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Abstract

Polyhedra are widely used as scene components in computer graphics. However, a
problem with true polyhedra, as compared to real-world polyhedral objects, is that
they have perfectly sharp edges and corners. A solution 1s to round the edges and
corners to produce a softer more natural look. This thesis presents Polyhedron
Bevelling, a new fast polygon-based volume rounding method with a simple roundness
control.

The thesis begins with a user survey of how people percetve rundpess, and suggests
requirements for an automatic volume rounding method. Two variants of
polyhedron bevelling are developed, both based on recursive mesh subdivision
techniques. The first method introduces a partitioning scheme to Catmull-
Clark/Doo-Sabin subdivision to indirectly control the roundness of the resultant
shape. Although the method generates analytically-smooth surfaces, it suffers trom
several construction limitations and stability problems if the desired roundness is
large. The second method makes use of straight skeletons, modifying the actual
recursive mesh subdivision to accomplish more directly the task of preserving planar
regions. The result is a more stable algorithm. Both methods produce excellent
results on a wide range of input meshes both in terms of execution speed and
resultant quality.

The final contribution of the thesis is the development of a Just-In-Time (JIT)
VRML volume rounding extension using the polyhedron bevelling method. With
this extension to VRML, rounded scene objects can be described as an initial coarse
object representation together with a rounding specification. Polyhedron bevelling 1s
executed just before rendering in real time. The file size required for this JIT
approach 1s typically only 1 - 2% of the size of a standard polygon-mesh
representation of the rounded object. The compactness of the design is a great
advantage as VRML 1s designed to work on the Internet, while today’s scarce
bandwidth severely constrains the feasible scene complexity.
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Chapter 1 Introduction

Three-dimensional volume rounding is the process of replacing sharp edges and corners
with rounded surfaces for computer graphics scene modelling. This research presents a new
class of fast volume rounding methods called Podybedron Bevelling. Our discussion starts with a
general overview on computer graphics modelling.

1.1  Computer Graphics Modelling

The trends in computer graphics are constantly changing, but creating and rendering three-
dimensional objects remain unarguably fundamental. The three-dimensional object
representation influents both the creation and rendering. Hence its design 1s driven by the
demands from both sides. Depending upon the target application, on one hand, the
modelling format should be primitive, direct, and etficient enough for fast rendering. On the
other hand, the modelling format must be rich, abstract and flexible enough tor easy creation
and expression of three-dimensional objects. This application-oriented nature leads to a wide
range of modelling formats forming a continuous spectrum from richness to run-time
efticiency.

Despite the diversity of modelling formats, most fall into one of two categories. They are
either surface-based techniques or solid-based techniques. As the names already imply,
surface-based techniques concern the modelling of merely the surface of the objects and
ignore the fact that the objects are solid in nature. Solid-based techniques, of course, are the
opposite. They are concerned with spaces inside or outside of an object. We will cover some
of the most common representations below. The emphasis here will be mainly on surface-
based techniques.

Surface-based techniques are usually at the run-time efficiency end of the modelling
spectrum. For extreme efficiency, the surfaces of the objects are approximated by a set of
polygons or even only triangles. This representation is called a polygon mesh or polyhedron.
A polygon mesh 1s the most commonly used general-purpose modelling format, largely
because of the existence of fast and efficient polygon renderers, software libraries and
standards.

One obvious fault of a polygon mesh 1s its mability to represent curved surfaces. Piecewise
linear approximation by polygon meshes oftfers a finite degree of accuracy that cannot be
altered after creation. What is even worse is that the size of the representation grows rapidly
as the required accuracy increases.
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With interpolated or smooth shading techniques like Gourand shading or Phong shading
[F'V96], a2 smooth appearance on a curved surface can be obtained with a relatively rough
polyhedral approximation. However, interpolated shading is not a perfect solution — for
example, the silhouette edge of the polygon mesh is still obviously polygonal. As a result, a
large quantity of vertex and normal information is still required for a convincing level of
realism.

Higher-degree surface polynomials can be used for a better approximation of curved
surfaces with comparatively less storage cost. Quadratic and cubic surfaces are common.
Such polynomials are usually given in parametric form. Common examples of parametric
surfaces are Bézier and B-spline [FV96] surfaces.

Implicit surfaces lie on the boundary between surface-based and solid-based modelling.
Surfaces are detined implicitly as all points p in the 3-dimensional Euclidean space such that
an implicit equation f{p) = 0 1s satistied. Implicit surfaces often use the sign of f{p) to classity
space as mnside or outside of an object.

Constructive Solid Geometry (CSG) 1s a common example of a solid-based modelling
technique. CSG objects are defined as combinations of simple primitives by means of
boolean set operations such as set union and intersection. CSG primitives are usually simple
geometric shapes including spheres, cylinders, cubes and, sometimes, halt-spaces.

Other examples of solid-based modelling techniques include primitive instancing, sweeps
and spatial partitioning. Readers interested in a survey of solid-based modelling can refer to
Foley, van Dam et al [FV96 pp. 533-563].

1.2 Three-dimensional Volume Rounding

Although real-world scene objects always have at least slightly rounded corners and edges,
such fine details are usually ignored in computer graphics scene modelling. Human eyes
however can easily notice the lack of highlights and shadows resulting trom the absence of
the small curvature.

Modelling such details produces high realism, but at the same time greatly increases the
required modelling time. The usual manual approach, using a Computer Aided Design
(CAD) package, i1s to trim every planar surface back a little from the edges and then fit
smooth surfaces to connect the adjacent planar faces. This process is usually referred to as
blending. The CAD system then produces a polygonisation of the resultant shape. However,
the process is still tedious, time-consuming and requires a fairly high level of expertise.
Automation is clearly sought.

Three-dimensional volume rounding is concerning with automatically rounding sharp edges
and corners, given an initial coarse object representation and a rounding specitication. Much
research effort has been put into different volume rounding techniques, which will be briefly
reviewed in Chapter 3.
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Introduction . . ‘

This thesis introduces a new class of fast volume rounding methods — Podbedron Bevelling.
While most of the existing volume-rounding methods emphasise on the quality of the
resultant shape or the complex control of roundness, Polyhedron bevelling, on the other
hand, ditferentiates itself by its fast execution speed and the real time usage.

1.3 Virtual Reality Modelling Language

This section briefly introduces the history and nature of our target implementation
modelling language — Virtual Reality Modelling Language (VRML). The term modelling
langnage generally refers to the file format used for describing computer graphics scene
model. VRML is one of the popular scene description languages used to describe both static
or animated computer graphics scenes. It is designed for use mainly on the Internet.

VRML was concetved in the spring of 1994 at the first annual World Wide Web (WWW)
Conterence. The term V7rtual Reality Markup I.angnage was coined at that time. The word
'"Markup' was later changed to '"Modelling' to reflect the graphical nature of VRML. VRML is
quickly being adopted as a standard for describing interactive three-dimensional scene
objects and virtual worlds. VRML is also intended to be a universal interchange format for
integrated three-dimensional graphics and multimedia. VRML 2.0, the second release of
VRML, added significantly more interactive and animation capabilities. In December 1997,
VRMLY7 replaced VRML 2.0 as the formal International Standard. See [VRML97].

