m< n. For an even
n, � n2�= � n2	= n

2 , so

T (n) ≤ 2
(
n
2

(
lg
(
n
2

)
+ 1
)−1

)
= n lgn−2≤ n lgn+n−1; n≥ 4

For an odd n, � n2�= n+1
2 ; � n2	= n−1

2 , and lg(n−1) < lg(n+ 1) < lgn+ 1, so

T (n) ≤ n+1
2 lg

(
n+1

2

)
+ n−1

2 lg
(
n−1

2

)
+ n+1

2 + n−1
2 −2

≤ n+1
2 lg(n+ 1)+ n−1

2 lg(n−1)−2

≤ n+1
2 (lgn+ 1)+ n−1

2 (lgn+ 1)−1 = n lgn+n−1; n≥ 3

Therefore, for all n≥ 2, T (n)≤ n lgn+n−1.

SOLUTION TO EXERCISE 1.5.3 ON PAGE 24:
Substituting n = km into the recurrence T (n) = kT

(
n
k

)
+ cn; T (1) = 0 gives T (km) =

kT (km−1)+ ckm; T (k0) = 0. Telescoping the latter recurrence yields:

T (km) = kT (km−1)+ ckm

= k
(
kT (km−2)+ ckm−1)+ ckm

= k2T (km−2)+ 2ckm

T (km) = k2 (kT (km−3)+ ckm−2)+ 2ckm

= k3T (km−3)+ 3ckm

. . . .

T (km) = kmT (1)+ cmkm

= cmkm

or, what is the same, T (n) = cn logk n. Therefore, T (n) ∈ O(n logn).

Appendix F: Solutions to Selected Exercises 231

SOLUTION TO EXERCISE 1.5.4 ON PAGE 24:
Just as in the previous solution, substituting n= km into the recurrence T (n) = kT (nk)+
ckn; T (1) = 0, produces T (km) = kT (km−1) + ckm+1; T (1) = 0. Telescoping the latter
recurrence gives:

T (km) = kT (km−1)+ ckm+1

= k
(
kT (km−2)+ ckm

)
+ ckm+1

= k2T (km−2)+ 2ckm+1

T (km) = k2 (kT (km−3)+ ckm−1)+ 2ckm+1

= k3T (km−3)+ 3ckm+1

. . . .

T (km) = kmT (1)+ cmkm+1

= cmkm+1 = ckmkm

or, what is the same, T (n) = ckn logk n. Therefore, T (n) ∈O(n logn).

SOLUTION TO EXERCISE 1.6.1 ON PAGE 25:
Because n ∈ O(n logn), in “Big-Oh” sense the linear algorithm B has better perfor-
mance than the “n logn” algorithm A. But for small enough n, the latter algorithm is
faster, e.g. TA(10) = 50 and TB(10) = 400 elementary operations. The cutoff point is
when TA(n) = TB(n), that is: 5n log10 n= 40n, or log10 n= 8, or n= 108. Therefore, even
though the algorithm B is faster in “Big Oh” sense, this only occurs when more than
100 million data items have to be processed.

SOLUTION TO EXERCISE 1.6.2 ON PAGE 25:
In “Big-Oh” sense, the average-case time complexity of the linear algorithm A is
larger than of the “

√
n” algorithm B. But for a database of the given size, TA(109) = 106

and TB(109) = 1.58×107 elementary operations. So in this case the algorithm A is, in
the average, over ten times faster than the algorithm B. Because we can tolerate the
risk of an occasional long running time that might occur more likely with the more
complex algorithm, the algorithm A should be used.

SOLUTION TO EXERCISE 2.1.2 ON PAGE 28:
Regardless of the initial ordering of the list, selection sort searches at each iteration
i through the entire unsorted part of the size n− i and makes n− i− 1 comparisons
to find the minimum element, so in total, ∑n−1

i=1 i=
n(n−1)

2 ∈ Θ(n2) comparisons in the
worst, average, and best case. The maximum number of data moves is n, because
each iteration moves at most one element into its correct position, and their average
number is n

2 . Thus, both the maximum and the average individual time complexity
in selection sort is Θ(n) for data moves and Θ(n2) for comparisons.

SOLUTION TO EXERCISE 2.2.1 ON PAGE 31:
Adding up the columns in the next table gives, in total, 90 comparisons plus data
moves.

232

i Ci Mi Data to sort
91 70 65 50 31 25 20 15 8 2

1 1 1 70 91 65 50 31 25 20 15 8 2
2 2 2 65 70 91 50 31 25 20 15 8 2
3 3 3 50 65 70 91 31 25 20 15 8 2
4 4 4 31 50 65 70 91 25 20 15 8 2
5 5 5 25 30 50 65 70 91 20 15 8 2
6 6 6 20 25 30 50 65 70 91 15 8 2
7 7 7 15 20 25 30 50 65 70 91 8 2
8 8 8 8 15 20 25 30 50 65 70 91 2
9 9 9 2 8 15 20 25 30 50 65 70 91

SOLUTION TO EXERCISE 2.2.2 ON PAGE 31:
The inductive hypothesis is that each inner-loop iteration i= 1, . . . ,n−1 of insertion
sort increases by one the size of the already sorted part a[0], . . . ,a[i− 1]) of size i in
the list under consideration, while keeping it sorted. The base case for the math
induction is for i = 0 when the sorted part (a[0]) of size 1 is sorted by definition. At
iteration i, an element temp from the unsorted part of the list is inserted into the
already sorted part between the elements a[j−1] and a[j] such that a[j−1]≤ temp<
a[j]. Either the left-hand or right-hand inequality may be absent if j = 0 or j = i,
respectively. The obtained new part of size i+ 1 is sorted because all the previous
elements smaller than or equal to temp are before it and stay sorted, and all elements
greater than temp are after it and also stay sorted. So because the iterations terminate
when i> n−1, insertion sort is correct.

Moreover, duplicates will be lumped together and their relative order in the initial
unsorted array will not change, so insertion sort is stable.

SOLUTION TO EXERCISE 2.2.3 ON PAGE 31:
Insertion sort runs the slowest on the totally reverse ordered list that has the maxi-
mum number of inversions:

(n
2

)
= n(n−1)

2 ∈ Θ(n2). The worst-case time complexity of
insertion sort is Θ(n2) because each swap removes only one inversion.

SOLUTION TO EXERCISE 2.2.4 ON PAGE 32:
Obviously, sorting of elements that precede a[i] (i.e. with positions less than i) does
not change their inversions with a[i]. So the number ν of inversions between a[i]
and the preceding elements is equal to the total number of elements greater than
a[i] among the elements a[0], . . . ,a[i−1]. Just before the iteration i places the element
a[i] into its correct position, the preceding sorted part will have the ν elements; 0 ≤
ν ≤ i, being greater than a[i] and ordered immediately before a[i] at the positions i−
1, . . . , i−ν. During execution of insertion sort on an array, every element of the array
that is greater than a[i] must be moved up once. Thus the total number of data moves
to insert a[i] is equal to the total number ν of inversions with respect to the preceding
elements in the initial array.

