
Analogical Reasoning

John F. Sowa and Arun K. Majumdar

VivoMind LLC

Abstract. Logical and analogical reasoning are sometimes viewed as
mutually exclusive alternatives, but formal logic is actually a highly con-
strained and stylized method of using analogies. Before any subject can
be formalized to the stage where logic can be applied to it, analogies
must be used to derive an abstract representation from a mass of irrel-
evant detail. After the formalization is complete, every logical step – of
deduction, induction, or abduction – involves the application of some
version of analogy. This paper analyzes the relationships between logical
and analogical reasoning, and describes a highly efficient analogy engine
that uses conceptual graphs as the knowledge representation. The same
operations used to process analogies can be combined with Peirce’s rules
of inference to support an inference engine. Those operations, called the
canonical formation rules for conceptual graphs, are widely used in CG
systems for language understanding and scene recognition as well as anal-
ogy finding and theorem proving. The same algorithms used to optimize
analogy finding can be used to speed up all the methods of reasoning
based on the canonical formation rules.

1 Analogy and Perception

Before discussing the use of analogy in reasoning, it is important to analyze the
concept of analogy and its relationship to other cognitive processes. General-
purpose dictionaries are usually a good starting point for conceptual analysis,
but they seldom go into sufficient depth to resolve subtle distinctions. A typical
dictionary lists synonyms for the word analogy, such as similarity, resemblance,
and correspondence. Then it adds more specialized word senses, such as a simi-
larity in some respects of things that are otherwise dissimilar, a comparison that
determines the degree of similarity, or an inference based on resemblance or cor-
respondence. In AI, analogy-finding programs have been written since the 1960s,
but they often use definitions of analogy that are specialized to a particular
application.

The VivoMind Analogy Engine (VAE), which is described in Section 3, is
general enough to be used in any application domain. Therefore, VAE leads to
fundamental questions about the nature of analogy that have been debated in
the literature of cognitive science. One three-party debate has addressed many
of those issues:

1. Thesis: For the Structure Mapping Engine (SME), Falkenheimer, Forbus,
and Gentner (1989) defined analogy as the recognition that “one thing is

A. de Moor, W. Lex, and B. Ganter (Eds.): ICCS 2003, LNAI 2746, pp. 16–36, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Analogical Reasoning 17

like another” if there is a mapping from a conceptual structure that de-
scribes the first one to a conceptual structure that describes the second.
Their implementation in SME has been applied to a wide variety of practi-
cal applications and to psychological studies that compare the SME approach
to the way people address the same problems.

2. Antithesis: In their critique of SME, Chalmers, French, and Hofstadter (1992)
consider analogy to be an aspect of a more general cognitive function called
high-level perception (HLP), by which an organism constructs a conceptual
representation of a situation. They “argue that perceptual processes cannot
be separated from other cognitive processes even in principle, and therefore
that traditional artificial-intelligence models cannot be defended by suppos-
ing the existence of a ’representation module’ that supplies representations
ready-made.” They criticize the “hand-coded rigid representations” of SME
and insist that “content-dependent, easily adaptable representations” must
be “an essential part of any accurate model of cognition.”

3. Synthesis: In summarizing the debate, Morrison and Dietrich (1995) ob-
served that the two positions represent different perspectives on related, but
different aspects of cognition: SME employs structure mapping as “a gen-
eral mechanism for all kinds of possible comparison domains” while “HLP
views analogy as a process from the bottom up; as a representation-building
process based on low-level perceptual processes interacting with high-level
concepts.” In their response to the critics, Forbus et al. (1998) admitted that
a greater integration with perceptual mechanisms is desirable, but they re-
peated their claim that psychological evidence is “overwhelmingly” in favor
of structure mapping “as a model of human analogical processing.”

The VAE approach supports Point #3: a comprehensive theory of cognition
must integrate the structure-building processes of perception with the structure-
mapping processes of analogy. For finding analogies, VAE uses a high-speed im-
plementation of structure mapping, but its algorithms are based on low-level
operations that are also used to build the structures. In the first implemen-
tation, the conceptual structures were built during the process of parsing and
interpreting natural language. More recently, the same low-level operations have
been used to build conceptual structures from sensory data and from percept-like
patterns used in scene recognition. VAE demonstrates that perception, language
understanding, and structure mapping can be based on the same kinds of oper-
ations.

This paper discusses the interrelationships between logical and analogical rea-
soning, analyzes the underlying cognitive processes in terms of Peirce’s semiotics
and his classification of reasoning, and shows how those processes are supported
by VAE. The same graph operations that support analogical reasoning can also
be used to support formal reasoning. Instead of being mutually exclusive, logical
reasoning is just a more cultivated variety of analogical reasoning. For many
purposes, especially in language understanding, the analogical processes provide
greater flexibility than the more constrained and less adaptable variety used in



18 John F. Sowa and Arun K. Majumdar

logic. But since logical and analogical reasoning share a common basis, they can
be effectively used in combination.

2 Logical and Analogical Reasoning

In developing formal logic, Aristotle took Greek mathematics as his model. Like
his predecessors Socrates and Plato, Aristotle was impressed with the rigor and
precision of geometrical proofs. His goal was to formalize and generalize those
proof procedures and apply them to philosophy, science, and all other branches
of knowledge. Yet not all subjects are equally amenable to formalization. Greek
mathematics achieved its greatest successes in astronomy, where Ptolemy’s cal-
culations remained the standard of precision for centuries. But other subjects,
such as medicine and law, depend more on deep experience than on brilliant
mathematical calculations. Significantly, two of the most penetrating criticisms
of logic were written by the physician Sextus Empiricus in the second century
AD and by the legal scholar Ibn Taymiyya in the fourteenth century.