VRML files are usually located on a remote server. The file gets transterred across the
network and rendered locally with an VRML-enabled browser only on users’ requests.
Downloading speed 1s hence one of the major concerns in VRML. These factors severely
constrain the scene complexity that 1s feasible with today’s scarce bandwidth.

1.4  Just-In-Time VRML Volume Rounding

Although solid-based modelling is gaining popularity in recent years, polygon meshes or
polyhedra remain the most commonly used representation of three-dimensional objects in
computer graphics. This 1s largely because of the existence of fast and efficient polygon
renderers. VRML, for example, 1s largely a polygon-based technology.

As noted earlier, one obvious fault of the polyhedron representation is the inability in
representing curved surfaces. Consequently, it requires large amounts of data to approximate
objects with curved surfaces. Objects with rounded edges and corners, for example, need
large numbers of tiny polygons to approximate. Hence files describing the original
“unrounded” volume and those with rounded edges and corners can easily ditfer in size by
an order of magnitude.

The difterence 1s significant especially in the context of VRML, as VRML files are mostly
hosted on a remote machine and transterred over the network on request. The difference in
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tile size may mean a huge cost in scarce network resources. This imposes an extra challenge
tor three-dimensional volume rounding in VRML.

Compression serves as a solution here. Pre-compressed scene descriptions can be generated,
transterred and even manipulated directly. Decompression takes place only before rendering,
Data transter 1s therefore minimised.

Unarguably one of the most natural and effective ways of compressing rounded three-
dimensional object 1s to actually represent it by its semantic. Instead of describing the
rounded volume as a large collection of small polygons, it can be represented as the
geometry of the original object and a rounding specification. Rounding algorithm can be
applied just before rendering. We will call this approach Just-In-Time (JIT) moditication.

The benefits of JIT modification can be easily appreciated. A rounded equivalent of a
computer graphics scene of less than a hundred kilobytes can be easily larger than the
original by several megabytes of data. Assuming an average home-use Internet connection,
we are talking about minutes or even hours more on the required download time. In
contrast, given the huge and continuously increasing processing power available on desktop
computing, a fast volume-rounding algorithm can be executed within seconds.

Enhanced readability and maintamnability further justify the JIT approach. With the pre-
constructed polygon mesh approach, once the shape 1s generated it is hard to modity and
hence reusability is limited. In comparison, changing the roundness of the volume with the
just-in-time approach can be as easy as altering one scalar value in the specification.

1.5 Goals and Contributions

This research is initiated from two orthogonal paths: academic and practical. On the
academic side, we set out to investigate a new method to perform fast volume rounding. On
the practical side, we want to develop a VRML volume-rounding tool, which produces
rounded equivalents of the existing input VRML scenes. The focus here 1s more on the user
interface design and the actual implementation.

The major contribution 1s the development of a new approach to volume rounding -
Polybedron Bevelling. Polyhedron bevelling methods are based on recursive mesh subdivision
methods, which are used for fast construction of a smooth surface from an initial polygon
mesh. Recursive mesh subdivision methods will be reviewed in Chapter 4. Polyhedron
bevelling methods extend recursive mesh subdivision methods to allow user specification of
the degree of roundness. Two approaches have been tried and, as a result, two polyhedron
bevelling methods are developed. They are mwesh pre-partitioning and target-driven polyhedron
bevelling.

The second contribution 1s the development of a just-in-time extension in VRML.
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1.6  Organisation of the Thesis

The remainder of this research s organised as followed.

Chapter two discusses the subjective meaning of volume rounding. It attempts to determine
what 1s meant by “rounding” of a three-dimensional object. The objective 1s to come up a
set of quality criteria, which can be used to evaluate different volume rounding methods.

Chapter three gives an overview of existing volume rounding methods. The emphasis s
largely on the relative strengths and weaknesses of each of the methods. We run through
each of the methods against the set of quality criteria developed in chapter two.
Understanding of the current development on the field helps identifying the potential area of
research.

Chapter four reviews various recursive mesh subdivision methods, the bases of our research.
The focus for the chapter will be on the mathematical formulation and detail explanation of
the methods.

Chapter five presents the first attempt of our volume rounding method: polyhedron
bevelling by mesh pre-partitioning. The idea of mesh pre-partitioning polyhedron bevelling
is to pre-process the mnitial coarse polyhedron representation before applying the recursive
mesh subdivision method so that the desired shape is obtained after the mesh subdivision.
Ditterent degrees of roundness are achieved by varying the pre-processing phase.

Chapter six describes two optimisation methods for the mesh pre-partitioning method. The
optimisation methods lead to both a faster algorithm and less fragmentation.

Chapter seven introduces polyhedron bevelling by target-driven subdivision. Instead of
adding a pre-processing phase to the recursive mesh subdivision process, the method
actually modifies the recursive mesh subdivision scheme itself. The chapter discusses the
advantages and disadvantages of both methods.

Chapter eight covers the implementation details of the just-in-time volume rounding
extension in VRML using the target-driven subdivision method.

Chapter nine 1s the conclusion of this research; it also discusses the limitation and the future
research directions.



Chapter 2 Meaning of Volume Rounding

Most real world objects are slightly rounded. Modelling of rounded objects in computer
graphics however 1s tedious and time-consuming. Three-dimensional volume rounding is
concerning with automatically rounding sharp edges and corners of an object.

In this chapter, we wish to discuss what we actually mean by “runding” of a 3-dimensional
object. This 1s important both for evaluating the pros and cons of various existing volume-
rounding methods and for setting up the goals and directions of our own method.

Since the topic 1s subjective in nature, we will try to back up our arguments with the result of
a survey on how humans perceive the concepts of roundness and rounding. The details of the
survey can be found at the end of this chapter. The result of this discussion will form the
basis for evaluating the existing volume rounding methods in the next chapter.

2.1 Three-dimensional Volume Rounding: What does it mean?

The meaning of runding of a geometric object 1s intuitively obvious, but very imprecise. Two
questions are essential to the understanding of the truth meaning of a rounding operation.

First, a simple-minded interpretation describes a rounding operation as making the object
rounder. The focus here is on the word “rounder”. The first question of concern is therefore:
“How to compare or guantify roundness?” To answer the question, we need to study what
characteristics of an object contribute to the human perception of its roundness. Section 2.2
is devoted to approach this question.

Assuming the roundness of objects is measurable, a rounding operation cannot be
interpreted as simply making an object rounder. Some additional constraints, which govern
the relationship between the original volume to the resultant shape, must be satisfied.
Moreover, one will, for example, not expect rounding a rectangular box will yield a
cucumber. The essential nature of the original shape must be unaltered during the rounding
process. We will concern ourselves with the second question: “What are the constraints that
govern the resultant shape of a rounding operation?” In section 2.3, we will address this question and
attempt to develop a set of constraints that limit a rounding operation to produce only
“reasonable” outputs.