SOLUTION TO EXERCISE 2.2.5 ON PAGE 32:
The out-of-order elements a[i] and a[i+ gap] are not equal one to another, so a[i] >
a[i+gap]. The elements at positions less than i or greater than i+gap do not change
their inversions with respect to either a[i] or a[i+ gap] after the latter are swapped.
The swap adds no new inversions with the elements, a[k]; i < k < i+ gap, between
these positions because all the already ordered pairs such that a[i] < a[k] and a[k] <
a[i+ gap] remain ordered after this swap. Since no inversions are added but one in-
version is removed by placing a[i] and a[i+gap] in order, the minimum number of the
inversions removed is 1.

Appendix F: Solutions to Selected Exercises 233

The maximum number of the inversions is removed if for every pair of positions
(i,k) or (k, i+gap) where i< k< i+gap there was an inversion before, but no inversion
after the swap. There are 2× (gap− 1) such pairs, so the maximum number of the
inversions removed is 2×gap−1. Thus, swapping the out-of-order elements a[i] and
a[i+gap] of a list a removes at least 1 and at most 2×gap−1 inversions.

SOLUTION TO EXERCISE 2.2.6 ON PAGE 32:
The while loop runs until there are no data swaps in the inner for-loop, so the while
loop stops just after the list is sorted. Each swap of elements a[i] and a[i− 1] in the
inner for-loop removes exactly one inversion, does not affect their inversions with
the preceding or subsequent elements in the list, and obviously does not create any
new inversion. Because the average number of inversions in a list is 1

2

(n
2

)
= n(n−1)

4 ∈
O(n2), the average time complexity of bubble sort is O(n2).

SOLUTION TO EXERCISE 2.2.8 ON PAGE 32:

h i Ci Mi Data to sort
5 91 70 65 50 31 25 20 15 8 2

5 1 1 25 91
6 1 1 20 70
7 1 1 15 65
8 1 1 8 50
9 1 1 2 31

2 25 20 15 8 2 91 70 65 50 31
2 1 1 15 25
3 1 1 8 20
4 2 2 2 15 25
5 1 0 20 91
6 1 0 25 70
7 2 1 20 65 91
8 2 1 25 50 70
9 3 2 20 31 65 91

1 2 8 15 20 25 31 50 65 70 91
1 1 0 2 8
2 1 0 8 15
3 1 0 15 20
4 1 0 20 25
5 1 0 25 31
6 1 0 31 50
7 1 0 50 65
8 1 0 65 70
9 1 0 70 91

By adding up the columns, we get a total of 40 comparisons plus data moves.
This is less than half that of insertion sort’s 90, so even with a low n value, Shellsort is
better than insertion sort.

SOLUTION TO EXERCISE 2.3.3 ON PAGE 35:
Insertion sort runs in Θ(n2) in the average and worst case, so the total time for this
algorithm is:

T (n) = kc
(n
k

)2
+ c(k−1)n= c

n2

k
+ c(k−1)n= cn

(n
k

+(k−1)
)

Assuming the constant n and the variable k, T (n) is minimal for the same value of
k as the function fn(k) = n

k + k− 1. Because 1 ≤ k ≤ n, at the boundaries fn(1) = n
and fn(n) = n, and the function is not equal to n at every other k, at least one local
optimum exists in the interval between k = 1 and k = n. For this optimum, the first
derivative by k equals to 0: d fn(k)

dk = − n
k2 + 1, so n

k2 = 1, or k =
√
n. Since fn(

√
n) =

234

2
√
n−1 < n, it is a local minimum. Thus, when k=

√
n, T (n) = cn(2

√
n−1) is minimal,

too.
It is not as fast as mergesort’s Θ(n logn) but quicker than insertion sort’s Θ(n2).

SOLUTION TO EXERCISE 2.4.1 ON PAGE 40:
Partitioning of a 5-element list after choosing the pivot p = 15 (the bold element is
the pivot; elements in italics are those pointed to by the pointers L and R).

Data to sort Description
20 8 2 25 15 Initial array
15 8 2 25 20 move pivot to head
15 8 2 25 20 stop R
15 8 2 25 20 stop L (as L= R)
2 8 15 25 20 swap element L with pivot

SOLUTION TO EXERCISE 2.5.1 ON PAGE 47:

Position 1 2 3 4 5 6 7 8 9 10 11 12
Index 0 1 2 3 4 5 6 7 8 9 10 11
Array at step 1 91 75 70 31 65 50 25 20 15 2 8 85
Array at step 2 91 75 70 31 65 85 25 20 15 2 8 50
Array at step 3 91 75 85 31 65 70 25 20 15 2 8 50

SOLUTION TO EXERCISE 2.5.2 ON PAGE 47:
Restoring the heap after deleting the maximum element:

Position 1 2 3 4 5 6 7 8
Index 0 1 2 3 4 5 6 7
Step 1 15 65 50 31 8 2 25 20
Step 2 65 15 50 31 8 2 25 20
Step 3 65 31 50 15 8 2 25 20
Step 4 65 31 50 20 8 2 25 15

SOLUTION TO EXERCISE 2.5.3 ON PAGE 47:

Position 1 2 3 4 5 6 7 8 9
Index 0 1 2 3 4 5 6 7 8
Initial array 10 20 30 40 50 60 70 80 90
i = 3 10 20 30 90 50 60 70 80 40
i = 2 10 20 70 90 50 60 30 80 40
i = 1 10 90 70 20 50 60 30 80 40

10 90 70 80 50 60 30 20 40
i = 0 90 10 70 80 50 60 30 20 40

90 80 70 10 50 60 30 20 40
90 80 70 40 50 60 30 20 10

Max heap 90 80 70 40 50 60 30 20 10

Appendix F: Solutions to Selected Exercises 235

SOLUTION TO EXERCISE 2.5.4 ON PAGE 47:

Position 1 2 3 4 5 6 7 8 9 10
Index 0 1 2 3 4 5 6 7 8 9
Initial array 2 8 15 20 25 31 50 65 70 91

Building the maximum heap
i= 4 2 8 15 20 91 31 50 65 70 25
i= 3 2 8 15 70 91 31 50 65 20 25
i= 2 2 8 50 70 91 31 15 65 20 25
i= 1 2 91 50 70 8 31 15 65 20 25

