2

The Form-Based System Paradigm

Enterprise systems encompass online transaction processing systems, enter-
prise resource planning systems, electronic data interchange, and e-commerce.
This means the system class of interest can contain a small web shop as well
as a huge system like the SABRE flight reservation system, which connected
59,000 travel agents in the year 2002 [155].

In this chapter we give an outline of our model for enterprise applications.
An enterprise system can be seen as an installed and running enterprise ap-
plication. The basic type of enterprise system we call a unit system: that is,
a system which we consider as a single unit for our purposes. From the user’s
perspective a unit system is a black box. It is characterized by the interfaces
through which it is accessed. Each unit system is a single unit of abstraction,
it is a single abstract data object. The interface of a unit system which is di-
rectly accessible for us is the human—computer interface for interaction with
the user. A unit system can also have an interface to other unit systems, and
we will call this a service interface . Of the two kinds of interfaces of a unit
system the human—computer interface is the more tangible one, therefore we
begin our outline of the system modeling approach with this type of interface.
In our method, the human—computer interface for communication with one
unit system is session based, and we call it the submit/response style interface.
One can conceive of another kind of interface which is sessionless and resem-
bles a mail client with its mailbox. We will discuss such an interface designed
for communication with multiple unit systems later in the book. But here we
concentrate on the session-based interface type. It captures the key concepts
behind several widespread interface types for enterprise applications, e.g., web
interfaces. In one sentence one can say that the submit/response style inter-
face models the human—computer interaction as an alternating exchange of
messages between the user and the computer. But before we try to understand
submit/response style systems in this way we look at them solely from the
perspective of the user.

10 2 The Form-Based System Paradigm

2.1 The Submit/Response Style Interface

We introduce the class of submit/response style interfaces by using a famil-
iar application as an example, namely an online bookshop as can be found
frequently in a similar form on the Web. Chapter 3 is devoted solely to an
informal description of this example bookstore.

We have designed the following considerations in such a way that the
reader can participate in the development of the ideas about the interface
types. This is intended to be neither a historic line of development nor a
necessary argument; it is just considered to be helpful, instructive, and easy
to follow.

Submit /response style interfaces show at each point in time a page to the
user, the current page. Two such pages, which are taken from our example
bookstore, are shown in Fig. 2.1, i.e., a page showing the contents of the user’s
shopping cart and a page for gathering personal data.

My Shopping Cart wgﬁ Customer Registration Welcome Page
ogout
E-mail Address: l:l
Book Quantity Price Full Name: l:l Password: l:l
Quine: Word and Object 12.46 Repeat Pwd: l:l
Street Address: l:l
Wittgenstein: Tractatus 23.06 City: l:l
Varela: The Embodied Mind 44.68 sae: []
o] e]
Adams: Watership Down 62.30 Count
ountry: []
Buy items Card Type Credit Card No.
Search for a book: in cart ‘ WhateverCard l'l ‘ ‘
Expiration Date Cardholder
JE= el 200018 | |

Fig. 2.1. Example pages of the online bookshop

A submit/response style interface allows the user to perform two kinds of
interactions with the interface: we call them page edits and page change. Page
changes are singular interactions which change the page, i.e., the current page
is replaced by a new page. Page edits are interactions with the current page,
namely the filling out of a form or resetting a form. Forms are the only editable
parts of the page, and are made of input elements. These input elements can
be quite sophisticated by themselves. A very sophisticated form element is a
text field that allows the input of formatted text, as can be found in some
interface technologies.

There is a hierarchy in these two kinds of interaction. Take the search
option as an example. First you enter keywords by page interaction. Then
you press the search button and the system shows the page with the search
results by performing a page change. The page edit is always a preparation for

2.1 The Submit/Response Style Interface 11

the page change in this style. We call this the two-staged interaction paradigm
of submit/response systems.

During the heyday of GUI-based client/server programming such interfaces
were often considered as bare metal legacy technology. The advent of the web
browser as a new thin client has shown many reasons why submit/response
style interfaces are here to stay. On the one hand there are proven system
architectures for submit/response style systems. Classical mainframe archi-
tectures like CICS are still in use and being constantly improved. Some ubiq-
uitous commercial off-the-shelf (COTS) products are successful because they
have a mature system architecture. They provide working solutions for enter-
prise applications, and they take into account the substantial non-functional
requirements of enterprise applications. New vendor-neutral and platform-
independent enterprise computing approaches like J2EE are emerging, tar-
geting the same driving forces such as the classical approaches.