2.2  Quantifying Roundness

To ensure a uniformity of terminology, we will first distinguish between two related but
distinct concepts: smoothness and roundness.
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221 Roundness vs. Smoothness

Quantitying smoothness 1s a well-researched area. Smoothness 1s defined as the continuity of
points over a surface. Parametric and geometric continuity are two generally accepted
concepts.

For a parameterised surface, the parametric continuity C* is used to quantify smoothness,
denoting a surface that is continuous up to the -derivative. Parametric continuity is not
invariant with respect to re-parameterisation. When a parametric representation is not
present or re-parameterisation is necessary, geometric continuity can instead be used to
quantify smoothness. Geometric continuity, GC* or G, measures smoothness in terms of
order of contact. For example, two surfaces have zero order of contact means the two are
touching each other. Higher order of contact means continuous in gradient, curvature,
torsion and so forth. Geometric continuity s usually less restrictive than parametric
continuity. For example, two curves with GC' continuity requires only that the tangent
vectors have the same direction at the joint point, while C' continuity requires the tangent
vectors match in both direction and magnitude. However, geometric continuity does offer
comparative advantages like geometric interpretation and parameterisation independence.

Unfortunately, on the other hand, roundness 1s not mathematically well detined. People do not
give quantitative measurement for roundness in practice. Roundness describes how closely a
shape resembles a circle or a sphere in two and three-space respectively. A sphere is
completely rounded while a cube 1s not. Linguistic quantitiers such as zery, moderately are used
to describe something in between.

The qualitative nature of roundness is obviously undesirable for our application. What 1s
even worse 1s that the roundness of a three-dimensional object can be a very subjective
interpretation. How a person perceives roundness of an object can be different from one to
another.

2.2.2 Interpretation of Curvature Plot

Despite the qualitative and subjective nature of roundness, curvature at the rounded edges
and corners 1s unarguably the single most influential factor that attects how people perceive
roundness. Although curvature has an intuitive meaning to people, we will give the
definition here to avoid unnecessary confusion.

In two dimensions, the radius of curvature can be interpreted geometrically as the radius of
the circle whose first and second derivatives agree with the curve at the given point and the
curvature is given as the inverse of the radius of curvature.

Curvature in three-dimension is more complicated. A normal section plane which is tangential
to the surface at point p must be chosen. See figure 2.1.
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The normal curvature K, at point p can then be measured

like the two-dimensional case along the intersection curve N
of the normal section plane and the surtace. Clearly, the >
curvature K, varies as this normal section rotates along the

normal vector N. The most important, however, are the

two principal curvatures, K; and K, which are the two

extreme values among all K,, since any in-between normal

curvature K, at p can be obtained by:

) . Figure 2.1. Normal section.
K, = K: cos” @+ Kosin™ @,

where @ 1s the angle between the normal section and the direction of the first principal
curvature [HL97 pp.45].

Clearly the larger the radius of curvature on the edges and corners the rounder the object.
Since the radius of curvature of edges and corners will change with scaling, that implies
scaling of an object will alter its roundness. This, however, contradicts the result of the
survey, covered later in section 2.6.3, in which most people think that the roundness of an
object is invariant to scaling.

Investigating the curvature plots will give a deeper insight into how the perception of
roundness relates to curvature. Curvature plots are obtained from plotting the curvature
along a particular path on the object surface. Figure 2.2 depicts curvature plots across a
sharp edge from a cube and a rounded edge from a rounded cube.

Curvature Curvature

Y .

A B A B

(@) b

Figure 2.2. Curvature plots of a sharp edge and a rounded edge

Notice that in the curvature plot of the sharp edge illustrated on figure 2.2(a), the curvature
remains at zero except for a very sharp discontinuity at the turning point. In comparison,
tigure 2.2(b) shows that on a rounded edge the sharp discontinuity is spread out over a wider
range with a lower peak curvature.

We can see that curvature relates to the degree of roundness in multiple aspects namely: the
peak curvature, the shape of the curvature plot and the spread of the curvature.

* The peak curvature, given that the size of the object is fixed, controls how sharp the
turning point is.
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* The shape of the curvature plot governs the smoothness of the surface and the shape of
the rounded region. While it 1s possible to construct a rounded object with a rough
surface, rounded objects are generally smoother. There are many methods to control the
general shape of the rounded region and we will cover some of them later.

e The spread of the curvature on the edges and corners is sometimes hard to conceptualise.
It can be better understood if viewed as the ratio between the surface area of the planar
regions and that of the rounded regions. Planar regions are identified by their zero
curvature. The spread of curvature turns out to be the major factor atfecting human
recognition of degree of roundness. This factor matches several phenomena observed
trom the survey. These phenomena include 1) roundness 1s invartant under scaling and
2) the roundness of objects varies with their sizes even if the curvature of all their edges
and corners are identical.

The discussion so far has focused on the degree of roundness of an individual edge or
corner. One can expect the overall roundness to be some combination of the different
rounded parts of an object. Some interesting questions can be raised. For example, what will
people think of the roundness of a teardrop shape (a sharp and pointy end but round and
smooth everywhere else)? This research is, however, primarily concerned with a global
rounding operation: a rounding operation that can be applied everywhere equally to a target
object. Hence the degree of roundness of an individual edge or corner will serve as a fair
estimation of the overall degree of roundness.

2.3 Constraints on the Rounding Operation

The previous section was concerned with comparing and quantifying roundness. In the
current section, we will have a look at the other question raised in section 2.1: “what are the
constraints that govern the resultant shape of a rounding operation?”

We begin by claiming that it is necessary to maintain the geometric similarity between the
original and the rounded shape. We will successively refine the requirements or constraints
in this section.

231 Preservation of Topology

The similarity in shapes 1s studied in the theory of homotopy [Ster92]. This 1s usually related
to the sharing of the same topology. By topology, we are referring to the connectedness of
shape, including the number of disjoint components and the number of holes in each of
them.

Our survey indicated that most people believe comparing roundness of two objects with
different topology is not sensible. Although we do not claim the result to be conclusive, this
observation provides evidence that the preservation of topology 1s a necessary constraint on a
rounding operation.
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However, preservation of topology by itself cannot be sutticient. Topology contributes little
to the general appearance. For example, a cucumber and a rectangular box will have the
same topology and therefore some additional constraints are clearly required.

2.3.2 Preservation of Planar Surface

We mentioned in section 2.2 that the degree of roundness of an object is highly related to
the ratio of the area of its rounded regions and planar regions. Hence rounding can be
described as a process of reducing the area of the planar regions. This implies the rounded
object will preserve, to some extent, the planar regions of the original object.

We will first define some notation.

Planar regions are all point p on the surface of an object such that the two principal
curvatures of p are both zero. Otherwise the point is a member of the rounded regions.

Consider a rounding operation R with a single scalar control of roundness p [I [0, o) and let
T be the topological space of the three-dimensional Fuclidean space. In other words, T 1s a
set of all possible subsets of the three-space.

The signature of the rounding operation can hence be written as R: T X [0, o) — T. This
simply means the rounding operation takes a shape and a degree of roundness and maps it to
another (or possibly the same) shape.