Sextus Empiricus, as his nickname suggests, was an empiricist. By profession,
he was a physician; philosophically, he was an adherent of the school known as
the Skeptics. Sextus maintained that all knowledge must come from experience.
As an example, he cited the following syllogism:

Every human is an animal.
Socrates is human.
Therefore, Socrates is an animal.

Sextus admitted that this syllogism represents a valid inference pattern, but
he questioned the source of evidence for the major premise Every human is
an animal. A universal proposition that purports to cover every instance of
some category must be derived by induction from particulars. If the induction
is incomplete, then the universal proposition is not certain, and there might be
some human who is not an animal. But if the induction is complete, then the
particular instance Socrates must have been examimed already, and the syllogism
is redundant or circular. Since every one of Aristotle’s valid forms of syllogisms
contains at least one universal affirmative or universal negative premise, the
same criticisms apply to all of them: the conclusion must be either uncertain or
circular.

The Aristotelians answered Sextus by claiming that universal propositions
may be true by definition: since the type Human is defined as rational animal,
the essence of human includes animal; therefore, no instance of human that
was not an animal could exist. This line of defense was attacked by the Islamic
jurist and legal scholar Taqi al-Din Ibn Taymiyya. Like Sextus, Ibn Taymiyya
agreed that the form of a syllogism is valid, but he did not accept Aristotle’s
distinction between essence and accident (Hallaq 1993). According to Aristotle,
the essence of human includes both rational and animal. Other attributes, such
as laughing or being a featherless biped, might be unique to humans, but they



Analogical Reasoning 19

are accidental attributes that could be different without changing the essence.
Ibn Taymiyya, however, maintained that the distinction between essence and
accident was arbitrary. Human might just as well be defined as laughing animal,
with rational as an accidental attribute.

Denouncing logic would be pointless if no other method of reasoning were
possible. But Ibn Taymiyya had an alternative: the legal practice of reasoning
by cases and analogy. In Islamic law, a new case is assimilated to one or more
previous cases that serve as precedents. The mechanism of assimilation is anal-
ogy, but the analogy must be guided by a cause that is common to the new case
as well as the earlier cases. If the same cause is present in all the cases, then the
earlier judgment can be transferred to the new case. As an example, it is written
in the Koran that grape wine is prohibited, but nothing is said about date wine.
The judgment for date wine would be derived in four steps:

1. Given case: Grape wine is prohibited.
2. New case: Is date wine prohibited?
3. Cause: Grape wine is prohibited because it is intoxicating; date wine is also

intoxicating.
4. Judgment: Date wine is also prohibited.

In practice, the reasoning may be more complex. Several previous cases may
have a common cause but different judgments. Then the analysis must deter-
mine whether there are mitigating circumstances that affect the operation of
the cause. But the principles remain the same: analogy guided by rules of evi-
dence and relevance determines the common cause, the effect of the mitigating
circumstances, and the judgment.

Besides arguing in favor of analogy, Ibn Taymiyya also replied to the logicians
who claimed that syllogistic reasoning is certain, but analogy is merely probable.
He admitted that logical deduction is certain when applied to purely mental con-
structions in mathematics. But in any reasoning about the real world, universal
propositions can only be derived by induction, and induction must be guided
by the same principles of evidence and relevance used in analogy. Figure 1 illus-
trates Ibn Taymiyya’s argument: Deduction proceeds from a theory containing
universal propositions. But those propositions must have earlier been derived by
induction using the methods of analogy. The only difference is that induction
produces a theory as intermediate result, which is then used in a subsequent
process of deduction. By using analogy directly, legal reasoning dispenses with
the intermediate theory and goes straight from cases to conclusion. If the theory
and the analogy are based on the same evidence, they must lead to the same
conclusions.

The question in Figure 1 represents some known aspects of a new case, which
has unknown aspects to be determined. In deduction, the known aspects are com-
pared (by a version of structure mapping called unification) with the premises
of some implication. Then the unknown aspects, which answer the question, are
derived from the conclusion of the implication. In analogy, the known aspects of
the new case are compared with the corresponding aspects of the older cases. The
case that gives the best match may be assumed as the best source of evidence



20 John F. Sowa and Arun K. Majumdar

Fig. 1. Comparison of logical and analogical reasoning

for estimating the unknown aspects of the new case. The other cases show alter-
native possibilities for those unknown aspects; the closer the agreement among
the alternatives, the stronger the evidence for the conclusion.

Both Sextus Empiricus and Ibn Taymiyya admitted that logical reasoning is
valid, but they doubted the source of evidence for universal propositions about
the real world. What they overlooked was the pragmatic value of a good theory:
a small group of scientists can derive a theory by induction, and anyone else can
apply it without redoing the exhaustive analysis of cases. The two-step process of
induction followed by deduction has proved to be most successful in the physical
sciences, which include physics, chemistry, molecular biology, and the engineering
practices they support. The one-step process of case-based reasoning, however, is
more successful in fields outside the so-called “hard” sciences, such as business,
law, medicine, and psychology. Even in the “soft” sciences, which are rife with
exceptions, a theory that is successful most of the time can still be useful. Many
cases in law or medicine can be settled by the direct application of some general
principle, and only the exceptions require an appeal to a long history of cases.
And even in physics, the hardest of the hard sciences, the theories may be well
established, but the question of which theory to apply to a given problem usually
requires an application of analogy. In both science and daily life, there is no
sharp dichotomy between subjects amenable to strict logic and those that require
analogical reasoning.