But submit/response style systems do not just have proven software ar-
chitectures. Surprisingly, submit/response style interfaces can have cognitive
advantages, too. This means that submit/response style interaction can foster
usability in many cases, simply because it is often the natural solution with
respect to an automated enterprise functionality.

2.1.1 Proven System Architecture for Submit/Response Style
Systems

Enterprise applications are data-centric and transaction-based. The sub-
mit/response style interface is not tied to any specific technology. On the
contrary, the same characteristics can be found in many technologies, e.g.,
HTML-based clients and mainframe terminals. Even the screens of a GUI-
based COTS system follow the submit/response style interface metaphor.

An important class of systems with submit/response style interfaces are
systems with ultra-thin clients, encompassing terminals and HTML browsers,
see Fig. 2.2. Ultra-thin clients are used for creating an interface tier that does
not contain business logic in itself. Ultra-thin clients cache the user interaction
on one page in the client layer. The page sequence control logic — or workflow
controller — is also not hosted by the client layer but rather by the server
layer. Ultra-thin clients fit neatly into the transactional system architecture,
be it one of the classical proposals [23, 130] or a more recent proposal [181].
Transactional system architectures successfully target many problems: system
load, performance maintainability, scalability, security, and others.

The interaction with a system/response style system is a repeated alter-
nation between data processing and the presentation of a new screen. The
dialogue appears to the user as a sequence of editable screens: the dialogue
steps are screen transactions. The presentation layer of a system is responsible
for a preprocessing of data submitted by the user, the triggering of appropriate
business rules, and the presentation of the correct new screen. Given a multi-
tier system architecture, there is no requirement that this logic be hosted by

12 2 The Form-Based System Paradigm

HTTP
’ GET hypertext/dirfindex.htm! HTTP/1.0 > Web
Browser CGl | Presentation
<.A.<head> <title> Dummy </title></head>m.‘ Layer
—
] ‘ Application Server ‘
PC-Memory

e —
« J
Database
ro ==

3270 Data Stream

’ AID ‘Cursor Address ‘ Data..... >
3270 Terminal Application Program
<C:0mmand ‘ Cursor Address‘ Data.

""" ‘ TP-Monitor

e |
)
Device Buffer Disk Disk
Mainframe

Fig. 2.2. Examples of ultra-thin client based submit/response style systems

the application server tier. In the SAP R/3 system [208], see Fig. 2.3, it is
actually hosted by the client tier. The SAP R/3 system architecture is opti-
mized with respect to the notion of commercial off-the-shelf software. In a full
version of the SAP R/3 system the vertical architecture depicted in Fig. 2.3
is completed by a horizontal architecture consisting of a production system, a
consolidation system, and a development system: the necessary customization
of the system is only possible in a defined safe way by deploying new modules
via a special transportation system.

screen program

PBO input template PAI|

ABAP/4 GUI

ABAP/4 Interpreter | <j

PBO input template PAI|

| PBO input template Pél |
" module pool °

Application Server | :

| PP process before output
transactional remote fter inout
procedure call Database process atter inpu

Fig. 2.3. SAP R/3 architecture — a client/server submit/response style system

2.1 The Submit/Response Style Interface 13
2.1.2 Cognitive Advantages of Submit/Response Style Systems

Form-based interfaces have clear advantages for the self-explanatory character
of a system. The usage of the system is intuitive, since it is guided by a
paper form metaphor. However, the importance of the submission process
is notable; therefore we want to characterize the metaphor as a submission
form metaphor. The difference between temporary input and submission, or
“sending,” is intuitive and fosters the user’s understanding of the system. The
form-based metaphor has a multi-tier structure of its own, without being fixed
to an implementation. The two classes of interactions structure the work of
the user into the work-intensive frequent page interactions and the punctual
and atomic interactions of the “serious” kind, namely the page changes which
also happen to be the conclusion and separation of logically disjoint bunches
of work. The submit/response style character puts the user in command of
the timing of system usage. It protects the user from irritating disruption of
his or her work by incoming information.

In form-based interfaces the submission of a form is an operation that has
exactly the semantics indicated by the metaphor. In computer science terms
we have compared the submission of an actual parameter list with a method
name. The submission form metaphor views interaction with the system as
filling out virtual paper forms and submitting them to a processing instance,
which represents the core system.