Also let S: T — T be a function that maps any given volume to its planar surfaces. That is S(7)
is all points p, such that p 1s on the boundary of 7 and the two principal curvatures at p are
both zero.

Now we can describe the constraint that governs the preservation of planar surface, for any
given initial volume 7 as:

|S(R(z‘,p2))| 2 |S(R(z‘,p1))| e Pr2pP;
where |x| denotes the cardinality or size of the set x.

In words, this means given any two rounded versions of the same initial volume, the total
area of the planar surfaces of the more rounded one will be less than that of the less rounded
one.

2.3.3 Monotonic Reduction of Planar Regions

Not only do we want the area of the planar surface to reduce as the required degree of
roundness increases but also we require a constraint to guarantee that no extra planar regions
will be generated by the process.

In order to accomplish this, we will strengthen the constraint from section 2.3.2, while
keeping the same notation, as:
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S<R<l‘:p1))DS<R<l‘>p2)) = P2p,

This means that given any two rounded versions of the same initial volume, the set of planar
surfaces of the more rounded one is required to be a subset of that of the less rounded one.

234 Shrinking from Boundary

Even with the above constraints, we still cannot avoid undesired behaviour such as
introducing curvature in the middle of the planar regions. It we regard rounding as a process
of shrinking planar regions of an object, we need to restrict that the shrinking processing
takes place only on the boundary of the planar regions.

Again, we will start with defining some more
notations.

The boundary constraint means that planar region
can be reduced only if it 1s a boundary planar regon,
which 1s defined as all point p, such that p is planar
while one or more immediate neighbour of p is non-
planar.

The &-boundary planar region includes all point p,
such that p 1s a member of the planar regions and

there exists a point ¢ on the boundary planar region Figure 2.2. The &-boundary planar
and ¢ 1s a member of the &-neighbourhood of p. regions of a rounded cube

The &-neighbourhood of a point p in a metric space, which is a three-dimensional Euclidean
space in this case, 1s a set of all points within a distance of € from p.

Figure 2.2 shows an €-boundary planar regions of a rounded cube.

Let B: 1% [0, ) — T be the function that map a shape 7 [ and a distance measure € 0 [0,
o) into the &-boundary planar region of z

Now, the boundary constraint can be written as:
tor any arbitrary [T , p U [0, )
L) [0, ) — [0, ) and fis continuous, such that

lim f(x) = 0 and

x— 0

S(R(4P))INS(R(4p+Ap)) OB(R(4P).[AP))

A function, £, 1s continuous if x 1s a neighbour of y then /) 1s also a neighbour of f{y).
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With this extension, for every single connected planar surface S on the original volume, the
corresponding planar surface(s) S’ on the rounded version will have an additional property:
the number of holes in §” must be less than or equals to that of §. This guarantees that no
additional holes will be generated on the planar surfaces by the process.

We believe that by satistying all the above constraints, most of the unreasonable outputs are
eliminated. Further constraints are possible but greater effort is required to avoid the
limitation on the design freedom of the rounding operation since the topic is, by and large,
subjective.

2.4  Degree of Roundness and Limit Behaviour

An essential aspect of a volume rounding operation 1s not stated explicitly in the discussion
so far: the degree of roundness of the resultant shape must be user adjustable, which leads to
the requirement of a rounding parameter. This, in turn, gives rise to two additional desired
behaviours of any rounding method, namely: a well-defined limit bebavionr and continuity in
controllable roundness.

2.4.1 Well-defined Limit

It 1s our beliet that the well-defined limit behaviour suggests two criteria.

First, there must be a gero rounding primitive. That 1s, there 1s a certain parameterisation such
that the rounding operation 1s identical to the identity mapping.

p Qr(R(4p)=1))

Second, there must be at least one parameterisation that always maps a given input to a Zwit
of rounding. By limit of rounding, we mean an object that is already maximally rounded;
attempting to apply further rounding will result in the same object. Let’s define L [t as the
collection of all limits of rounding, then by detinition:

0L =B (R(4p)=1)

Thus we can write the second criteria as:

P Q7 (R(zp)OL))

2.4.2 Continuity in Controllable Roundness

The continuity in controllable roundness requires the rounding operation itself to be continuous. If
the rounding parameter p, is a neighbour of p,, then, given any arbitrary mnput shape 7 the
resultant shape of the rounding operation R (% p;) must be a neighbour of R (7, p,). We
regard two shapes s and 7 as neighbours if and only if every points in s has a neighbour in 7
and vice versa.

13
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2.5

Different ways of Controlling the Rounded Regions

Our discussion, so far has primarily focused on the preserved planar surfaces of a rounded
object. One cannot really finish a discussion on rounding without mentioning the other half
of a rounded object: the rounded regions. They are blends that smoothly join up the
preserved planar regions. There are many acceptable ways of controlling the shape of the
rounded regions depending on the blending method employed. Four common ways of
controlling the rounded regions are depicted in tigure 2.3 [HL97|. They are:

(@)

Unbounded blending, where the blends globally influence the shape of the objects. The
resultant surface usually lies slightly inside or outside of the control volume and
hence no planar region of the control volume will be preserved. No obvious
measurement of roundness is associated with this type of blending,

Volume-bounded blending, where the spread of the blend is controlled by a prescribed
volume and 1s usually subject to some sort of smoothness conditions. Therefore the
degree of roundness of this blend is obviously controlled by means of the prescribed
volume. The larger the prescribed volume the rounder the resultant shape.

Range-bounded blending, where the spread of blend 1s controlled by a given distance
measure from the edge (or vertex). Note that a single value scalar measurement s
not sufficient to describe the degree of roundness of this sort of blending. In a two-
dimensional case, one can adjust the distance measures of each of the straight-line
segments joining the corner. In a three-dimensional case, there i1s one control from
each edge on each face so that the degrees of treedom rise to 2xz, where n is the
valence of the corner of concern.

Curvature-bounded blending, where the radws of curvature of the blend s fixed. The
degree of roundness of this sort of blending is controlled by the given curvature. The
roundness of a corner increases as the curvature decreases.

Pl Figure 2.3. Four possible ways of controlling the region of roundness.
// !i i / \\fj (@) Unbounded

- (b) Volume-bounded
(c) Range-bounded
(d) Curvature-bounded

.J/ z{h 4/ A (from: [HL97] pp374 fig 14.1)

2.6

Survey on Human Perception of Roundness

We have already mentioned several times the survey we performed on how humans perceive
the concepts of roundness and rmunding. The details are covered in this section. Firstly the aim
and the design of the survey will be reviewed. Next, the results will be presented, along with
the interesting observations.

14
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2.6.1 Aims and Design

The aim of the survey 1s to investigate how humans perceive roundness. In particular, we are
interested 1n examining the relevance of the factors that we thought would alter the
perceived roundness of an object. The questions we are going to explore are:

* How the scaling of an object (thereby altering the curvature of the edge) affects its
percetved roundness.

* The effect of the size of an object on perceived roundness given that the curvature of
the rounded regions of the object remains unchanged.