The informal arguments illustrated in Figure 1 are supported by an analysis
of the algorithms used for logical reasoning. Following is Peirce’s classification
of the three kinds of logical reasoning and the way that the structure-mapping
operations of analogy are used in each of them:

– Deduction. A typical rule used in deduction is modus ponens: given an
assertion p and an axiom of the form p implies q, deduce the conclusion q.
In most applications, the assertion p is not identical to the p in the axiom,
and structure mapping is necessary to unify the two ps before the rule can
be applied. The most time-consuming task is not the application of a single



Analogical Reasoning 21

rule, but the repeated use of analogies for finding patterns that may lead to
successful rule applications.

– Induction. When every instance of p is followed by an instance of q, induc-
tion is peformed by assuming that p implies q. Since the ps and qs are rarely
identical in every occurrence, a form of analogy called generalization is used
to derive the most general implication that subsumes all the instances.

– Abduction. The operation of guessing or forming an initial hypothesis is
what Peirce called abduction. Given an assertion q and an axiom of the
form p implies q, the guess that p is a likely cause or explanation for q is
an act of abduction. The operation of guessing p uses the least constrained
version of analogy, in which some parts of the matching graphs may be more
generalized while other parts are more specialized.

As this discussion indicates, analogy is a prerequisite for logical reasoning,
which is a highly disciplined method of using repeated analogies. In both human
reasoning and computer implementations, the same underlying operations can
be used to support both.

3 Analogy Engine

The VivoMind Analogy Engine (VAE), which was developed by Majumdar, is a
high-performance analogy finder that uses conceptual graphs for the knowledge
representation. Like SME, structure mapping is used to find analogies. Unlike
SME, the VAE algorithms can find analogies in time proportional to (N log N),
where N is the number of nodes in the current knowledge base or context. SME,
however, requires time proportional to N3 (Forbus et al. 1995). A later version
called MAC/FAC reduced the time by using a search engine to extract the most
likely data before using SME to find analogies (Forbus et al. 2002). With its
greater speed, VAE can find analogies in the entire WordNet knowledge base in
just a few seconds, even though WordNet contains over 105 nodes. For that size,
one second with an (N log N) algorithm would correspond to 30 years with an
N3 algorithm.

VAE can process CGs from any source: natural languages, programming lan-
guages, and any kind of information that can be represented in graphs, such as
organic molecules or electric-power grids. In an application to distributed inter-
acting agents, VAE processes both English messages and signals from sensors
that monitor the environment. To determine an agent’s actions, VAE searches
for analogies to what humans did in response to similar patterns of messages
and signals. To find analogies, VAE uses three methods of comparison, which
can be used separately or in combination:

1. Matching type labels. Method #1 compares nodes that have identical
labels, labels that are related as subtype and supertype such as Cat and
Animal, or labels that have a common supertype such as Cat and Dog.

2. Matching subgraphs. Method #2 compares subgraphs with possibly dif-
ferent labels. This match succeeds when two graphs are isomorphic (inde-



22 John F. Sowa and Arun K. Majumdar

pedent of the labels) or when they can be made isomorphic by combining
adjacent nodes.

3. Matching transformations. If the first two methods fail, Method #3
searches for transformations that can relate subgraphs of one graph to sub-
graphs of the other.

These three methods of matching graphs were inspired by Peirce’s categories
of Firstness, Secondness, and Thirdness (Sowa 2000). The first compares two
nodes by what they contain in themselves independent of any other nodes; the
second compares nodes by their relationships to other nodes; and the third com-
pares the mediating transformations that may be necessary to make the graphs
comparable. To illustrate the first two methods, the following table shows an
analogy found by VAE when comparing the background knowledge in WordNet
for the concept types Cat and Car:

Analogy of Cat to Car
Cat Car
head hood
eye headlight

cornea glass plate
mouth fuel cap

stomach fuel tank
bowel combustion chamber
anus exhaust pipe

skeleton chasis
heart engine
paw wheel
fur paint

Fig. 2. An analogy discovered by VAE

As Figure 2 illustrates, there is an enormous amount of background knowl-
edge stored in lexical resources such as WordNet. It is not organized in a form
that is precise enough for deduction, but it is adequate for the more primitive
method of analogy.

Since there are many possible paths through all the definitions and examples
of WordNet, most comparisons generate multiple analogies. To evaluate the ev-
idence for any particular mapping, a weight of evidence is computed by using
heuristics that estimate the closeness of the match. For Method #1 of matching
type labels, the closest match results from identical labels. If the labels are not
identical, the weight of evidence decreases with the distance between the labels
in the type hierarchy:

1. Identical type labels, such as Cat to Cat.
2. Subtype to supertype, such as Cat to Animal.
3. Siblings of the same supertype, such as Cat to Dog.
4. More distant cousins, such as Cat to Tree.



Analogical Reasoning 23

For Method #2 of matching subgraphs, the closest match results from find-
ing that both graphs, in their entirety, are isomorphic. The weight of evidence
decreases as their common subgraphs become smaller or if the graphs have to
be modified in order to force a match:

1. Match isomorphic graphs.
2. Match two graphs that have isomorphic subgraphs (the larger the subgraphs,

the stronger the evidence for the match).
3. Combine adjacent nodes to make the subgraphs isomorphic.

The analogy shown in Figure 2 received a high weight of evidence because
VAE found many matching labels and large matching subgraphs in correspond-
ing parts of a cat and parts of a car:

– Some of the corresponding parts have similar functions: fur and paint are
outer coverings; heart and engine are internal parts that have a regular beat;
skeleton and chasis are structures to which other parts are attached; paw and
wheel perform a similar function, and there are four of each.