2 91 50 70 25 31 15 65 20 8
i= 0 91 2 50 70 25 31 15 65 20 8

91 70 50 2 25 31 15 65 20 8
91 70 50 65 25 31 15 2 20 8

Max heap 91 70 50 65 25 31 15 2 20 8
Deleting max 1 8 70 50 65 25 31 15 2 20 91
Restoring heap 1-9 70 65 50 20 25 31 15 2 8 91
Deleting max 2 8 65 50 20 25 31 15 2 70 91
Restoring heap 1-8 65 25 50 20 8 31 15 2 70 91
Deleting max 3 2 25 50 20 8 31 15 65 70 91
Restoring heap 1-7 50 25 31 20 8 2 15 65 70 91
Deleting max 4 15 25 31 20 8 2 50 65 70 91
Restoring heap 1-6 31 25 15 20 8 2 50 65 70 91
Deleting max 5 2 25 15 20 8 31 50 65 70 91
Restoring heap 1-5 25 20 15 2 8 31 50 65 70 91
Deleting max 6 8 20 15 2 25 31 50 65 70 91
Restoring heap 1-4 20 8 15 2 25 31 50 65 70 91
Deleting max 7 2 8 15 20 25 31 50 65 70 91
Restoring heap 1-3 15 8 2 20 25 31 50 65 70 91
Deleting max 8 2 8 15 20 25 31 50 65 70 91
Restoring heap 1-2 8 2 15 20 25 31 50 65 70 91
Deleting max 9 2 8 15 20 25 31 50 65 70 91

SOLUTION TO EXERCISE 2.5.5 ON PAGE 47:
No, because the creation of a heap does not preserve the order of equal keys. Simi-
larly, quicksort is also unstable, but insertion sort and mergesort are stable.

SOLUTION TO EXERCISE 2.5.6 ON PAGE 47:
The only significant increase in running time is at the very beginning when the heap
is first created: since data items are in the wrong order, each element has to be per-
colated down to the leaves. But since this step is of O(n) complexity, the Θ(n logn)
running time for the deletion of all the max values dominates. Hence, the running
time does not differ significantly from the average-case one.

SOLUTION TO EXERCISE 2.6.3 ON PAGE 48:
In the average, quickselect does p linear operations, Tselect (n, p) = pc1n, while quick-
sort does one O(n logn) operation, Tsort(n, p) = c2n lgn. So quicksort is quicker in find-
ing p keys, Tsort(n, p) < Tselect (n, p), when c2n lgn < pc1n, or p > c2

c1
lgn. Because quick-

select is similar to quicksort except of skipping one half at each step, we can as-
sume that c1 ≈ c2, so that quicksort is better if p > lgn. When n = 106 and p = 10,
10 < lgn= 19.9. Therefore, the variant with quickselect should be used.

SOLUTION TO EXERCISE 2.6.4 ON PAGE 49:
Both heapselect and mergeselect have to order the list first before selecting the kth
smallest item. So in both the cases the average-case and the worst-case time com-
plexity is Θ(n logn).

236

SOLUTION TO EXERCISE 2.7.1 ON PAGE 50:
Let us show that the sum of all heights of leaves of a decision tree with k leaves is at
least k lgk. The smallest height is when the tree is balanced so that the number of
leaves on the left subtree is equal to the number of leaves on the right subtree. Let
H(k) be the sum of all heights of k leaves in such a tree. Then the left and the right
subree attached to the root have k

2 leaves each and H(k) = 2H
(
k
2

)
+k because the link

to the root adds one to each height. Therefore, H(k) = k lgk. In any other decision
tree, the sum of heights cannot be smaller than H(k). When k = n!, or the number of
leaves is equal to the number of permutations of an array of n keys, H(n!) = n! logn!.
The average height of a leaf, given that each permutation has equal chance, is ob-
tained by dividing the total of all heights by the total number of leaves:

Havg(n!) =
H(n!)
n!

= logn!≈ n logn−1.44n

This means that the lower bound of the average-case complexity of sorting n
items by pairwise comparisons is Ω(n logn).

SOLUTION TO EXERCISE 2.7.2 ON PAGE 50:
The time complexity is linear, Θ(n), as it takes n steps to scan through array a, and
then a further n steps to print out the contents of t. Theorem 2.35 says that any
algorithm that sorts by comparing only pairs of elements must use at least �logn!�
comparisons in the worst case. This algorithm uses the specific knowledge that the
contents of the array a are integers in the range 1..1000. Thus, this algorithm would
not work if the keys can only be compared to each other because contrary to this
case their absolute values are totally unknown.

SOLUTION TO EXERCISE 3.2.1 ON PAGE 59:
It will be identical to Figure 3.3 except the very last step will not return 4, but find
instead that a[m] > k so r← m−1 and l > r, so that the loop will terminate and return
“not found”.

SOLUTION TO EXERCISE 3.2.2 ON PAGE 59:
Binary search halves the array at each step, thus the worst case is when it does not
find the key until there is only one element left in the range. Using the improved
binary search that only does one comparison to split the array, we are looking for the
smallest integer k such that 2k ≥ 106, or k = �lg106� = 20. Thus 20 comparisons are
needed to reduce the range to 1, and in total there are 21 comparisons as at the end
the comparison to the key is done.

SOLUTION TO EXERCISE 3.2.5 ON PAGE 59:

Index 0 1 2 3 4 5 6 7 8 9 next index m
Step 1 10 20 35 45 55 60 75 80 85 100 8 = 0 +

⌈
85−10

100−10 ·9
⌉

Step 2 85 100 8 = 8 + � 85−85
100−85 ·1�

Step 3 85 return value: 8

Interpolation search will search through three positions.

SOLUTION TO EXERCISE 3.3.1 ON PAGE 63:
In line with the ordering relation of a BST, the search for the maximum key starts at
the root, repeatedly goes right while the right child exists, and stops at the node with
the largest key. The search for the smallest key is similar, except it moves left instead
of right.

Appendix F: Solutions to Selected Exercises 237

The running time of these algorithms for a BST with n nodes depends on the tree
shape: it is Θ(n) in the worst case and Θ(logn) in the best and the average cases.

To find the median or any other rank statistic, notice that the root of a BST be-
haves like the pivot in quickselect or quicksort because all the keys to the left or to
the right are smaller or greater, respectively. In general, the rank of a key is equal to
the rank of its node defined as 1 plus the number of nodes above or to the left in-
cluding the number of nodes in its left subtree. A key of rank k, i.e. the k-th smallest
key, 1 ≤ k ≤ n, is found by a recursive tree search controlled, like in quickselect, by
the rank r of the root. If r = k then the goal key is in the root. Otherwise, it is the
k-th smallest key in the left subtree if k < r or the (k− r)-th smallest key in the right
subtree if k> r. The figure below illustrates this search. The size of the subtree below
a node (including the node itself) is in italic. The root contains the 6th smallest key,
since its left subtree (not including the root itself) is of size 5. The 4th smallest key, 3,
has left subtree of size 3. The 9th smallest key, 10, is the 3rd smallest key in the right
subtree (3 = 9−5−1) and has left subtree of size 2.

5

3

1 4

10

8 15

0 2 6 12 18

size: 12

S = 5

3 1

1 1 1 1 1

2 3

size: 6
left

0 1 2 3 4 5 6 8 10 12 15 18 key
1 2 3 4 5 6 7 8 9 10 11 12 rank k

 1 2 3 4 5 6 k−S −1
left

rank in the right subtree

SOLUTION TO EXERCISE 3.3.2 ON PAGE 63:
Under all possible insertion sequences, more balanced trees appear more frequently
than unbalanced ones. Thus the balanced trees (and therefore their shapes) dis-
played below will occur most often.