* How people think about comparing the roundness of objects with different topology.

*  How people think about comparing the roundness of objects with very different shape.

The survey i1s made available on the World Wide Web using the online testing module of the
CECIL project [CECIL] — a custom-built computer-supported learning facility within the
University of Auckland. Participants can perform the survey anywhere in the world via the
Internet. The responses from each participant are recorded in a database for easy
manipulation and analysis.

Random sampling is very hard to achieve in this situation. Internet-based surveys usually
sutfer from both selection bias and self-selection bias. There can be selection bias because only
the people with Internet access are “selected”, which may result in an unrepresentative
subgroup of the population. Also there can be selt-selection bias as surveys are made
available to large numbers of people (all Internet users) while people themselves decide
whether or not to be surveyed. However, given the resources available, it 1s infeasible for us
to perform a proper random sampled survey and, at the same time, obtain a convincing
survey size and response rate. Hence, the results are helptul to provide us a good insight but
no conclusive information should be drawn merely from the findings.

There are two versions of the survey and each contains six questions. The two versions
contain similar questions except that the wording is slightly altered so that one of them
emphasises the gperation of rounding and the other is concerned with the pure comparison of
roundness.

The result of each version 1s obtained from an independent group of participants. We
enforced that by discarding any results it the participant had attempted either of the two
versions before. Duplicated attempts are identified by the participant’s IP address and the
persistent client status called “cookies”. Participants are also asked if they have attempted the
other version before. Even with all the precautions, we cannot guarantee the complete non-
existence of duplicated attempts in an online environment.

Fach question contains an image of two objects as shown in figure 2.4. Every question from
the same version has the same wording and options. In the first version of the survey, the
question is “Which of the objects shown in the image is rounder?” and, in the second version, the

15
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question 18 “I'he two objects shown are cubes that have had a rounding operation applied to them. Which
do you think is more rounded?”

In both versions, the participant is asked to choose from the four given options below:

1. 'The one on the left

2. The one on the right
3. They are the same
4

It 1s not sensible to compare

@
i

Figure 2.4. Images used in the survey on human perception of roundness

Question 1 shows two rounded cubes with very ditferent degrees of roundness. See figure
2.4(a). This question is intentionally made obvious and serves as a control question. Results
trom participants whose fail in answering this question “correctly” are regarded as outliers

and discarded.

The presentation order of questions 2 to 6 is randomised by the system at runtime to
minimise the potential effect on the result from a particular ordering. Participants are,
however, given the ability to go back to a particular question during the survey and make
changes before they finally submit their survey result. The system records not only the result
of the survey but also every aspect on the survey. Hence, we can ask interesting questions
such as what percentage of people answer a particular question instantly, say, within two
seconds, or what percentage of people change their mind on a particular question after
seeing another question. However, we did not notice any interesting patterns from that.

Question 2 shows two spheres of different size. See tigure 2.4(b). We believe that spheres
are the most rounded objects possible, hence their degrees of roundness are equivalent. This
question explores whether people will consider either one 1s actually rounder.

16



Meaning of Volume Rounding .. ¢

Question 3 again explores the effect of scaling on the human perception of roundness.
However the spheres are replaced with two rounded cubes of different sizes. See figure
2.4(c).

Question 4 explores the effect of curvature on edges and corners. The larger the radius of
curvature on the edges and the corners, the rounder the object. Participants are asked to
compare the roundness of two rounded cubes that are very different in size but with the
same curvature of the edges and corners. See tigure 2.4(d).

In question 5, participants are asked to compare the roundness of a rounded cube and an
empty space. See figure 2.4(e). An empty space 1s chosen, as we are particularly interested in
whether people can accept the idea that applying a very heavy rounding leads to a completely
vanishing of the object. The concept of an empty space ts very hard to describe in the
context of an image. An extra written explanation is included. However, teedback from
various participants indicated that this question is still confusing.

Question 6 explores how people compare the roundness of objects with very different
shapes but with the same topology. Participants are asked to compare the roundness of a
peach and an apple. See figure 2.4(f).

2.6.2 Survey Result

The results of the survey were collected during the period from 4™ May 1998 to 15" May
1998. Totals of 44 and 24 participants were surveyed for the first and the second versions
respectively. Two out of the 44 and four out of the 24 participants were identified as outliers
by failing to answer the first question “correctly”. That leaves 42 and 20 valid responses. The
tact that a rather large proportion (16.7%) of the participant failed to correctly answer the
obvious question for the second version may be due to the small sample size or confusing
wording,.

Not only are we interested in the results of the survey but also the potential errors. In order
to obtain an estimation of the errors, we need to know the distribution of the population we
sample from. Obviously we cannot have any knowledge of that, but by the Central Limit
Theorem, we will assume the sample 1s normally distributed. The validity of this assumption 1s,
however, arguable with a small sample size of 20. Most elementary statistics books say the
assumption 18 good if the sample size 1s around 30 or more. In practice, the central limit
eftect works so well that even if the initial distribution 1s very skewed, it will converge
towards a reasonable normal distribution with a sample size as small as 10. So we assume a
normal distribution, but the reader should notice the possibility of an inadequate
approximation here.

Since we also estimate the standard deviation using the standard error, the student-t
distribution will be used with the degree of freedom of # - 1 for a better estimation than the
normal distribution, where # is the size of the sample.

The results are plotted in figure 2.5 with the 95% confidence intervals.
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2.6.3 Observations

The second version of the survey has relatively wider confidence intervals because of the
smaller sample size. However, the general distributions of both versions of the survey are
very similar indicating that the effect of the different wordings is not significant. At least, we
cannot reject the hypothesis that the two are statistically identical. The dominant options of
each question in both versions are the same except for question 6. We focus our discussion
on the first version of the survey because of their similarity of both surveys and the larger
sample size of version one.

All questions except question 6 have the dominant option chosen by the majority ot the
population.

The result of question 2 shows that most people think that two spheres of different sizes
have the same degree of roundness.

The result of question 3 reveals that most people think a rounded cube is of the same degree
of roundness as a shrunken version of the same rounded cube. This result 1s consistent with
the last question. Hence, this gives further evidence that the perceived roundness is invariant
to scaling.

The result of question 4, however, shows that given two rounded cubes that are very
different in size but with the same curvature on the edges and corners, most people think
that the smaller one is actually rounder (more rounded). This indicates that the curvature on
the edges and corners 1s not the only effect that governs the perceived roundness, but the
ratio of area of the planar regions to area of the rounded regions 1s in fact more important.

The result of question 5 reveals that most people think that it 1s not sensible to compare the
roundness of a rounded cube with an empty space. The feedback from our participants
suggested that this question is relatively confusing. That may contribute to the large
proportion of participants selecting the option “it 1s not sensible to compare”. While we
cannot draw firm conclusions about preservation of topology and comparison of roundness,
the result 1s still indicative that rapid change in the topology is not intuitive in the rounding
process.