– The longest matching subgraph is the path from mouth to stomach to bowel
to anus of a cat, which matches the path from fuel cap to fuel tank to
combustion chamber to exhaust pipe of a car. The stomach of a cat and the
fuel tank of a car are analogous because they are both subtypes of Container.
The bowel and the combustion chamber perform analogous functions. The
mouth and the fuel cap are considered input orifices, and the anus and
the exhaust pipe are outputs. The weight of evidence is somewhat reduced
because adjustments must be made to ignore nodes that do not match: the
esophagus of a cat does not match anything in WordNet’s description of a
car, and the muffler of a car does not match anything in its description of a
cat.

– A shorter subgraph is the path from head to eyes to cornea of a cat, which
matches the path from hood to headlights to glass plate of a car. The head
and the hood are both in the front. The eyes are analogous to the headlights
because there are two of each and they are related to light, even though the
relationships are different. The cornea and the glass plate are in the front,
and they are both transparent.

Each matching label and each structural correspondence contributes to the
weight of evidence for the analogy, depending on the closeness of the match and
the exactness of the correspondence.

As the cat-car comparison illustrates, analogy is a versatile method for using
informal, unstructured background knowledge. But analogies are also valuable
for comparing the highly formalized knowledge of one axiomatized theory to
another. In the process of theory revision, Niels Bohr used an analogy between
gravitational force and electrical force to derive a theory of the hydrogen atom
as analogous to the earth revolving around the sun. Method #3 of analogy,
which finds matching transformations, can also be used to determine the precise
mappings required for transforming one theory or representation into another.



24 John F. Sowa and Arun K. Majumdar

Fig. 3. A physical structure to be represented by data

As an example, Figure 3 shows a physical structure that could be represented
by many different data structures.

Programmers who use different tools, databases, or programming languages
often use different, but analogous representations for the same kinds of infor-
mation. LISP programmers, for example, prefer to use lists, while FORTRAN
programmers prefer vectors. Conceptual graphs are a highly general representa-
tion, which can represent any kind of data stored in a digital computer, but the
types of concepts and relations usually reflect the choices made by the original
programmer, which in turn reflect the options available in the original program-
ming tools. Figure 4 shows a representation for Figure 3 that illustrates the
typical choices used with relational databases.

Fig. 4. Two structures represented in a relational database

On the left of Figure 4 are two structures: a copy of Figure 3 and an arch con-
structed from three blocks. On the right are two tables: the one labeled Objects
lists the identifiers of all the objects in both tables with their shapes and colors;
the one labeled Supports lists each object that supports (labeled Supporter)
and the object supported (labeled Supportee). As Figure 4 illustrates, a rela-
tional database typically scatters the information about a single object or struc-
ture of objects into multiple tables. For the structure of pyramids and blocks,



Analogical Reasoning 25

each object is listed once in the Objects table, and one or more times in either
or both columns of the Supports table. Furthermore, information about the two
disconnected structures shown on the left is intermixed in both tables. When all
the information about the structure at the top left is extracted from both tables
of Figure 4, it can be mapped to the conceptual graph of Figure 5.

Fig. 5. A CG derived from the relational DB

In Figure 5, each row of the table labeled Objects is represented by a con-
ceptual relation labeled Objects, and each row of the table labeled Supports is
represented by a conceptual relation labeled Supports. The type labels of the
concepts are mostly derived from the labels on the columns of the two tables
in Figure 4. The only exception is the label Entity, which is used instead of
ID. The reason for that exception is that ID is a metalevel term about the rep-
resentation language; it is not a term that is derived from the entities in the
domain of discourse. The concept [Entity: E], for example, says that E is an
instance of type Entity. The concept [ID: ‘‘E’’], however, would say that
the character string ‘‘E’’ is an instance of type ID. The use of the label Entity
instead of ID avoids mixing the metalevel with the object level. Such mixing
of levels is common in most programs, since the computer ignores any meaning
that might be associated with the labels. In logic, however, the fine distinctions
are important, and CGs mark them consistently.

When natural languages are translated to CGs, the distinctions must be en-
forced by the semantic interpreter. Figure 6 shows a CG that represents the
English sentence, A red pyramid A, a green pyramid B, and a yellow pyramid C
support a blue block D, which supports an orange pyramid E. The conceptual re-
lations labeled Thme and Inst represent the case relations theme and instrument.
The relations labeled Attr represent the attribute relation between a concept
of some entity and a concept of some attribute of that entity. The type labels



26 John F. Sowa and Arun K. Majumdar

Fig. 6. A CG derived from an English sentence

of concepts are usually derived from nouns, verbs, adjectives, and adverbs in
English.

Although the two conceptual graphs represent equivalent information, they
look very different. In Figure 5, the CG derived from the relational database has
15 concept nodes and 9 relation nodes. In Figure 6, the CG derived from English
has 12 concept nodes and 11 relation nodes. Furthermore, no type label on any
node in Figure 5 is identical to any type label on any node in Figure 6. Even
though some character strings are similar, their positions in the graphs cause
them to be treated as distinct. In Figure 5, orange is the name of an instance of
type Color; and in Figure 6, Orange is the label of a concept type. In Figure 5,
Supports is the label of a relation type; and in Figure 6, Support is not only
the label of a concept type, it also lacks the final S.

Because of these differences, the strict method of unification cannot show
that the graphs are identical or even related. Even the more relaxed methods of
matching labels or matching subgraphs are unable to show that the two graphs
are analogous. Method #3 of analogy, however, can find matching transforma-
tions that can translate Figure 5 into Figure 6 or vice-versa. When VAE was
asked to compare those two graphs, it found the two transformations shown in
Figure 7. Each transformation determines a mapping between a type of subgraph
in Figure 5 and another type of subgraph in Figure 6.