The metaphor has the qualified name submission form metaphor, be-
cause other form interface types can be found as well. For example, desktop
databases as found in office suites allow form style interfaces, which possess
page navigation buttons. Input in this form immediately changes the model.
We call such a form style interface a formlike view. Applications using formlike
views are in principle required to have synchronous views of the data: if two
formlike views currently show the same data, and the data are changed in one
formlike view, then the other formlike view has to be immediately updated.
Many implementations, however, have to stick to polling mechanisms, which
leads to latency effects in the update process. Well-known and even worse ex-
amples are file managers, which recognize state changes frequently only after
manual refresh. It is important to recognize that the necessary refresh in this
case is a bad implementation, while the reload mechanism of submit/response
style applications is a logically necessary feature.

In desktop databases the model state is the persistent state. Other appli-
cations with formlike views have non-persistent states, e.g., spreadsheets.

The submission form metaphor has the advantage of possessing a clear
semantics. The two-staged state change due to the two-tiered model is an
integral part of the metaphor. This is quite in contrast to, for example, the
important desktop metaphor. Consider the important drag and drop feature,
which is at the very heart of the desktop metaphor. Drag and drop means
regularly either copy or move, and hence can lead to two different effects.

14 2 The Form-Based System Paradigm

The submission form metaphor is accompanied by the response page prin-
ciple for showing responses of the core system. The submission of a form is a
page change, i.e., the page that hosted the form is hidden and a new page is
shown. This new page is the response from the server. The response page has
three important functions:

e Notifying the user of the immediate status of the submitted form.
e Showing new information to the user.
e Offering new interaction options.

The immediate status of the submitted form is the system’s immediate
response to the form. Depending on the business logic this may or may not
be the completion of the form processing.

e Consider the entry of a new date in a web calendar tool. The response
page is the new calendar view with a short notification message. The form
has been completely processed.

e Consider the submission of an order in an online brokerage system. The
response page is a notification of reception. The execution of the order,
however, takes place asynchronously.

e Consider the submission of an e-mail in a mail account on the Web. The
response page logically is only a notification of some overall validity of
the submitted data, e.g., the recipient’s address contains an at-sign. The
completion of the intended effect, i.e., the delivery of the e-mail, is not
acknowledged at all.

2.1.3 Semantics of Page Change

Each page can contain different forms. A form connects input elements to a
page change option, the submit button. Of course the intuition is that only
the page edit in the form that belongs to a submit button gives the intended
meaning of this command.

This meaning is captured in a message-based model, which we use for the
submit /response system. The user interface is considered as a distinct system,
which we call the conceptual session terminal, or terminal for short. It is very
much an abstraction of today’s web browser used as a client for an enterprise
application. As the name terminal suggests, the terminal is considered to
be connected with the unit system, which means that it can communicate
by messages and only by messages. The conceptual session terminal has a
state, namely the current page shown to the user, optionally including some
invisible information within that page, as well as the page edit the user has
performed so far on this page. The page edit is kept in the terminal until
the user performs a page change, which belongs to a form. Then the contents
of the input elements of this form are transmitted as a data record to the
unit system. The input elements of this form can contain the page edit of
the user, or data which was pre-filled on the page, so-called default data. The

2.1 The Submit/Response Style Interface 15

transmitted data record is tagged with the name of the form, and together this
message is like a remote procedure call. The name of the form is something
like the name of the procedure. It leads to an action on the unit system, and
this action always produces a result, given as a page description. This page
description is a message that is transmitted back to the terminal, and the
described page replaces the current page the user has seen before. This gives
in effect a page change. We call the new current page the response page to
the submission, the received message the response message, and if we do not
want to distinguish it, we call it the response. The page change is therefore
the submission of a parameterized command, and the new page is the result.
The terminal is locked between send and receive. The remote method call is
therefore a synchronous procedure call. This alternation of submissions and
responses has of course given rise to the term submit/response.

The parameter of the submission can of course be empty. There is only one
type of page change. Each page change can, however, transmit data, which
were not rendered on the page.

All page edits that have been performed on input elements which do not
belong to the submitted form are therefore lost; the state of the conceptual
session terminal after a page change is exclusively the response page.

Of course there are many other possible types of interfaces than the sub-
mit/response interface explained so far, e.g., interfaces which support several
pages at once. However, the submit/response style system has its advantages
in that it is quite expressive yet simple and primarily it is very regular. The
strict alternation between the user and system messages yields many advan-
tages for modeling. Therefore it is very suitable for the high abstraction level,
on which we want to focus during analysis. A key concept here, which con-
tributes to the whole method’s characteristics, is the notion that the user can
submit a whole compound data object with each message.