SOLUTION TO EXERCISE 3.3.3 ON PAGE 64:
As was shown in Figure 3.9, the insertion orders 1423, 1432, 1243, 1234, 4312, 4321,
4132, and 4123 yield a tree of the maximal height 3, while 2134, 2143, 2314, 2341, 2413,
2431, 3124, 3142, 3214, 3241, 3412, and 3421 yield a tree of the minimal height 2.

SOLUTION TO EXERCISE 3.3.4 ON PAGE 64:
Just as in the above solution to Exercise 3.3.1, notice that according to the ordering
relation, the root of a BST behaves like the pivot in quicksort because all the keys to
its left or to its right are smaller or greater, respectively. Therefore, all the keys can
be sorted in ascending order by a recursive tree traversal similar to quicksort in that
the left subtree is visited first, then the root, then the right subtree, so the output of
records in order of visiting the nodes of the BST yields the ascending order of their
keys.

238

SOLUTION TO EXERCISE 3.4.1 ON PAGE 69:
Several solutions exist, and two red-black trees with two black nodes along “root–
leaf” paths are shown here.

SOLUTION TO EXERCISE 3.4.2 ON PAGE 69:
Several solutions exist, and two AVL trees with 7 nodes are shown below along with
the complete binary tree, which is also an AVL tree.

SOLUTION TO EXERCISE 3.4.3 ON PAGE 69:
One AA tree with two black nodes along “root-leaf” paths, of several possible solu-
tions, is shown below.

SOLUTION TO EXERCISE 3.5.1 ON PAGE 79:
For example, two strings s1 = bC and s2 = ab have just the same hash code 31× 98 +
67 = 31×97+98 = 3105. Generally, the same hash code is for a pair of 2-letter strings,
s1 and s2, such that h(s1) = h(s2), that is, 31s1[0] + s1[1] = 31s2[0] + s2[1], or 31(s1[0]−
s2[0]) = s2[1]− s1[1]. Let for definiteness, s1[0] > s2[0]. Positive differences between
the Unicode values of two capitals (A,B,. . . ,Z) or two small letters (a,b,. . . ,z) are in the
range of [0..25], and between the values of a small and a capital letter are in the range
of [7..57]. Therefore, only a single pair of the differences, s1[0]− s2[0] = 1 and s2[1]−
s1[1] = 31, results in the same hash codes of two different 2-letter strings. Because
there are 25 + 25 = 50 pairs of the first letters such that s2[0] = s1[0]− 1 and 25 pairs
of the second letters such that s2[1] = s1[1]+ 31, in total 50× 25 = 750 pairs out of all
possible 522 = 2704 2-letter strings have the same hash code.

For the even n, the hash function is reduced to the weighted sum of hash codes
for the successive 2-letter substrings:

h(s) = 31n−2 (31s[0]+ s[1])+ 31n−4 (31s[2]+ s[3])+ . . .+(31s[n−2]+ s[n−1])

Appendix F: Solutions to Selected Exercises 239

Let Sm = {(si:0;si:1) : i= 1, . . . ,m} be an arbitrary subset of m different 2-letter pairs
having each the same hash code hi. Then 2m strings s, size of 2m letters each, with
the same hash code h(s) = 312m−2h0 + 312m−4h1 + . . . + 31hm−2 + hm−1 can be built by
concatenating the m substrings, one from each pair: s = s1:α1s2:α2 . . .sm:αm providing
si:0 or si:1 are selected in accord with the i-th binary digit αi of the binary number
between 0 and 2m− 1. To form 2100 such strings, we need to select m = 100 arbitrary
2-letter pairs, S100, having each the same hash code.

SOLUTION TO EXERCISE 3.5.2 ON PAGE 79:

Hash table index 0 1 2 3 4 5 6 7 8 9 10 11 12
Insert 10 10
Insert 26 26 10
Insert 52, collision at 0 26 10 52
Insert 76 26 10 76 52
Insert 13, collision at 0 26 13 10 76 52
Insert 8 26 8 13 10 76 52
Insert 3 26 3 8 13 10 76 52
Insert 33 26 3 33 8 13 10 76 52
Insert 60, collision at 8 26 3 60 33 8 13 10 76 52
Insert 42, collision at 3 26 42 3 60 33 8 13 10 76 52
Resulting hash table 26 42 3 60 33 8 13 10 76 52

SOLUTION TO EXERCISE 3.5.3 ON PAGE 79:

Hash table index 0 1 2 3 4 5 6 7 8 9 10 11 12
Insert 10 10
Insert 26 26 10
Insert 52, collision at 0, Δ = 4 26 52 10
Insert 76 26 52 10 76
Insert 13, collision at 0, Δ = 1 26 52 10 76 13
Insert 8 26 8 52 10 76 13
Insert 3 26 3 8 52 10 76 13
Insert 33 26 3 33 8 52 10 76 13
Insert 60, collision at 8, Δ = 4 26 3 60 33 8 52 10 76 13
Insert 42, collision at 3, Δ = 3 26 42 3 60 33 8 52 10 76 13
Resulting hash table 26 42 3 60 33 8 52 10 76 13

SOLUTION TO EXERCISE 3.5.4 ON PAGE 79:

Hash table index 0 1 2 3 4 5 6 7 8 9 10 11 12
Insert 10 10
Insert 26 26 10
Insert 52, collision at 0 {26,52} 10
Insert 76 {26,52} 10 76
Insert 13, collision at 0 {26,52,13} 10 76
Insert 8 {26,52,13} 8 10 76
Insert 3 {26,52,13} 3 8 10 76
Insert 33 {26,52,13} 3 33 8 10 76
Insert 60, collision at 8 {26,52,13} 3 33 {8,60} 10 76
Insert 42, collision at 3 {26,52,13} {3,42} 33 {8,60} 10 76
Resulting hash table {26,52,13} {3,42} 33 {8,60} 10 76

SOLUTION TO EXERCISE 4.1.1 ON PAGE 87:
Consider a set of arcs E and nodes V , we want to construct the digraph G = (V,E ′)
where E ′ = E. We do this by taking the empty digraph G′ = (V,{}) and for each arc in
E add it to the graph G′. Each time we add an arc (u,v) ∈ E to G′, we are adding one
to the outdegree of node u and one to the indegree of v. When we have added all the

240

arcs we get the graph G and since every time the outdegree of a node increased, the
indegree of a node also increased. Hence, the sum of the outdegrees equal the sum
of the indegrees.

For a graph, an analogous statement would be that the sum of all the degrees of
all vertices is equal to twice the number of edges in the graph. This is because each
edge contains two different vertices.

SOLUTION TO EXERCISE 4.1.2 ON PAGE 87:
Given that the path exists between nodes u and v, then there exists a sequence of
nodes u,v1,v2, . . . ,vk,v such that no node is repeated. If no node is repeated then
k ≤ n− 2 where n is the number of nodes in the digraph. If k was any greater, than
a node would be repeated, and it would contain a cycle that can be eliminated. As
d(u,v)≤ k+ 1, d(u,v)≤ n−1.