There 1s no majority option in question 6. This indicates that while most people think that it
is sensible to compare the roundness of two objects with very difterent shape, the judgement
of roundness is, however, very subjective in this complex situation. It is also interesting to
note that while only 10% of the participants (version one) think that it is not sensible to
compare roundness of two objects with very ditferent shape, the percentage increases to
40% when talking about a rounding operation (version two).
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2.7 Quality Criteria of Volume Rounding

At the beginning of the chapter, we mentioned that the discussion in this chapter is going to
be used as a basis for evaluating various existing volume rounding methods. To fulfil this
objective, we will define in this section, a set of quality criteria of general-purpose volume
rounding methods. To a large extent, the quality criteria are based upon those desired
behaviours we covered before. In addition, criteria evaluating the algorithm itself such as the
execution speed and the stability are included. The quality criteria are summarised below:

Algorithm Execution Speed
Algorithm Stability for Arbitrary Input Configuration

Preservation of Topology

O o oo

Preservation of Planar Region

¢ Reduction of Planar Area

¢  Monotonic Reduction

4 Shrinking from Boundary
O Smoothness or Continuity
O User Controllable Degree of Roundness
¢ Continuity in Roundness Control
¢ Flexibility in Roundness Control
¢  Well-defined Limit Behaviour

=  Existence of Limit Rounding

®  Existence of Zero Rounding

2.8 Chapter Conclusion and Summary

The chapter has explored the conceptual view of the problem — what exactly is the meaning
of volume rounding to humans. Although some may challenge whether it is worth putting
effort into something that contributes so little to the final algorithm, it i1s our belief that it 1s
always a good practice to fully understand the problem betore rushing into the solution.

Our focus in this chapter has been mainly on “How fo compare or guantify roundness?’ and
“What are the constraints that govern the resultant shape of a rounding operation?” Since the topic 1s
subjective, our discussions were largely based on the result of a survey.

The most important finding is that instead of the curvature of the rounded edges and
corners, the ratio of the preserved planar area to the total surface area of the unrounded
object is a more intuitive and significant measure of the “roundedness”. We therefore
recognise the importance of the preservation of planar regions and hence the “essential
polyhedral nature” as the major goal of our volume-rounding method.

Finally we concluded the chapter with a list of quality criteria. These criteria will then
become our evaluation tool for the existing volume rounding methods.
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Chapter 3 Existing Volume Rounding Methods

This chapter is an overview of volume-rounding methods. There are three main classes of
method namely implicit blending, parametric blending and recursive mesh subdivision. We will first
brietly discuss each of them. At the end of this chapter, we will have a look at how the
various methods fultil the quality criteria we presented in the previous chapter.

3.1 Implicit Blending Methods

Implicit blending methods involve describing the rounded object in the form of an implicit
surface. There are many variants of implicit blending, which differentiate themselves by how
the rounded surface 1s defined. Convolutional smoothing and rolling-ball blends are the two
most common examples of implicit blending,

3.1.1 Convolutional smoothing

Convolution is often used for smoothing images in the
tield of image processing. The idea 1s to blur out high
frequency sharp edges of an image by averaging.
Colburn [Colb90] applied a there-dimensional Gaussian
tilter to an octree representation of a solid volume. The
surface 1s defined as the locus of the centre of a given
gaussian (or solid spherical) filter where one half of the
weighted volume 1s inside and the other half is outside
the original solid volume. See figure 3.1. The result is a
nicely smoothed surface with high frequency corners Figure 3.1. Convolutional

and edges being rounded out. One great advantage of smoothing of a polygon
this approach is that the degree of roundness of the by a circular filter.
resultant volume is controllable by simply adjusting the
size of the gaussian filter.

from: [Lobb9¢]

Convolutional smoothing, although mathematically simple, is computationally expensive. It
involves the computation of the exact weighted volume of intersection of the scene and the
tiltering sphere. Lobb [Lobb96] presented quasi-convolutional smoothing (QCS) as a fast
approximation of convolutional smoothing. Quasi-convolutional smoothing requires the
input polyhedra in a format of Constructive Solid Geometry with the limitation that only the
half-space primitive 1s allowed. Arithmetic addition, subtraction and multiplication are then
used to approximate set union, difference and intersection of half-spaces respectively.

Dansted [Dans96] presented the algorithm for calculating exactly the volume of intersection
of a polyhedron and a sphere. However he also concluded in his paper: that “the intersection
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tunction 1s at least one, heading towards two orders of magnitude slower than the
corresponding QCS operation.”

Rendering of the resultant volume of implicit blending methods 1s usually by means of ray
tracing. If fast rendering is required, polygonisation is usually necessary. Wiinsche [Wuns96]
presented Triage polygonisation that is highly optimised for CS/QCS smoothed objects.
Convolutionally or quasi-convolutionally smoothed objects usually contain large planar
regions. Triage polygonisation takes advantage of this producing fast polygonisation with
low fragmentation by extracting those regions right at the beginning. In comparison to
general-purpose polygonisation schema like marching cubes [LC87|, “Triage polygonisation is
20-30 times faster and ontputs only 1-2% of the polygons (when applied to CS/QCS smoothed
objects)” [Wiins96].

3.1.2 Rolling-ball Blends

Rolling-ball blends are also known as cylindrical fillets. Rolling-ball blends can be easily
realised by rolling a sphere with a given radius along the inner surface of the control volume
[HL97]. See tigure 3.2.

To the best of our knowledge, Rossignac was the first to
suggest the blending of this type [HL97]. The surtace of a
rolling-ball blend achieves GC' continuity.

Simple rolling-ball blends are also called constant radius blends
(CR-blends), since the radius of the rolling-ball 1s fixed. A
variation of rolling-ball blends allow this radius to vary; these
are called variable radws blends (VR-blends).

The blends are, therefore, defined as the envelgpe of a sphere
with radius r(p), whose centre p moves along a space called the
directrix. The d.irectriX. contains all points p spch that a sphere on the same
centred at p with radius r(p) fits completely inside the original polyeon as in
solid volume [HL97]. For a rolling-ball with a fixed radius 7, the figure 3.1.
directrix 1s the space bounded by the inner offset surface with a

distance of » from the surface of the original volume.

Figure 3.2. Rolling-ball
blend defined

Even with simple rolling-ball blends, the determination of the directrix and the blend can be
very expensive in practice. For example, in [HL97] the CR-blend of two cylinders 1s
described by an equation with 969 terms. The mathematical description of VR-blends is
even more complicated.

3.2 Parametric Blending Methods

As the name implies, parametric blending describes in parametric form a surface that blends
planar regions of a rounded object. Parametric blending can usually be separated into two
distinct stages. They are the determination of trim curves and the fitting of blending
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surfaces. Trim lines are the boundary on the preserved planar surfaces. Smooth, 1.e., with C'
or GC' continuity, parametric patches are then fitted onto those trim curves.

Trim curves can be defined both interactively and automatically. There are many automatic
approaches. For example, one common approach as described in [HL97] 1s based first on
the calculation of the intersections of the oftset surfaces with the two given surfaces. Trim
lines are then taken as the orthogonal projections of the intersection curve back onto the
original surfaces.