The two transformations shown in Figure 7 define a version of graph grammar
for parsing one kind of graph and mapping it to the other. The transformation at
the top of Figure 7 can be applied to the five subgraphs containing the relations
of type Objects in Figure 5 and relate them to the five subgraphs containing the
relations of type Attr in Figure 6. That same transformation could be applied in



Analogical Reasoning 27

Fig. 7. Two transformations discovered by VAE

reverse to relate the five subgraphs of Figure 6 to the five subgraphs of Figure 5.
The transformation at the bottom of Figure 7 could be applied from right to
left in order to map Figure 6 to Figure 5. When applied in that direction, it
would map three different subgraphs, which happen to contain three common
nodes: the subgraph extending from [Pyramid: A] to [Block: D]; the one from
[Pyramid: B] to [Block: D]; and the one from [Pyramid: C] to [Block: D].
When applied in the reverse direction, it would map three subgraphs of Figure 5
that contained only one common node.

The transformations shown in Figure 7 have a high weight of evidence be-
cause they are used repeatedly in exactly the same way. A single transformation
of one subgraph to another subgraph with no matching labels would not con-
tribute anything to the weight of evidence. But if the same transformation is
applied twice, then its likelihood is greatly increased. Transformations that can
be applied three times or five times to relate all the nodes of one graph to all the
nodes of another graph have a likelihood that comes close to being a certainty.

Of the three methods of analogy used in VAE, the first two – matching
labels and matching subgraphs – are also used in SME. Method #3 of matching
transformations, which only VAE is capable of performing, is more complex
because it depends on analogies of analogies. Unlike the first two methods, which
VAE can perform in (N log N) time, Method #3 takes polynomial time, and it
can only be applied to much smaller amounts of data. In practice, Method #3
is usually applied to small parts of an analogy in which most of the mapping
is done by the first two methods and only a small residue of unmatched nodes
remains to be mapped. In such cases, the number N is small, and the mapping
can be done quickly. Even for mapping Figure 5 (with N = 9) to Figure 6 (with
N = 11), the Method #3 took a few seconds, whereas the time for Methods #1
and #2 on graphs of such size would be less than a millisecond.

Each of the three methods of analogy determines a mapping of one CG to an-
other. The first two methods determine a node-by-node mapping of CGs, where
some or all of the nodes of the first CG may have different type labels from the
corresponding nodes of the other. Method #3 determines a more complex map-
ping, which comprises multiple mappings of subgraphs of one CG to subgraphs



28 John F. Sowa and Arun K. Majumdar

of the other. These methods can be applied to CGs derived from any source,
including natural languages, logic, or programming languages.

In one major application, VAE was used to analyze the programs and docu-
mentation of a large corporation, which had systems in daily use that were up
to forty years old (LeClerc & Majumdar 2002). Although the documentation
specified how the programs were supposed to work, nobody knew what errors,
discrepancies, and obsolete business procedures might be buried in the code.
The task required an analysis of 100 megabytes of English, 1.5 million lines of
COBOL programs, and several hundred control-language scripts, which called
the programs and specified the data files and formats. Over time, the English
terminology, computer formats, and file names had changed. Some of the for-
mat changes were caused by new computer systems and business practices, and
others were required by different versions of federal regulations. In three weeks
of computation on a 750 MHz Pentium III, VAE combined with the Intellitex
parser was able to analyze the documentation and programs, translate all state-
ments that referred to files, data, or processes in any of the three languages
(English, COBOL, and JCL) to conceptual graphs, and use the CGs to generate
an English glossary of all processes and data, to define the specifications for
a data dictionary, to create dataflow diagrams of all processes, and to detect
inconsistencies between the documentation and the implementation.

4 Inference Engine

Most theorem provers use a tightly constrained version of structure mapping
called unification, which forces two structures to become identical. Relaxing
constaints in one direction converts unification to generalization, and relaxing
them in another direction leads to specialization. With arbitrary combinations
of generalization and specialization, there is a looser kind of similarity, which, if
there is no limit on the extent, could map any graph to any other. When Peirce’s
rules of inference are redefined in terms of generalization and specialization,
they support an inference procedure that can use exactly the same algorithms
and data structures designed for the VivoMind Analogy Engine. The primary
difference between the analogy engine and the inference engine is in the strategy
that schedules the algorithms and determines which constraints to enforce.

When Peirce invented the implication operator for Boolean algebra, he ob-
served that the truth value of the antecedent is always less than or equal to the
truth value of the consequent. Therefore, the symbol ≤ may be used to repre-
sent implication: p ≤ q means that the truth value of p is less than or equal
to the truth value of q. That same symbol may be used for generalization: if a
graph or formula p is true in fewer cases than another graph or formula q, then
p is more specialized and q is more generalized. Figure 8 shows a generalization
hierarchy in which the most general CG is at the top. Each dark line in Figure 8
represents the ≤ operator: the CG above is a generalization, and the CG below
is a specialization.



Analogical Reasoning 29

Fig. 8. A generalization hierarchy of CGs

The top CG says that an animate being is the agent of some act that has
an entity as the theme of the act. Below it are two specializations: a CG for a
robot washing a truck, and a CG for an animal chasing an entity. The CG for an
animal chasing an entity has three specializations: a human chasing a human, a
cat chasing a mouse, and the dog Macula chasing a Chevrolet. The two graphs at
the bottom represent the most specialized sentences: The cat Yojo is vigorously
chasing a brown mouse, and the cat Tigerlily is chasing a gray mouse.