2.1.4 Dialogue Types

We have explained submit/response style interaction as the alternating inter-
change of messages. We now want to introduce static typing to these messages,
and this step alone will lead to a plethora of interesting new properties of our
interfaces.

First we want to introduce static types for the response pages. This means
that only a finite number of page types are allowed for each interface. It allows
us to give a natural yet rigorous meaning to the finite number of pages depicted
in screenshot diagrams (sometimes called non-executable GUI prototypes);
they simply represent the page types. Furthermore it allows us to give precise
semantics to the arrows in these diagrams representing possible page change
in the following way.

The current page has a type from a finite number of page types. We con-
ceive the type of the current page as a finite state aspect of the terminal. (A
finite state aspect is a reduction of the state of a system, which is of interest

16 2 The Form-Based System Paradigm

for the modeler. This is known from finite state modeling in many domains.
Consider the finite states a process can have in an operating system. Of course
each process can in principle have infinite states, but the finite states are the
reduction of interest for the modeler.) The terminal can then be seen as a
finite state machine. The arrows are naturally characterized as transitions.

We now turn to the user messages. They are statically typed as well.
Therefore there can be only a finite number of possible user messages. Each
form on a page must be assigned a single user message type. The page edit
on this form prepares an instance of this type. The page change is then used
for sending this instance as a method parameter. We identify the concept
or the type with the concept of the procedure name. Therefore the type of
the message already determines the processing action of the unit system. We
call this procedure of the unit system the server action. A form on a page is
therefore an editable message instance.

For each page type the number of page changes is constant or bound by
a constant. Consider a catalogue page which contains a list of books. Each
book can be put into the shopping cart with a single click. If we model these
interaction options as separate page changes, then the number of page changes
is not bound by a constant. We therefore conceive all these interaction options
as addressing the same page change, but providing a different parameter every
time. In this way the list of interaction options forms a single conceptual
interaction.

2.1.5 Conditional System Response

If a message is sent to the unit system, the system’s response is conditional,
depending on the message and on the system’s internal state. Of course the
system’s response is conditional with respect to the content of the page, e.g.,
in the case of selecting a book, the shopping cart as the system’s response
depends on the previous cart state as well as on the chosen book. But the
system’s response can be conditional with respect to the page type as well.
Take a system login dialogue as an example. The business logic says that if a
user has never bought anything, then after six months the username will be
deactivated and can be taken by another user. The submission of username
and password can therefore have a number of different effects.

e If the username belongs to a valid account and the password is valid, then
the welcome screen for registered users is shown.

e If the username belongs to a deactivated account and the password is valid,
then the user gets a screen informing him or her that the account has been
reactivated.

e If the username belongs to a valid account which has been taken over by
a user, and the password is the last password of an old user, then the
user gets a notification that his or her account has been collected and
redistributed. A new account is offered to him or her.

2.1 The Submit/Response Style Interface 17

e If the password is invalid, then the user is informed about that, and he or
she is offered assistance for forgotten passwords.

The page type as a state of the finite state machine can therefore end up
in four different pages triggered by the same page change. We want to have
a model that captures both the fact that the user has chosen one single page
change as well as the correct page type of the system’s response. For this
purpose we use a novel bipartite state model. The rationale is that we model
the system’s processing of the request as a separate state. Therefore if the
user triggers a page change, the finite state model of the terminal changes
into a processing state, which we call server action, and depending on the
received response page the state model changes into the respective page type.
The state of the terminal therefore alternates between page types and server
actions. The server actions are left automatically as soon as the unit system’s
response is received. In the same way as we identify the page state with the
type of the displayed message, we now identify the server action with the type
of the message that has been sent from the user to the system and which is
processed during this server action. The resulting bipartite state machine is
painted as a formchart.

LoginLink

WelcomeLink

Fig. 2.4. Example formchart for a system login capability

Fig. 2.4 shows a first motivating example formchart for a system login
capability. From the system welcome page it is possible to reach a login page
via a link. From there it is possible to abort the login dialogue via a link
back to the welcome page. Of course the login page offers a login form. The
response of the server action representing the login form is conditional: if an
error occurs the dialogue flow is branched back to the login page reporting
an appropriate error message, otherwise it is branched to the welcome page.
The formchart snippet in Fig. 2.4 is taken from the bookstore formchart in
Fig. 5.10.

