Preface

This book presents a special purpose modeling technique for the analysis and
design of an important system class, namely form-based enterprise systems.
Recent discussions on modeling languages emphasize that there is a strong
demand for such domain-specific modeling languages. The class of form-based
enterprise systems includes, for example, web shops as well as ERP and B2B
solutions and can be said to be paradigmatic for enterprise computing. This
book was motivated by the widespread interest in this type of business ap-
plication from professionals as well as from scientists. The book adapts well-
established basic modeling techniques in a novel way in order to achieve a
modeling framework optimized for the indicated application domain.

Besides its practical parts the book details theoretical achievements, which
lead to real improvements in the application domain of the book. It explains
how to model a form-based enterprise system during the analysis and spec-
ification phase, and how these models translate into good design. Typical
form-based applications have common properties that can be molded into
specialized diagram types for such applications. Such a diagram type is the
formchart, the central artifact that is described in the book. The formchart is
a good example of customized diagrams according to the most recent proposed
profiling techniques.

If form-based enterprise systems are modeled with typical general purpose
modeling approaches without such customizations, there are a number of ob-
stacles the modeler will face. For example, if one employs use case modeling
together with interaction diagrams, the analyst will be confronted with three
problems. First of all, the method has to be adapted to the form-based appli-
cation, since no specific guidance for this special application type is part of the
general method. Secondly, the model will become complex for even small-sized
problems, since every diagram has to repeat common properties of this very
specific application class. Hence the model tends to become highly redundant,
and the important distinguishing information is diluted. Furthermore, a third
problematic aspect is that current analysis methods are traditionally rather
oriented towards event-driven and complex GUI-based applications but not

VI Preface

towards form-based applications. Hence the customization demand for form-
based applications is particularly high.

Conversely, there are certain benefits the reader of the book can reap by
employing the new customized artifacts presented in this book. The reader
can obtain faster results and more significant models, because the common
properties of enterprise systems are already incorporated in the semantics
of the modeling method. The new artifact types presented in this book in-
corporate the results of studying form-based systems in general, knowledge
that a software engineer can hardly obtain in the limited setting of a running
project. Our method provides a separation of concerns by splitting the general
semantic structure of such applications from the specific information about
business logic in the concrete single project. The foundation of the new tech-
niques is fully elaborated in the book for the working developer confronted
with everyday problems in professional IT projects. In the same way, the sci-
entist interested in performing novel research on enterprise systems can use
this formal reference.

The book is divided into four parts. The first part is a detailed discussion
of the new modeling method for form-based systems from a practitioner’s
viewpoint and explains how the proposed techniques can actually be employed
in a project. The second part is about tool support and exemplifies how the
concepts introduced in the first part can be exploited by several different
implementing technologies. The third part provides the semantic foundation
of the different kinds of diagrams and tools introduced in the first and second
parts. The fourth part serves as a summary and provides a discussion of related
work.

After the introduction the book starts with an in-depth motivation for the
new techniques. It is shown that the considered system class encompasses a
wide range of important enterprise systems from mainframe/terminal systems
through ubiquitous COTS software to modern web applications. The explana-
tions in the book are deliberately based on a realistic running example in order
to make a difference. Throughout the book the concepts are exemplified with
an online bookshop. This example is not an arbitrary choice of the authors
— the important TPC-W benchmark, for example, also uses a standardized
online bookshop as a representative example of typical business functionality.
The form-oriented information system model is introduced. Different kinds
of diagrams for these models, i.e., screen diagrams, page diagrams, form sto-
ryboards, and formcharts are introduced for the user interface state part of
these models. All of these, and the further model components, i.e., dialogue
constraints and the layered data models, are introduced immediately with un-
ambiguous semantics and are used in modeling the running example. Then,
techniques for decomposition and refinement are discussed. A parsimonious
data modeling language is elaborated. A message approach to the modeling
of data interchange is outlined. The book is not primarily about software en-
gineering processes; however, it provides a discussion on how the proposed
artifacts can be exploited in an entire software engineering life cycle. The

Preface VII

interplay of some proposed best practices that are centered around descrip-
tiveness, artifact orientation, feature orientation, and reuse are discussed. For
each concept we show how it can be used to add sustainable value to the
respective software engineering activities.

The second part discusses issues of architecture, design, and implementing
technology. From this discussion concepts and concrete prototypical technolo-
gies for forward engineering, reverse engineering, and the implementation of
web presentation layers are derived.