The operations on conceptual graphs are based on combinations of six canon-
ical formation rules, which perform the structure-building operations of percep-
tion and the structure-mapping operations of analogy. Logically, each rule has
one of three possible effects on a CG: the rule can make it more specialized, more
generalized, or logically equivalent but with a modified shape. Each rule has an
inverse rule that restores a CG to its original form. The inverse of specialization
is generalization, the inverse of generalization is specialization, and the inverse
of equivalence is another equivalence.

All the graphs in Figure 8 belong to the existential-conjunctive subset of
logic, whose only operators are the existential quantifier ∃ and the conjunction
∧. For this subset, the canonical formation rules take the forms illustrated in
Figures 5, 6, and 7. These rules are fundamentally graphical: they are easier
to show than to describe. Sowa (2000) presented the formal definitions, which
specify the details of how the nodes and arcs are affected by each rule.

Figure 9 shows the first two rules: copy and simplify. At the top is a CG for
the sentence “The cat Yojo is chasing a mouse.” The down arrow represents two
applications of the copy rule. The first copies the Agnt relation, and the second



30 John F. Sowa and Arun K. Majumdar

Fig. 9. Copy and simplify rules

copies the subgraph →(Thme)→[Mouse]. The two copies of the concept [Mouse]
at the bottom of Figure 9 are connected by a dotted line called a coreference link;
that link, which corresponds to an equal sign = in predicate calculus, indicates
that both concepts must refer to the same individual. Since the new copies do
not add any information, they may be erased without losing information. The
up arrow represents the simplify rule, which performs the inverse operation of
erasing redundant copies. The copy and simplify rules are called equivalence
rules because any two CGs that can be transformed from one to the other by
any combination of copy and simplify rules are logically equivalent. The two
formulas in predicate calculus that are derived from Figure 9 are also logically
equivalent. The top CG maps to the following formula:

(∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(name(x,’Yojo’) ∧ agnt(y,x) ∧ thme(y,z)),

In the formula that corresponds to the bottom CG, the equality z=w repre-
sents the coreference link that connects the two copies of [Mouse]:

(∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(∃ w:Mouse)(name(x,’Yojo’) ∧ agnt(y,x)
∧ agnt(y,x) ∧ thme(y,z) ∧ thme(y,w) ∧ z=w).

By the inference rules of predicate calculus, either of these two formulas can
be derived from the other.

Figure 10 illustrates the restrict and unrestrict rules. At the top is a CG for
the sentence “A cat is chasing an animal.” Two applications of the restrict rule
transform it to the CG for “The cat Yojo is chasing a mouse.” The first step is
a restriction by referent of the concept [Cat], which represents some indefinite
cat, to the more specific concept [Cat: Yojo], which represents a particular cat
named Yojo. The second step is a restriction by type of the concept [Animal] to a
concept of the subtype [Mouse]. Two applications of the unrestrict rule perform
the inverse transformation of the bottom graph to the top graph. The restrict
rule is a specialization rule, and the unrestrict rule is a generalization rule. The



Analogical Reasoning 31

Fig. 10. Restrict and unrestrict rules

more specialized graph implies the more general one: if the cat Yojo is chasing
a mouse, it follows that a cat is chasing an animal. The same implication holds
for the corresponding formulas in predicate calculus. The more general formula

(∃ x:Cat)(∃ y:Chase)(∃ z:Animal)(agnt(y,x) ∧ thme(y,z))

is implied by the more specialized formula

(∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(name(x,’Yojo’) ∧ agnt(y,x) ∧ thme(y,z)).

Fig. 11. Join and detach rules

Figure 11 illustrates the join and detach rules. At the top are two CGs for
the sentences “Yojo is chasing a mouse” and “A mouse is brown.” The join rule
overlays the two identical copies of the concept [Mouse], to form a single CG
for the sentence “Yojo is chasing a brown mouse.” The detach rule performs
the inverse operation. The result of join is a more specialized graph that implies
the one derived by detach. The same implication holds for the corresponding
formulas in predicate calculus. The conjunction of the formulas for the top two
CGs



32 John F. Sowa and Arun K. Majumdar

(∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(name(x,’Yojo’) ∧ agnt(y,x) ∧ thme(y,z))
∧ (∃ w:Mouse)(∃ v:Brown)attr(w,v) (∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(∃
v:Brown)(name(x,’Yojo’)

is implied by the formula for the bottom CG

(∃ x:Cat)(∃ y:Chase)(∃ z:Mouse)(∃ v:Brown)(name(x,’Yojo’) ∧ agnt(y,x)
∧ thme(y,z) ∧ attr(z,v)).

These rules can be applied to full first-order logic by specifying how they
interact with negation. In CGs, each negation is represented by a context that
has an attached relation of type Neg or its abbreviation by the symbol ¬ or ∼.
A positive context is nested in an even number of negations (possibly zero). A
negative context is nested in an odd number of negations. The following four
principles determine how negations affect the rules:

1. Equivalence rules. An equivalence rule remains an equivalence rule in any
context, positive or negative.

2. Specialization rules. In a negative context, a specialization rule becomes a
generalization rule; but in a positive context, it remains a specialization rule.

3. Generalization rules. In a negative context, a generalization rule becomes a
specialization rule; but in a positive context, it remains a generalization rule.

4. Double negation. A double negation is a nest of two negations in which no
concept or relation node occurs between the inner and the outer negation.
(It is permissibe for an arc of a relation or a coreference link to cross the
space between the two negations, but only if one endpoint is inside the inner
negation and the other endpoint is outside the outer negation.) Then drawing
or erasing a double negation around any CG or any subgraph of a CG is an
equivalence operation.