2.1.6 System Messages as Reports

In our definition of submit/response style systems the elements of human—
computer interaction are messages from the user to the system on the one

18 2 The Form-Based System Paradigm

hand, and messages from the system to the user on the other hand. We now
outline the structure of these messages by giving a first account of a part of
the type system for these messages.

Messages from the system to the user are conceived as reports. A report
is a structured document, i.e., a document with a fixed format. A typical case
would be a simple table: the document can then be seen as a list of data
records, each data record being a row in the table. In the viewpoint we want
to adopt in our considerations, we consider only the true data as the content of
the form. This viewpoint is a little bit tricky, since usually you would require
a report to contain some explanatory data, namely first and foremost the
header of the table containing the column names. But in our considerations
here it is of course desirable to abstract from these requirements in order to
concentrate on the business logic. Now, we give one possible solution, which
we will use in our following considerations. We assume that the conceptual
session terminal has access to the type definitions of our system. This means
that the terminal can access type definitions for rendering. This is exactly
what we assume to happen with the reports the system sends to the user: the
terminal knows the type of the message that is sent. Hence the browser can
retrieve the column names, which are nothing more than the role names in
the record type, from the user’s access to the type system.

We are not interested here in how type information and business data to-
gether are rendered within a single page, as would be necessary in a typical
page description language like HTML. This is not because this is uninterest-
ing or trivial; rather our observation is that the main priority of a business
application is to deliver the information in some readable form — as you may
see in the discussions on classical form-based systems, advanced rendering
topics like fonts etc. are quite neglected by these technologies. The important
idea we have to remember from these considerations is the following: on our
level of abstraction, the task of defining a report consists only in declaring the
information content of the report as a type, and specifying with which data it
should actually be filled. Of course reports can have more complex structure
than the aforementioned tables. Quite common examples are groups of tables
(bestsellers in a category of our bookshop, followed by subcategories), or more
complex data structures within a table cell (a table with a hotel in each row,
and in one column a list of pictograms for the luxury features in this hotel).
In our view we suppose for each report data definition a standard rendering
through the abstract browser.

2.1.7 User Input by Forms

As we have said, we see the user input as a message to the system. In our
model, in close correspondence to what you will find in current platforms, the
user first fills out a form in a local communication with the terminal. The state
of the form in preparation is buffered within the terminal. Only at the time
when the user submits the form is all the data of the form transmitted to the

2.1 The Submit/Response Style Interface 19

system. The very notion of a form is that the data within the form adhere to
a format, i.e., a data type. Hence the most important part of defining a form
is to choose the message data type to which the filled forms will later belong.
In our notion of the terminal this information is, moreover, the only thing this
terminal needs in order to render the form. The terminal therefore basically
uses the type definition itself as a key to the description of a form. Beyond
that there will be a possibility to give further specifications in the single form.
The bottom line is that a form in our system metaphor is a facility with which
the user can construct an instance of a given data type within the terminal,
and then submit it or forget it. It has to be said that such a definition of form
immediately uncovers some shortcomings of many current form description
languages, e.g., HTML again. That is, a straightforward type of form, which
we could well need in certain circumstances, is a form where one can input a
table, such as a list of records. A good example would be a form for an invoice
with many single posts, where each post is mainly described by plain text.
At submission you want to transmit the whole invoice to the system. Such a
list, which should of course grow as you insert new lines, is a straightforward
concept in our view. It is primarily absent in HTML, but it is present in
some-tool based form editors from database vendors.

2.1.8 Interdependence of System Response and User Input

A key concept with regard to form-based systems deals with the way the use
input can be connected with previous system responses. Forms can contain
so-called selection interaction options. The form contains some kind of list,
either a list of products, or a list of options or anything else. The user can
choose from this list only one object — in which case it is called single selection
— or an arbitrary number — in which case it is called multiple selection. The
crucial point is here that the user can only choose what was offered by the
system beforehand. The offer by the system can well have the status of a
report in itself, e.g., in the case of the list of products. Hence the user returns
to the system data which he or she had received with a report beforehand. In
our model we indicate this by the fact that the report of the system contains
not only readable data, but also references to entities in the system. With
the selection interaction option of the form the user chooses between these
references and sends them back to the system. In our notion, incidentally,
this is also the only thing the user can do with these references. They are not
human-readable, they are in that sense not even generally machine-readable.
We will see in a later section on automated systems communications that in
the same way other systems can get such references. They can only use these
references in order to send them back to the system. References therefore
belong to different reference types. A form field for references has such a type,
and only references of this type can be returned in this form field.