SOLUTION TO EXERCISE 4.1.3 ON PAGE 88:
We have defined sparse being if the number of edges being O(n) where n is the num-
ber of nodes. And dense is when the number of edges are Ω(n2).

The sum of the indegrees of the digraph is also the number of arcs m. The average
indegree of a node is m

n .
For sparse graphs, the number of arcs m ∈O(n), or m≤ cn for some fixed constant

c independent of n. Thus, the average indegree is less than or equal to c, which is
O(1).

For dense graphs, the number of edges m ∈ Ω(n2), or m ≥ cn2 for some fixed con-
stant c independent of n. Thus, the average is greater than or equal to cn, which is
Ω(n).

SOLUTION TO EXERCISE 4.2.1 ON PAGE 90:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 0 0 1 0
0 0 0 1 1 0 1
0 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOLUTION TO EXERCISE 4.2.2 ON PAGE 90:

7
1 4 5
0 3
0 6
0 5
5

5

Appendix F: Solutions to Selected Exercises 241

SOLUTION TO EXERCISE 4.2.3 ON PAGE 90:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0
0 0 1 0 0 0 1
1 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOLUTION TO EXERCISE 4.2.4 ON PAGE 90:
G: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gr : ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOLUTION TO EXERCISE 5.1.2 ON PAGE 97:
At each time we turn right, else if its a dead end back up as little as possible. What
we are doing is applying to the visit algorithm (Figure 5.1) a heuristic, a method of
solving a problem, to the ’choose a grey node u’ statement. The visit algorithm allows
for any way of choosing which grey node to choose next, so the way specified in the
exercise is a valid way that will, eventually, result in finding the exit.

SOLUTION TO EXERCISE 5.3.2 ON PAGE 102:
When DFS is run on the graph, the follow timestamps are obtained.

v 0 1 2 3 4 5 6
seen[v] 0 2 1 6 7 8 9
done[v] 5 3 4 13 12 11 10

242

Tree arcs: (0,2),(2,1),(3,4),(4,5),(5,6)
Forward arcs: (3,5),(3,6)
Back arcs: (1,0),(2,0),(5,3),(5,4)
Cross arcs: (6,1),(6,2)

SOLUTION TO EXERCISE 5.3.4 ON PAGE 102:
By using the defintions of these arcs and also Theorem 5.5, we can prove each of the
three statements.

Let (v,w) ∈ E(G) be an arc. A forward arc is an arc such that v is an ancestor of w in
the tree and is not a tree arc. If the arc (v,w) is in the tree (a tree arc), then v is still an
ancestor of w. Thus, the arc (v,w) is a tree or forward arc if and only if v is an ancestor
of w.

By Theorem 5.5, v is an ancestor of w is equivalent to:

seen[v] < seen[w] < done[w] < done[v]

The arc (v,w) is a back arc if w is an ancestor of v in the tree and is not a tree arc. If
w is an ancestor of v then it cannot be a tree arc by the above proof. This means that
the arc is a back arc if and only if w is an ancestor of v.

By Theorem 5.5, w is an ancestor of v is equivalent to:

seen[w] < seen[v] < done[v] < done[w]

The arc (v,w) is a cross arc if neither v nor w are the ancestor of the other. But, we
only need to check if w is not an ancestor of v. This is because of the order that DFS
visits these nodes, if it visits v before w (seen[v] < seen[w]) then this will be a tree or
forward arc. So to be a cross arc, seen[w] < seen[v] must be true. This means that the
arc (v,w) is a cross arc if and only if w is not an ancestor of v.

By Theorem 5.5, w is not an ancestor of v is equivalent to:

seen[w] < done[w] < seen[v] < done[v]

SOLUTION TO EXERCISE 5.3.5 ON PAGE 102:
(i) Simply apply the rules found in Exercise 5.3.4, the table entries are the type of arc
(u,v) would be if the arc existed.

u v
0 1 2 3 4 5 6

0 Tree Forward Tree Forward Forward Forward
1 Back Tree Cross Forward Forward Forward
2 Back Back Cross Forward Tree Forward
3 Back Cross Cross Cross Cross Cross
4 Back Back Back Cross Back Cross
5 Back Back Back Cross Tree Tree
6 Back Back Back Cross Cross Back

Of course, if some of these arcs existed, and DFS was run on the graph, some of
the timestamps would change.

(ii) It would be a back arc.

(iii) No, because they are on different branches of the tree (hence if (3,2) was an arc
in the graph, it would be a cross arc)

Appendix F: Solutions to Selected Exercises 243

(iv) No, because then when DFS is at time 4, instead of expanding node 4, it would
expand node 3, and the DFS tree would be entirely different.

(v) Yes, because it is DFS the tree would be the same (but not if it was BFS), the arc
would be a forward arc.

SOLUTION TO EXERCISE 5.3.9 ON PAGE 103:
The order of the nodes in the digraph in the seen array is equal to the preorder label-
ing of the nodes, and the order of the nodes in the diagraph in the done array is equal
to the post order labeling of the nodes.

SOLUTION TO EXERCISE 5.3.10 ON PAGE 103:
To prove via induction, we need both a base case and an inductive step.

The base case is when there are no white nodes as neighbours of node s, then the
algorithm does no recursion and returns. In this case recursiveDFSvisitonly visits
node s, which is intended.

The inductive step is that given all the white nodes that are neighbours of node s
our theorem is true for them, then it is also true for node s. For each node reachable
from s via a path of white nodes, the start of every path is one of the neighbours
of s. Because the call to recursiveDFSvisit with input s only terminates when the
recursive calls with input of each of the white neighbours of s finish. All the recursive
calls then cover each of the paths from s to each node reachable by a path of white
nodes, and thus satisfies the inductive step.

Finally, because each path cannot have a loop in it, there is a finite number of
recursions and recursiveDFSvisit is guaranteed to terminate.

Therefore, by mathematical induction, Theorem 5.4 is true.

SOLUTION TO EXERCISE 5.6.2 ON PAGE 109:
By Theorem 5.11, every DAG has a topological ordering (v1,v2, ...vn) such that there
are no arcs (vi,v j)∈ E(G) such that i< j. This means that there are no arcs going from
right to left in the topological ordering. This means that node v1 has no arcs going
into it and node vn has no nodes going away from it, they are respectively, a source
and sink node. Therefore for every DAG there is at least one source and sink node.

SOLUTION TO EXERCISE 5.6.4 ON PAGE 110:
Shirt, hat, tie, jacket, glasses, underwear, trousers, socks, shoes, belt.

SOLUTION TO EXERCISE 5.6.5 ON PAGE 110:
The standard implementation uses an array of indegrees. This can be computed in
time O(m) from either adjacency lists or adjacency matrices. The algorithm can find
a node v of degree 0 in timeO(n) and can decrement the indegrees of the neighbours
of v in constant time for adjacency lists. Since we have at most m decrements of
elements of the array of indegree, the running time is at most O(n2 +m). If a priority
queue is used to extract nodes of indegree 0 the running time slightly improves.