In short, a single negation reverses the effect of generalization and special-
ization rules, but it has no effect on equivalence rules. Since drawing or erasing
a double negation adds or subtracts two negations, it has no effect on any rule.

By handling the syntactic details of conceptual graphs, the canonical forma-
tion rules enable the rules of inference to be stated in a form that is independent
of the graph notation. For each of the six rules, there is an equivalent rule for
predicate calculus or any other notation for classical FOL. To derive equiva-
lent rules for other notations, start by showing the effect of each rule on the
existential-conjunctive subset (no operators other than ∃ and ∧ ). To handle
negation, add one to the negation count for each subgraph or subformula that
is governed by a ∼ symbol. For other operators (∀ , ⊃ , and ∨ ), count the
number of negations in their definitions. For example, p⊃ q is defined as ∼(p∧
∼q); therefore, the subformula p is nested inside one additional negation, and
the subformula q is nested inside two additional negations.

When the CG rules are applied to other notations, some extensions may be
necessary. For example, the blank or empty graph is a well-formed EG or CG,
which is always true. In predicate calculus, the blank may be represented by



Analogical Reasoning 33

a constant formula T, which is defined to be true. The operation of erasing a
graph would correspond to replacing a formula by T. When formulas are erased
or inserted, an accompanying conjunction symbol must also be erased or inserted
in some notations. Other notations, such as the Knowledge Interchange Format
(KIF), are closer to CGs because they only require one conjunction symbol for an
arbitrarily long list of conjuncts. In KIF, the formula (and), which is an empty
list of conjuncts, may be used as a synonym for the blank graph or T. Discourse
representation structures (DRSs) are even closer to EGs and CGs because they
do not use any symbol for conjunction; therefore, the blank may be considered
a DRS that is always true.

Peirce’s rules, which he stated in terms of existential graphs, form a sound
and complete system of inference for first-order logic with equality. If the word
graph is considered a synonym for formula or statement, the following adaptation
of Peirce’s rules can be applied to any notation for FOL, including EGs, CGs,
DRS, KIF, or the many variations of predicate calculus. These rules can also be
applied to subsets of FOL, such as description logics and Horn-clause rules.

– Erasure. In a positive context, any graph or subgraph u may be replaced
by a generalization of u; in particular, u may be erased (i.e. replaced by the
blank, which is a generalization of every graph).

– Insertion. In a negative context, any graph or subgraph u may be replaced
by a specialization of u; in particular, any graph may be inserted (i.e. it may
replace the blank).

– Iteration. If a graph or subgraph u occurs in a context C, another copy of u
may be inserted in the same context C or in any context nested in C.

– Deiteration. Any graph or subgraph u that could have been derived by iter-
ation may be erased.

– Equivalence. Any equivalence rule (copy, simplify, or double negation) may
be performed on any graph or subgraph in any context.

These rules, which Peirce formulated in several equivalent variants from 1897
to 1909, form an elegant and powerful generalization of the rules of natural de-
duction by Gentzen (1935). Like Gentzen’s version, the only axiom is the blank.
What makes Peirce’s rules more powerful is the option of applying them in any
context nested arbitrarily deep. That option shortens many proofs, and it elim-
inates Gentzen’s bookkeeping for making and discharging assumptions. For fur-
ther discussion and comparison, see MS 514 (Peirce 1909) and the commentary
that shows how other rules of inference can be derived from Peirce’s rules.

Unlike most proof procedures, which are tightly bound to a particular syntax,
this version of Peirce’s rules is stated in notation-independent terms of gener-
alization and specialization. In this form, they can even be applied to natural
languages. For any language, the first step is to show how each syntax rule affects
generalization, specialization, and equivalence. In counting the negation depth
for natural languages, it is important to recognize the large number of negation
words, such as not, never, none, nothing, nobody, or nowhere. But many other
words also contain implicit negations, which affect any context governed by those
words. Verbs like prevent or deny, for example, introduce a negation into any



34 John F. Sowa and Arun K. Majumdar

clause or phrase in their complement. Many adjectives also have implicit nega-
tions: a stuffed bear, for example, lacks essential properties of a bear, such as
being alive. After the effects of these features on generalization and specialization
have been taken into account in the syntactic definition of the language, Peirce’s
rules can be applied to a natural language as easily as to a formal language.

5 A Semeiotic Foundation for Cognition

Peirce developed his theory of signs or semeiotic as a species-independent theory
of cognition. He considered it true of any “scientific intelligence,” by which he
meant any intelligence that is “capable of learning from experience.” Peirce was
familiar with Babbage’s mechanical computer; he was the first person to suggest
that such machines should be based on electical circuits rather than mechani-
cal linkages; and in 1887, he published an article on “logical machines” in the
American Journal of Psychology, which even today would be a respectable com-
mentary on the possibilities and difficulties of artificial intelligence. His definition
of sign is independent of any implementation in proteins or silicon:

I define a sign as something, A, which brings something, B, its interpre-
tant, into the same sort of correspondence with something, C, its object,
as that in which itself stands to C. In this definition I make no more
reference to anything like the human mind than I do when I define a line
as the place within which a particle lies during a lapse of time. (1902, p.
235)

As a close friend of William James, Peirce was familiar with the experimental
psychology of his day, which he considered a valuable study of what possibilities
are realized in any particular species. But he considered semeiotic to be a more
fundamental, implementation-independent characterization of cognition.