20 2 The Form-Based System Paradigm
2.1.9 Forms and the Bipartite Finite State Machine

The bipartite finite state machine specifies for each page type which server ac-
tion types the user can submit in this page type. Therefore the forms available
for the user in each page type are statically fixed. The formchart as a bipartite
state machine gives a model that has an explicit notion of whether the same
business functionality is available from two different page states or not. The
forms on the page, however, may contain different additional specifications,
which may differ from page to page. This will be a topic in the discussion of
dialogue annotation in Sect. 5.4.

The best way to characterize the viewpoint which is taken by the form-
chart with respect to the unit system is the following. The unit system offers
a set of server actions, each of which is available for the user depending on
certain conditions, especially the page state. The formchart has the task of
coordinating the invocation of server actions. It ensures the alternating mes-
sage interchange through its bipartite structure. Furthermore it makes server
actions only available for the user in the way described by the page/server
transitions. In the context of interactions between systems we will discuss
message communication in general.

2.2 A Message-Based Model of Data Interchange

Many enterprise systems communicate by automated interfaces. Such commu-
nication has recently become an area of increased interest in the discussions
about Web services. Though Web services aim at being specifically lightweight
and try to open up new applications for automated communication, the prin-
ciple of automated communication is well established within technologies such
as EDI. Web services are an implementation technique, not a conceptual no-
tion. The keyword business-to-business refers partly to well-established tech-
nology, partly to new initiatives to widen the use of intersystem communica-
tion.

In our method we again want to create a homogeneous abstraction level, on
which only business logic is modeled. Form-oriented analysis is only concerned
with the analysis-level view of such services.

In order to achieve this unit systems can have not only human—computer
interfaces, but interfaces to other unit systems as well, namely the service
interfaces. In this book we will discuss modeling techniques for such service
interfaces, which will have a number of commonalities with the formchart
approach. In our method unit systems communicate first hand with messages.
The unit system model will now especially support a transactional paradigm.
This transactional paradigm offers a convenient approach to model the system
behavior with respect to a message. The system response to a message can
be specified as if the system can afford to process all messages sequentially,
one at a time. In exchange for this it is necessary that the unit system can

2.2 A Message-Based Model of Data Interchange 21

communicate to other unit systems only after processing the message, by
sending new messages.

This can be put into a definition as follows. The transactional unit system
is a computational automaton with a state. The unit system offers a set of
transactions it can perform. Each transaction has an associated message type.
A transaction takes a message and produces a set of new messages.

An untyped view of computational automata is specified by a single state
transition function:

stateTransitionFunction: message X state — state X listof (message)

In the statically typed view the state transition function invokes for each
message type a different transaction, which is the state transition for this
message type. The transition function can provide only a fixed number of
message types:

transaction,: message, X state — state
% listof (messageq,)
x listof (messageq,)

x listof (messagea,,)

transaction,: message, X state — state
x listof (messagey,)
X listof (messages,)

x listof (messagey,,)

In this model, incoming messages are processed in a strictly sequential man-
ner. It may be noted here that this can be seen as one of the major services
and achievements of transactional technology to provide serial operational se-
mantics for the application programmer, while behind the scenes sophisticated
technology like locking protocols allows for a partially parallel execution. The
main task of transactional infrastructures is therefore to provide simple seman-
tics to the application programmer, which would not be scalable if translated
directly into an implementation.

Messages in our system view must have a sender and a recipient. There is
an inherent network model which takes care of the correct delivery and pro-
vision of correct sender information. The static type system is also involved
here, in that it requires the outgoing messages to be statically tagged with
the correct sender. One of the services which will be provided by the sub-
mit /response style interface view is to deal with the need for the sender and
recipient of messages in the context of a terminal session where both remain

22 2 The Form-Based System Paradigm

the same during the session. For the terminal the need for a recipient is fully
transparent; for the unit system the interesting data are the user ID, not the
terminal.

Today there is considerable effort to specify such inter-system interfaces in
which a complex protocol has to be observed. Traditional analysis techniques
like structured analysis allow for no specification of such complex protocols.
Form-oriented analysis offers more specification options for service interfaces
through the possibility to specify the actions connected with the messages.