SOLUTION TO EXERCISE 5.6.6 ON PAGE 110:
Simply delete vertices with 0 or 1 edges on them from the graph (including the edges),
if at anytime there are no vertices with the number of edges less than 2, then the
graph has a cycle. Otherwise, if the entire graph can be deleted by only deleting ver-
tices with 0 or 1 edges, then the graph is acyclic.

244

SOLUTION TO EXERCISE 5.7.1 ON PAGE 113:

Adjacency list:

4
1,2
0
3
2

0

1 2

3

There are two strongly connected components in this graph, DFS only finds one
tree.

SOLUTION TO EXERCISE 5.8.1 ON PAGE 116:

Adjacency list:

5
1,2,3
0,4
0,4
0,2

0

1 2 3

4

If the algorithm does not check to the end of the level, it will return that the short-
est cycle is {0,1,4,2} instead of {0,2,4}.
SOLUTION TO EXERCISE 5.8.3 ON PAGE 116:
We need to find two disjoint subsets. Consider the number of 1’s (it can just as easily
be the number of 0’s) to be k in a bit vector of length n, an edge can only be between
another bit vector with either k−1 or k+ 1 1’s. This is because if the number of 1’s is
less than k− 1 or greater than k+ 1 then there will be more than 1 difference in the
bits. Also, two different bit vectors with the same number of 1’s will not have an edge
because they will differ in two places exactly (not the required one).

One way of satisfying this condition is if all the odd number of 1’s are on one side,
and all the even number of 1’s are on the other. This means that for any n-cube you
can find a bipartite consisting of the odd number of 1’s bit vectors in one group, and
the even number of 1’s in the other.

SOLUTION TO EXERCISE 6.2.2 ON PAGE 123:
The running time is the same as the time to compute the distance matrix. The ec-
centricity of a node v is simply the maximum entry of row v of the distance matrix.
The radius is the minimum over all maximum values per row. This can be computed
in time Θ(n2) if we have access to a distance matrix.

SOLUTION TO EXERCISE 6.3.2 ON PAGE 128:
If a cycle v1,v2, . . . ,vk exists with the sum of its arc weights is less than zero then we
can find a walk of total weight as small as we want from v1 to v2 by repeating the cycle
as many times as we want before stopping at v2.

SOLUTION TO EXERCISE 6.3.6 ON PAGE 129:
Property P2 fails if we allow arcs of negative weight. Suppose u is the next vertex
added to S. If arc (u,w) is of negative weight for some other vertex w that is currently
in S, then the previous distance from s to w, dist[w], may no longer be the smallest.

Appendix F: Solutions to Selected Exercises 245

SOLUTION TO EXERCISE 6.4.2 ON PAGE 132:
If a diagonal entry in the distance matrix ever becomes less than zero when using
Floyd’s algorithm then know that a negative weight cycle has been found.

SOLUTION TO EXERCISE 6.5.1 ON PAGE 134:
For this weighted graph, both Prim’s and Kruskal’s algorithms will find the unique
minimum spanning tree of weight 9.

SOLUTION TO EXERCISE 7.1.1 ON PAGE 142:

b

a,ca,c a,c a,c

b

b b

SOLUTION TO EXERCISE 7.1.2 ON PAGE 142:
Assume a DFA machine M with m states accepts L = {0n12n | n ≥ 0}. Consider what
states the machine M reaches with each of the following strings x1 = 0, x2 = 00, . . . ,
xm = 0m, xm+1 = 0m+1. Since M has only m states there must be two strings xi and x j
(i �= j) that reach the same state. Now consider the two strings 0i12i and 0 j12i. The
machine M must accept both (or neither). Thus M does not accept L. The same
argument holds for any finite state machine.

SOLUTION TO EXERCISE 7.2.2 ON PAGE 146:
Since there are an infinite number of prime numbers, any DFA that accepts this lan-
guage must have at least one cycle formed by transitions via the character 0. Let k be
the length of one such reachable cycle. Let x be a string that lands on an accepting
state on this cycle (that is, x has a prime number of 0’s). Any string x0k is also accepted
by the DFA. This shows that the number of primes less than n, as n approaches ∞, is
Ω(n/k). This contradicts the Prime Number Theorem: The number of primes less
then n, Θ(n), is proportional to n/ ln(n). [that is, limn→∞Θ(n)/(n/ln(n)) = 1]

SOLUTION TO EXERCISE 7.3.3 ON PAGE 148:
There are two common ways to build an automaton for the intersection of two regu-
lar languages L1 and L2 that are accepted by DFA M1 and M2, respectively.

Method 1: Build a new automaton M, where the states Q are Q1×Q2. Accepting
states (q1,q2)∈Q if and only if q1 and q2 are accepting states ofM1 andM2. Transitions
δ((q1,q2),c) = (q′1,q

′
2) if and only if δ1(q1,c) = q′1 and δ2(q2,c) = q′2. The unique starting

state is (s1,s2) where s1 and s2 are the start states for M1 and M2, respectively.
Method 2: Use set theory fact that L1∩L2 = L1∪L2, where L= Σ∗ \L. We construct

an automaton M′ for L by taking a DFA M for L and changing accept states to non-
accept states (and non-accept states to accept states).

SOLUTION TO EXERCISE 7.4.2 ON PAGE 150:
Use something like: 0 | 1(0 | 1)∗0

SOLUTION TO EXERCISE 7.5.2 ON PAGE 153:
One possible regular expression would be (a|b|ε)b(ab)∗(b|ε).

246

SOLUTION TO EXERCISE 7.5.3 ON PAGE 153:
One possible answer is:

a

a

a

b

a, b

q0

q1

q2

q3

a

a

a

a, b

a, b

q0

q1

q2

q3

or

a

a
a

a

a

[plus possible new accepting start state]

SOLUTION TO EXERCISE 7.5.5 ON PAGE 154:
Two possible solutions are:

a

a

q0

q1

a

a

a

b
a, b

q′0

q′1

q2

q3

a

a
b

a, b

q0

q1

q2
a

a

a

b

q′1

q′2

q3

a

b

b

a

or

SOLUTION TO EXERCISE 7.6.3 ON PAGE 157:
Minimum length distinguishers for several pairs of states s1 and s2 are given in the
following table.

State s1 State s2 Distinguisher
0 1 a (or b)
0 5 aa (or others of length 2)
1 2 N/A
1 3 ε
3 4 a (or b)

SOLUTION TO EXERCISE 7.7.1 ON PAGE 162:
Let X=aab and Y=aaaaaaa.

SOLUTION TO EXERCISE 7.7.4 ON PAGE 162:
We observe that each pair of prefix states has a distinguisher. For states qi and q j,
i< j, consider the suffix X [j+ 1, . . . ,m−1].