The third part of the book presents the semantic foundation of form-
oriented analysis. First, several alternatives for tool support are discussed
and given a conceptual basis using an integrated source code model. Then,
precise semantics for the form-oriented diagram types are given. For this pur-
pose, a new, lightweight, semantics framework approach is introduced as an
alternative to current multi-level metamodeling techniques. Along the lines of
the framework approach precise semantics of formcharts, layered data mod-
eling, and the dialogue constraint language are given. This is followed by a
discussion of the semantic of the proposed parsimonious data modeling ap-
proach. A formal type system for the interplay of server actions and pages of
submit/response style systems is provided.

The fourth part provides a focused description of the widely accepted
modeling approaches in use. The discussion shows the differences between
these approaches and the new method, but it also shows how our method is
integrated with standard modeling techniques. For each related method we
discuss how it could be applied to enterprise systems and how form-oriented
analysis provides a more convenient solution. Therefore this chapter provides
a different view on the benefits of form-oriented analysis to the reader. Finally,
a summary of the main contributions is provided.

The reader should have some experience with object-oriented program-
ming languages. First-hand experience with visual modeling languages and
the graphical tools for them is helpful. Basic knowledge of SQL is also desired
for some advanced excursions, but this can be postponed until needed. Re-
lated approaches are comprehensively introduced, so that even a reader who
is new to these other approaches can follow the arguments.

The book targets professionals, i.e., working software engineers and deci-
sion makers, researchers in computer science, and upper-level graduate stu-
dents who are interested in enterprise systems. Care must be taken, because
professionals, researchers, and students typically have different objectives, dif-
ferent dispositions, and different opinions with respect to software engineering
topics. This is due to the fact that goals and driving forces are different in
industry and academia. Consequently, readers may have different attitudes
towards the several parts of the book; see the figure below for a guess. In the
figure, supposed main interests are shaded gray, whereas minor interests are
left blank.

Professionals actually working on enterprise software will gain a deepened
understanding of form-based systems from the abstract system viewpoint pro-

VIII Preface

Part 1 Part I Part II1 Part IV
Modeling Form-Based Systems ~ Tool Support Semantics Conclusion
Presentation of Practical Precise Summa
Form-Oriented Analysis Justification | Reference Manual Y
Professional
Presentation of Preliminary Entry Point for Discussion of
Form-Oriented Analysis Semantics | Further Investigations | Related Work
Scientist
Presentation of Learning Summar
Form-Oriented Analysis Aid Y
Student

vided by form-oriented analysis. Many developers already use ad hoc tech-
niques tailored to form-based systems like naive page diagrams or click dum-
mies. These ad hoc techniques arise naturally when developing form-based
systems but lack an elaborated conceptual basis. The book allows these de-
velopers to strengthen these techniques in practice. Readers can employ the
approach directly in projects, because every concept introduced comes with
precise semantics and the mutual dependencies between the concepts are elab-
orated, too. The prototypical forward and reverse engineering tools are suit-
able for convincing the professional about the potential practical impact of
the form-oriented approach. The third part of the book is less important for
the professional. If a semantical clarification is needed, this part can serve
as a precise reference manual. The professional can use the fourth part as a
detailed summary.

Researchers might be especially interested in the third part of the book
as an entry point for further investigations. Upper-level graduate students
will benefit from the presentation of state-of-the-art knowledge about the
development, architecture, and design of enterprise systems in the organizing
framework of form-oriented analysis. The second part of the book will help
students to grasp more easily the concepts of form-oriented analysis.

Since enterprise applications are a particularly important class of software,
almost every IT professional, computer scientist, or computer science student
may have some interest in gaining at least an overview of the fundamentals of
enterprise computing. The book is written with the different objectives of pro-
fessionals, researchers, and students in mind. In industry productivity eventu-
ally targets return on investment. Product quality and product quantity are
limited by productivity. Productivity is limited by the availability of resources.
Knowledge acquisition is needed to improve productivity. Academic activity
spans two areas that have to be integrated: research and education. While aca-
demic research has a subtle target, i.e., the construction of knowledge, higher

Preface IX

education has the tangible responsibility to produce well-prepared profession-
als. Academic research is driven by the pressure to get contributions published
in the scientific peer community. Higher education is driven by the demands
of the yet uneducated. Altogether these differences result in the following: one
and the same concept can be perceived totally differently by individuals in
industry and in academia. We encourage all who try to keep an open mind
and hope that this book provides valuable information or inspiration.

We are indebted to Martin Grofle-Rhode for his encouragement and advice.
We want to thank our editor Ralf Gerstner for his support and guidance. We
would also like to thank the reviewers who made many helpful comments.

Berlin, August 2004 Dirk Draheim
Auckland, August 2004 Gerald Weber