Fitting a blending surface requires finding an explicit formula for a patch that satisties some
boundary and gradient conditions. The blending method depends on the form in which the
trim lines are given. If the trim lines are defined in closed form, for example B-spline or
Bézier curves, then the blend can be constructed as a tensor product surface. However,
usually trim curves need to be defined as a set of points only. In that case, the blend 1s
described as a set of curves. Notice that the correspondence of points in each trim curve
needs to be specified.

While it is easy to fit a blending surface between two planes given boundary gradient and
trim lines, the problem becomes exponentially harder to solve when considering blending
surface that joins IN faces. Common examples are the suitcase corner (IN=3) and the house
corner (IN=5). Figure 3.3 shows some solutions to these N-sided vertex problems.

Figure 3.3. Examples of blending surface of N-sided vertex where (2) N=3 (b) N=5 (c) N=6

3.3 Recursive Mesh Subdivision Methods

Recurstve mesh subdivision methods are not volume rounding methods as such, in the sense
that they do not produce rounded volumes with user specitied roundness. Instead they
generate smooth surfaces from a control mesh. A subdivision surface is defined by
recursively applying a refinement procedure to a polyhedron-like contiguration. The only
difference of these configurations from normal polyhedra is that their polygonal taces do not
need to be planar.

Chaikin [Chai74] introduced a recursive corner-cutting refinement to a list of control points
to generate a curve that was shown equivalent to a uniform quadratic B-spline by Riesenteld
[Ries75]. Catmull and Clark [CC78] and Doo and Sabin [DS78] introduced the first popular
subdivision refinement schemes for polygon meshes. They both produce biquadratic and
bicubic tensor product B-spline surfaces from quadrilateral meshes. Loop [Loop87]
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introduced a subdivision scheme based on quartic triangular B-splines. Joy and MacCracken
[JM96] extended the work of Catmull-Clark to Catmull-Clark volumes.

Catmull-Clark’s quadratic and cubic surface respectively achieve C' and C? continuity except
on some extraordinary points. Extraordinary points are those vertices at which # edges join
or the centroids of #-sided faces where 7 1s not 4. Doo and Sabin [DS78] analysed the
behaviour around extraordinary points using Fourter transtorms and an eigen analysts. Fine-
tuning of the quadratic refinement rules is presented in which the resultant surface exhibits
the so-called ideal behaviour, namely GC' continuity at extraordinary points.

Subdivision surface methods can be generally categorised into approximating and
interpolating. The schemes mentioned so far are all approximating. Approximating schemes
can be thought of as a recursive process of knocking oft corners. The resultant limit surface
shrinks inside the control mesh. Interpolating schemes, as implied by the name, generate
surfaces that interpolate control points and normals. Some interpolating schemes interpolate
only boundary control points while some interpolate all control points and normals.

Nasri [Nasr87] discussed boundary control with Doo-Sabin quadratic surfaces. He used the
fact that each face of the control mesh converges towards its centroid during the refinement,
and modified the topology of boundary faces to generate a subdivision surface that
interpolates the boundary of its control mesh. Later [Nasr91], he presented a method to
torce quadratic Doo-Sabin surfaces to interpolate vertices and normals. Halstead, Kass and
DeRose [HKD93] did the same for cubic Catmull-Clark surfaces.

Loop [Loop87], based on a generalisation of quartic triangular B-spline, suggested a
subdivision scheme that works with arbitrary triangular meshes.

Dyn, Levin and Gregory [DLG90] presented the Butterfly scheme that produces a smooth
surface that interpolates all vertices. The resultant surface exhibits C' continuity over a
topologically regular control mesh, where regular means that all vertices have valence of 6
for triangular patch. Zorin, Schréder and Sweldens [ZSS96] modified the Butterfly scheme
to produce smooth interpolating surface even on an irregular control mesh. Like Loop's
method, both the Butterfly scheme and the extended Buttertly scheme require inputs of
triangular meshes.

Loop [Loop94]| later presented another variant of surface subdivision. He applied one step
of Doo-Sabin refinement to ensure all extraordinary points are isolated. He then derived
directly a set of Bézier patches that achieve a global C' continuity over the resultant volume.

Peters and Reit [PR97] presented the mid-edge subdivision method, a much simpler set of
refinement rules, which after every second subdivision step, produces similar configurations
to the Doo-Sabin method.

3.4  The Fulfilment of Quality Criteria

Implicit blending methods focus on the description of a rounded volume from an original
solid volume. Parametric blending methods are mostly concerned with fitting blends
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between different surfaces. The focus there 1s more on the continuity of the resultant
surface. Recursive mesh subdivision methods, strictly speaking, cannot be regarded as
volume rounding methods, as it 1s more correct to say that they produce smooth surtaces
rather than saying that they produce rounded volumes. Despite the diversity of the foci, we
will have a look at how the three types of existing volume rounding methods fulfil our
quality criterta developed in section 2.7.

The candidates here are convolutional smoothing, quasi-convolutional smoothing, rolling-
ball blends, parametric blending methods and recursive mesh subdivision methods. They are
tabulated against the quality criteria in figure 3.4.

Convolutional Quasi- Rolling-ball Parametric Recursive
Smoothing Convolutional Blends Blending Mesh
Smoothing Methods Subdivision
Methods
Algorithm Execution Speed Extremely slow Varies® Extremely slow Veased® Fast
Algorithm Stability for Arbitrary Input Good Good Good B Good
Preservation of Topology Not No? NoY Yes Yes
Preservation of Planar Regions Yes Yes Yes Yes No
Reduction of Planar Area Yes Yes Yes Yes complete vanish
Monotonic Reduction Yes Yes Yes not necessary -
Shrinking from Boundary Yes Yes Yes Yes -
Smoothness or Continuity (unknown) (unknown)” GCt GC! + GC! +
User Controllable Degree of Roundness Yes Yes Yes Yes No
Continuity in Roundness Control Yes Yes Yes Yes -
Flexcibility in Control Simple Simple Simple Multi-dimensional -
W ell-defined Limit Behaviour Yes Yes Yes No -
Excistence of Limit Rounding Yes Yes Yes No -
Excistence of Zero Rounding Yes Yes Yes Yes -

Figure 3.4. Fulfillment of the quality criteria for existing volume rounding methods

One should notice that the summary highlights the lack of a fast volume-rounding method
with a relative simple roundness control. Our research motivation 1s theretore provided by
the fact that a fast volume-rounding method does not yet exist.

The execution speed varies depending upon the choice of rendering primitive. Wunsche' s polygonisation
method, for example, can be much faster than the ray-tracing method proposed in the original paper
[Lobbog].

P Fast on simplejoint but the execution speed dramatically decreases when the complexity of input
increases.

Usually undefined when trim curve is not on the surface of concern. i.e. too heavily rounded.

The whole volume vanishes with very heavy rounding. The volume may break into separate components
in some circumstance.

¢ Same as convolutiona smoothing.

¥ Object vanish if therolling ball does not fit insde the volume.