Appendix F: Solutions to Selected Exercises 247

SOLUTION TO EXERCISE 7.7.6 ON PAGE 162:
First note that next[i] < i and j+ 1 ≤ i at all times in the function computeNext. At
the start of each while iteration, consider the change to the state of the variables i or
j. Either the value of i increases or the value of i− j increases (and neither of these
values decrease). Since the function terminates when i reaches m the value of i− j
can also increase at mostm times; this is because i− j−1 is a lower bound for i. Thus,
there are at most 2m iterations of the while loop, which shows the algorithm runs in
O(m) time.

SOLUTION TO EXERCISE 8.4.2 ON PAGE 169:

〈E〉 → 〈E〉+ 〈T〉 | 〈E〉− 〈T〉 | 〈T〉
〈T〉 → 〈T〉 ∗ 〈F〉 | 〈T〉/〈F〉 | 〈F〉
〈F〉 → 〈F〉^〈P〉 | 〈P〉 (∗)
〈P〉 → (〈E〉) | 〈N〉 (∗)
〈N〉 → 〈N〉〈D〉 | 〈D〉
〈D〉 → 0 |1 |2 |3 |4 |5 |6 |7 |8 |9

SOLUTION TO EXERCISE 8.7.1 ON PAGE 176:
With ‘.’ denoting any character except newline ‘\n’ and ‘*’ being an escaped ’*’ we
can use the following regular expression.

(’\n’ | ’\t’ | ’ ’ | //.*\n | /*(.|’\n’)**/)+

SOLUTION TO EXERCISE 8.7.2 ON PAGE 176:

1. 〈L1〉 → ε | 00〈L1〉11

2.
〈L2〉 → 〈M〉 | 0〈L2〉1
〈M〉 → 1 | 〈M〉1

SOLUTION TO EXERCISE 8.7.3 ON PAGE 177:

1.
〈E1〉 → aa | 〈B〉 | cc
〈B〉 → ε | 〈B〉b

2.
〈E2〉 → 〈T1〉aa | 〈T2〉
〈T1〉 → ε | a〈T1〉 | b〈T1〉
〈T2〉 → ε | bbaa〈T2〉

SOLUTION TO EXERCISE 8.7.4 ON PAGE 177:

a+(bc)+c+

248

SOLUTION TO EXERCISE 8.7.5 ON PAGE 177:

〈L〉 → 〈F〉〈G〉
〈F〉 → ε

〈G〉 → 〈D0〉〈G〉0 | 〈D1〉〈G〉1 | 〈E〉
〈F〉〈D0〉 → 〈F〉0
〈F〉〈D1〉 → 〈F〉1

1〈D0〉 → 〈D0〉1
1〈D1〉 → 〈D1〉1
0〈D0〉 → 〈D0〉0
0〈D1〉 → 〈D1〉0
〈E〉 → 〈D0〉〈E〉 | 〈D1〉〈E〉 | 1〈E〉 | 0〈E〉 | #

Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and Tools, (AKA: the
dragon book), Addison-Wesley, 1986.

[2] A. V. Aho, J. D. Ullman. Foundations of Computer Science, Computer Science Press, 1992.

[3] J. Bentley. Programming Pearls, Second Edition. Addison-Wesley, Inc., 2000.

[4] R. Boyer and S. Moore, A fast searching algorithm, Communications ACM, Vol.20, pp.762–
772, 1977.

[5] F. J. Brandenburg. The Graph Template Library—GTL,
(see http://www.infosun.fim.uni-passau.de/GTL/)

[6] N. Chomsky. On certain formal properties of grammars, Information and Control, 1, pages
91-112, 1959. (Also see Syntactic Structures, Mouton & Co, 1957.)

[7] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms, McGraw-Hill,
New York, 1990.

[8] J. Edmonds. “Paths, trees, and flowers,” Canadian Journal of Mathematics 17 (1965), pages
449–467.

[9] R. Sedgewick and P. Flajolet. Introduction to the Analysis of Algorithms, Addison-Wesley,
Inc., 1996.

[10] L. R. Ford and D. R. Fulkerson “Maximal flow through a network,” Canadian Journal of
Mathematics 8 (1956), pages 399–404.

[11] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java, John Wiley and
Sons, Inc., 2001.

[12] J. Hopcroft. “An n ∗ log(n) algorithm for minimizing states in a finite automaton”, in
Z. Kohavi, A. Paz (eds.), Theory of Machines and Computation, Academic Press, 1971.
ftp://db.stanford.edu/pub/cstr/reports/ cs/tr/71/190/CS-TR-71-190.pdf

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 2001.

[14] D. E. Knuth, J. Morris, and V. Pratt, Fast pattern matching in strings, SIAM Journal on
Computing, Vol.6, pages 323–350, 1977.

[15] J. Levine, T. Mason, D. Brown. lex & yacc, 2nd Ed, O’Reilly & Associates, Inc. 1992.

[16] K. Mehlhorn and St. Nadher. The LEDA Platform of Combinatorial and Geometric Com-
puting, Cambridge University Press, 1999.
(see http://www.mpi-sb.mpg.de/LEDA/leda.html)

[17] J. Orwant, J. Hietaniemi and J. Macdonald. Mastering Algorithms with Perl, O’Reilly,
August 1999.

[18] J.G. Siek, L-Q. Lee and A. Lumsdaine. The Boost Graph Library: User Guide and Reference
Manual Addison-Wesley, 2001. (see http://www.boost.org)

250 Bibliography

[19] C. E. Shannon and J. McCarthy (Eds.). Automata Studies, Princeton University Press,
Princeton, New Jersey, 1956.

[20] M. Sipser. Introduction to the Theory of Computation, PWS Publishing Company, 1997.

[21] T. A. Standish. Data Structures in JavaTM , Addison-Wesley, 1998.

[22] J. Van Leeuwin. Handbook of Theoretical Computer Science, Vol. A, North Holland, 1990.

Index

S-path, 124
k-colouring, 115
k-distinguishable, 154
n-cube, 116

AA-tree, 66
abstract data type, 4, 217
accepting states, 139, 141
active pivot strategy, 38
adjacency lists, 88
adjacency matrix, 88
adjacent, 83
ADT, 217
algorithm, 7

addLeaf, 174, 210
addSubtree, 174, 210
append, 155
BellmanFord, 128
BFS (Breadth-First Search), 98, 103–

106
BFSvisit, 98, 104, 112, 114, 123
binarySearch, 57, 58
binarySearch2, 59
check, 174, 210
computeNext, 162, 246
decreaseKey, 127, 134, 218
delete, 4, 100, 104, 107, 127, 134,

217, 218
dequeue, 218
DFS (Depth-First Search), 98–100,

102
DFSvisit, 98–100, 112
Dijkstra, 124
Dijkstra2, 127
enqueue, 218
fastSums, 10
find, 134, 217, 218
findAugmentingPath, 117–120
findFirstKey, 155
Floyd, 130
getHead, 218

getKey, 127, 134
getTop, 218
heapSort, 45
insert, 4, 100, 104, 107, 118, 127,

134, 218
insertionSort, 31, 32
isEmpty, 4, 100, 104, 107, 118, 127,

134, 217, 219
KMP (Knuth–Morris–Pratt), 161, 162,

187
Kruskal, 135
linearSum, 9
mainParser, 173
merge, 34, 35
mergeSort, 34
minimizeDFA, 155–157
naiveStringSearching, 158, 159, 162
next, 171
NFAtoDFA, 146, 147, 151, 157
parseBP, 215
parseNonterminal, 173, 174, 209,