Peirce defined logic as “the study of the formal laws of signs” (1902, p. 235),
which implies that it is based on the same kinds of semeiotic operations as all
other cognitive processes. He reserved the word analogy for what is called “ana-
logical reasoning” in this paper. For the kinds of structure mapping performed
by SME and VAE, Peirce used the term diagrammatic reasoning, which he de-
scribed as follows:

The first things I found out were that all mathematical reasoning is di-
agrammatic and that all necessary reasoning is mathematical reasoning,
no matter how simple it may be. By diagrammatic reasoning, I mean
reasoning which constructs a diagram according to a precept expressed
in general terms, performs experiments upon this diagram, notes their
results, assures itself that similar experiments performed upon any di-
agram constructed according to the same precept would have the same
results, and expresses this in general terms. This was a discovery of no
little importance, showing, as it does, that all knowledge without excep-
tion comes from observation. (1902, pp. 91-92)



Analogical Reasoning 35

This short paragraph summarizes many themes that Peirce developed in
more detail in his other works. In fact, it summarizes the major themes of this
article:

1. By a diagram, Peirce meant any abstract pattern of signs. He included the
patterns of algebra and Aristotle’s syllogisms as diagrammatic, but he also
said that his existential graphs were “more diagrammatic”.

2. His “experiments” upon a diagram correspond to various AI procedures,
such as generate and test, backtracking, breadth-first parallel search, and
path following algorithms, all of which are performed on data structures
that correspond to Peirce’s notion of “diagram”.

3. The first sentence of the paragraph applies the term “mathematical” to any
kind of deduction, including Aristotle’s syllogisms and any informal logic
that may be used in a casual conversation.

4. The last sentence, which relates observation to diagrammatic reasoning,
echoes the themes of the first section of this paper, which emphasized the
need for an integration of of perception with the mechanisms of analogy.
Peirce stated that point even more forcefully: “Nothing unknown can ever
become known except through its analogy with other things known” (1902,
p. 287).

In short, the operations of diagrammatic reasoning or structure mapping form
the bridge from perception to all forms of reasoning, ranging from the most
casual to the most advanced. Forbus et al. (2002) applied the term reasoning from
first principles to logic, not to analogical reasoning. But Peirce, who invented
two of the most widely used notations for logic, recognized that the underlying
semeiotic mechanisms were more fundamental. The VivoMind implementation
confirms Peirce’s intuitions.

For natural language understanding, the constrained operations of unification
and generalization are important, but exceptions, metaphors, ellipses, novel word
senses, and the inevitable errors require less constrained analogies. When the
VAE algorithms are used in the semantic interpreter, there are no exceptions:
analogies are used at every step, and the only difference between unification,
generalization, and looser similarities is the nature of the constraints on the
analogy.

References

1. Chalmers, D. J., R. M. French, & D. R. Hofstadter (1992) “High-level percep-
tion, representation, and analogy: A critique of artificial intelligence methodology,”
Journal of Experimental & Theoretical Artificial Intelligence 4, 185-211.

2. Falkenhainer, B., Kenneth D. Forbus, Dedre Gentner (1989) “The Structure map-
ping engine: algorithm and examples,” Artificial Intelligence 41, 1-63.

3. Forbus, Kenneth D., Dedre Gentner, & K. Law (1995) “MAC/FAC: A Model of
Similarity-Based Retrieval,” Cognitive Science 19:2, 141-205.



36 John F. Sowa and Arun K. Majumdar

4. Forbus, Kenneth D., Dedre Gentner, Arthur B. Markman, & Ronald W. Fergu-
son (1998) “Analogy just looks like high level perception: Why a domain-general
approach to analogical mapping is right,” Journal of Experimental & Theoretical
Artificial Intelligence 10:2, 231-257.

5. Forbus, Kenneth D., T. Mostek, & R. Ferguson (2002) “An analogy ontology for
integrating analogical processing and first-principles reasoning,” Proc. IAAI-02 pp.
878-885.

6. Gentzen, Gerhard (1935) “Untersuchungen über das logische Schließen,” trans-
lated as “Investigations into logical deduction” in The Collected Papers of Ger-
hard Gentzen, ed. and translated by M. E. Szabo, North-Holland Publishing Co.,
Amsterdam, 1969, pp. 68-131.

7. Hallaq, Wael B. (1993) Ibn Taymiyya Against the Greek Logicians, Clarendon
Press, Oxford.

8. LeClerc, André, & Arun Majumdar (2002) “Legacy revaluation and the making of
LegacyWorks,” Distributed Enterprise Architecture 5:9, Cutter Consortium, Ar-
lington, MA.

9. Morrison, Clayton T., & Eric Dietrich (1995) “Structure-mapping vs. high-level
perception: the mistaken fight over the explanation of Analogy,” Proc. 17th
Annual Conference of the Cognitive Science Society, pp. 678-682. Available at
http://babs.cs.umass.edu/ clayton/CogSci95/SM-v-HLP.html

10. Peirce, Charles Sanders (1887) “Logical machines,” American Journal of Psychol-
ogy, vol. 1, Nov. 1887, pp. 165-170.

11. Peirce, Charles S. (1902) Logic, Considered as Semeiotic, MS L75, edited by Joseph
Ransdell,
http://members.door.net/arisbe/menu/LIBRARY/bycsp/L75/ver1/l75v1-01.htm

12. Peirce, Charles Sanders (1909) Manuscript 514, with commentary by J. F. Sowa,
available at http://www.jfsowa.com/peirce/ms514.htm

13. Sowa, John F. (2000) Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations, Brooks/Cole Publishing Co., Pacific Grove, CA.


	Analogical Reasoning
	1 Analogy and Perception
	2 Logical and Analogical Reasoning
	3 Analogy Engine
	4 Inference Engine
	5 A Semeiotic Foundation for Cognition

	References