210, 213
parseProduction, 173, 174, 209, 210
partition, 40, 48
peek, 100, 104, 107, 118, 127, 134,

171, 210, 218, 219
percolateDown, 45
PFS (Priority-First Search), 107
PFSvisit, 107
pivot, 40, 48
pop, 218, 219
Prim, 134
push, 218, 219
quickSelect, 48
quickSort, 40
recursiveDFSvisit, 101
sequentialSearch, 55
set, 135
setKey, 106, 107
size, 4, 217
slowSums, 10

252 Index

swap, 45
test, 201
traverse, 94–99
union, 134, 135
update, 218
values, 155
visit, 94–96, 98, 99

alphabet, 158
alternating path, 117
antisymmetric, 222
arcs, 83
arithmetic expressions, 163
associative array, 53, 218
associativity, 168
asymptotic upper bound, 13
asymptotically, 13

optimal, 19
augmenting path, 117
average-case running time, 19
AVL tree, 64

B-tree, 67
back arc, 95
Backus-Naur Form, 165
balancing, 63
base of the recurrence, 20
binary search, 55
binary search tree, 57
binary tree, 225
bipartite (bipartition), 115
birthday paradox, 72
bit based, 158
BNF, 165
Boyer-Moore, 158
branching limits, 67
breadth-first search, 97
bubble sort, 32
bubbling up, 43

ceiling (�x�), 223
characteristic equation, 26
children, 225
Chomsky hierarchy, 176, 177
closed-form expression, 20
closure, 145, 148
cluster (clustering), 71
collision, 69
collision resolution policy, 69
comparison, 28
comparison-based, 27
complement, 221
complete binary tree, 41

complete induction, 222
computer program, 7
connected (components), 110
container, 217
context-free grammar, 175, 176
context-sensitive grammar, 176
correct (algorithm), 7
cost function, 121
counting sort, 50
cross arc, 95
cubic time, 11
cycle, 85

DAG, 108
data structure, 4
dead state, 148
decision tree, 49
degree, 86
dense, 85
depth, 225
depth-first search, 97
deterministic finite automaton (DFA),

140, 141, 150, 152
minimize, 156

diameter, 123
dictionary, 53, 218
difference equation, 20
digraph, 83
directed girth, 114
disjoint sets, 134
distance, 86
distance matrix, 123
distinguishable, 154
divide-and-conquer, 20
division, 77
double hashing, 71
dual machine, 144, 145
dynamic, 54
dynamic programming, 130, 152

eccentricity, 123
edges, 83
elementary operations, 8
elements, 221
empty

production, 166
set, 221
word, 148

endmarker, 171, 173
epsilon transitions, 143
equiprobably, 37
equivalence relation, 222

Index 253

equivalent, 154
external sorting, 28

final states, 141
finite-state machines, 140, 143, 150
floor (�x), 223
folding, 77
forward arc, 95
free tree, 84, 225
frontier nodes, 93

girth, 114
grammar, 165
graph, 83
graph union, 87
greedy algorithm, 124

Hamiltonian cycle, 135
harmonic number, 30, 224
hash table (hashing), 69
head, 218
heap, 42
heapsort, 42
height (of a node), 225
hypercube, 116

iff, 13
in-neighbour, 83
in-place, 27
increment sequence, 32
indegree, 86
independent set, 135
induced, 86
inductive hypothesis, 222
initial condition, 20
inorder, 57
input cursor, 171, 173
input data size, 12
interpolation search, 59
intersection, 221
intractable, 17
inversion, 30
iterative deepening, 98

key, 27, 53, 106
Kleene closure, 148

language, 144, 148
leaf, 225
length, 85
linear algorithms, 8
linear order, 108, 223
linear time, 11

linearithmic, 26
list, 218
load factor, 72
logarithmic time, 11
lookahead symbol, 171
loop, 85
LR-parsing, 172

map, 218
marriage problem, 116
matching, 116

maximal, 116
maximum, 116

median-of-three, 38
meta-symbols, 164
middle-squaring, 77
minimum spanning tree, 132
move, 28

naive pivot selection rule, 38
nodes, 83
non-regular languages, 175
nondeterministic finite automaton (NFA),

143
nonterminal, 165
NP-hard, 135

order, 85
order statistic, 47
out-neighbour, 83
outdegree, 86

parent, 225
parse tree, 167
partial order, 222
partition, 36, 222
passive pivot strategy, 38
path, 85
patterns, 157
percolated down, 43
perfect hash function, 69, 77
phrase structure (unrestricted), 176
pivot, 36
planar, 136
polynomial time, 17
position automaton, 162
postfix notation, 172
precedence, 168
principle of mathematical induction,

221
priority queue, 218
priority-first search, 97

254 Index

probe sequence, 70
probes, 70
product of languages, 148
production, 165

quadratic algorithms, 9
quadratic time, 11
queue, 218
quickselect, 47

radius, 123
rank, 47, 237
records, 53
recurrence (relation), 20
recursive descent parser, 170
red-black tree, 65
reflexive, symmetric, 222
regular

expression, 148, 149, 152, 175
language (set), 149, 150

rehashing, 73
rejecting states, 141
relation, 222
repeated halving principle, 23
reverse of

digraph, 87
language, 144
machine, 144
string, 144

root, 225
rooted ordered tree, 225
rooted tree, 84
rotation, 64
rule, 165
running time, 8

scientific notation, 165
search forest, 95
searched text, 157
selection sort, 28
separate chaining, 70
sequential search, 55
set, 221
set difference, 221
Shellsort, 32
single-source shortest path, 123
sink, 86
size, 85
sorted list, 218
source, 86
spanning

subdigraph, 86

tree, 132
sparse, 85
stable, 27
stack, 218
states, 139
static, 54
Stirling’s approximation, 224
straight mergesort, 34
strongly connected (components), 111
subdigraph, 86
sublist, 218
subset, 221
successful search, 53
synonyms, 70
syntactic category, 164, 165

table, 53, 218
table search, 54
tail, 218
telescoping, 22
terminal, 164, 165
time complexity, 17
tokenize, 172
topological order (sort), 108
total internal path length, 62
total order, 223
trace, 142
transitions, 140
transitive, 222
travelling salesperson problem, 135
tree arc, 95
truncation, 77
Turing machine, 176, 177

underlying graph, 87
uniform hashing hypothesis, 74
union, 221
union-find, 134
universal class, 78
unsuccessful search, 53

vertex (vertices), 83, 84
vertex cover, 120, 135

walk, 85
weakly connected, 111
weighted digraph, 121
word, 148
worst-case running time, 19

zero-indegree sorting, 109