" Same as convolutiona smoothing in general but may produce visually unsmooth artefacts with some
input configuration.
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3.5 Chapter Conclusion and Summary

This chapter has introduced three main classes of volume rounding or related methods.
They are mmplicit blending methods, parametric blending methods and recursive mesh
subdivision methods.

Implicit blending methods define the rounding in the form ot implicit surfaces. Unarguably,
they are the simplest and the most elegantly defined in comparison to other classes of
methods. Ironically, their implementations are the most computationally expensive.

Parametric blending methods represent volume rounding with the most complex controls.
Rounded regions are described in the form of parametric surfaces. The exact trim lines or
curves can be specified both automatically and manually. They are then joined smoothly with
parametric surfaces. However, the high controllability does not come without a cost: they are
harder to detine, mathematical complex and slow to compute.

Recurstve mesh subdivision methods are not volume rounding methods as such, in the sense
that they do not produce rounded volumes with user specified roundness. They represent a
class of fast methods that generate smooth surfaces from a control mesh. They serve as the
basis of the polyhedron bevelling methods that will be presented in the reminder of this
thess.

The comparison between the various methods i1s summarised n figure 3.4, in which several
existing key rounding methods are tabulated against the quality criteria developed in the
previous chapter. The summary highlights the lack of a fast volume-rounding method with a
relative simple roundness control.



Chapter 4 Recursive Mesh Subdivision

Polyhedron bevelling 1s based heavily on recursive mesh subdivision methods especially the
Catmull-Clark and Doo-Sabin refinements. Hence in this chapter we will cover in more
detail how recursive mesh subdivision methods work.

First we will discuss how uniform B-spline surface refinement generates a B-spline surface
trom a series of repetitive refinement processes. The Catmull-Clark [CC78] surtace, which s
a generalisation of the uniform B-spline surface refinement scheme, will then be covered.
Finally we will cover the smoothness condition for a Catmull-Clark surface and an
improvement over Catmull-Clark refinement which was suggested by Doo and Sabin

[DS78].

Doo-8abin refinement scheme 1s used as a basis of our volume-rounding methods.

4.1  Uniform B-Spline Surface Refinement

Recursive mesh subdivision stems from the idea that a B-spline surface can be obtained by
repetitively applying a refinement to its rectangular control mesh. At each level of
refinement, a set of new control points 1s calculated based on a weighted sum of the original
control points.

We will see how the refinement is obtained by considering a quadratic B-spline surface.
A tensor product quadratic B-spline surface can be expressed in matrix form as:
S(u) = UMGMT"

where M 1s the basis matrix for a quadratic B-spline and G is the geometric constraint
matrix.

181 -2 1% %bll y2P plSB
M:ED_Z 2 OD G:BDM )25 PzaD

El 1 OE @31 pSZ p33§

Fach element p; in G 1s one of the control points arranged on a topologically rectangular
patch according to the subscripts depicted in figure 4.1(a).

Uand 7 are the power bases and are given as:

U=[# n1] and V=[/ v 1], where 0 < u,v < 1.
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Figure 4.1. (a) A quadratic B-spline patch with its control mesh (b) The control mesh after a step of
refinement (c) The four sub-patches generate B-spline surfaces. Fach of them 1s
equivalent to a quarter of the B-spline surface generated from the mitial control mesh.

We will first define two terms that will be used later: the edges and faces of a mesh. Edges
are straight lines connecting two adjacent control points in a row or a column of the
geometric constraint matrix. Faces are area bounded connected edges that do not contain
any other faces mnside.

In the next step of the refinement, a control patch with 16 control points ¢; 1s generated
trom the original 9-point control mesh. See tigure 4.1(b). Four B-spline surfaces can then be
defined with the geometric constraint matrices given by:

@711 912 913 O E%2 915 G4 O

_ 0 0 _ 0 O

Go - ﬂm 92 92 ] Gl - ﬂzz 905 924 ]
@31 932 933 E @32 935 934 E

E%1 92 92 O Eyzz 93 Gou O

_ 0 _ O

Gz - ﬂzl 932 933 ] G3 - ﬂsz 933 934 ]
@41 9az 943 E @42 915 Gua E

The whole 1dea of refinement is that each of the B-spline surfaces defined by the geometric
constraint matrices G, to G; 1s a quarter of the B-spline surface generated by G. See figure
4.1(c). Hence in each step of the refinement, four smaller quadratic B-spline control meshes
are generated which together yield the same surface defined by the original control mesh.
This together with the convex hull property' of B-spline shows that, by recursively applying
the refinement process, the control mesh will converge to the B-spline surtace itself at the
limit.

The remaining question is how to calculate the set of new control points in each refinement.

1_/-\II points on the B-spline surface lie within the convex hull of its control patch.
28
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Each retined sub-patch must be a quarter of the B-spline surface defined by the original
control patch. For example, the quarter B-spline surface defined by G, where 0 <w#,v <1

will be the same as the B-spline surface detined by G,.

Hence we have:
SN T -

or

o

00

0
0g
14

Es
USMGM ST = UMG,M 1", where S = )

B

Since M is invertible, G, =[M 'SM|G[M’SM | = H,GH , where

S wle

=

- 1
HOleSM:Z

1=V EREE |
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Therefore, we have

3 1 0tp, p, ps03 1 00
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By simple algebra, we can obtain a linear map between the set of new and old control points
as shown belowr:

4,0 M 30 3 1 0 0 0 00,0
O O M, O
Geg 390 13000 0gp.n
0, O O 9 3 0 3 1 0 0 00,0
00 M. O
g=0 % 109300 0 0gpag
O=—0 3 0 3 9 0 0 0 0 0
0 16 %%HD
T 3109 3 0 0 0ppsp
[ O 00 93 03 10 [
%“D [ %%“D
W?)Z |:| |j) 0 0 3 9 0 1 3 0 DEPSZ |:|
EsH B 000930 3 1Hh,H
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Equations for the rest of the control points can be obtained by considering the other three
sub-patches. However, because of the symmetry of the B-spline basts, we will not present
the details here.

Each new control point 1s given as a weighted sum of only four of the original control
points. It can be verity that these four control points form a single face in the original
control mesh, onto which the new control point lies. The weighting for the new control

point are given as = for the corresponding (nearest) control point, = for the two adjacent

control points and L for the opposite control point.
p 16 pp p

Refinements that generate higher order B-spline surfaces are also possible. Cubic refinement
was presented in [CC78].

4.2 Catmull-Clark Refinement

The refinement rules presented in the last section are based on the assumption that the initial
control mesh is rectangular. However, they can be generalised to work for any arbitrary
rectangular mesh. Catmull and Clark [CC78] generalised the idea further and defined
refinement rules which work for any arbitrary topology for both the cubic and quadratic
case. Since only the quadratic formulation 1s employed in this thesis, we will cover only the
quadratic refinement rules here.

Like the quadratic uniform B-spline surface refinement, Catmull-Clark refinement generates
a new vertex for each control point on each tace. However, the way to calculate the new
vertex 1s generalised to work for faces that have arbitrary number of vertices. The formula 1s
given as the average of the face point, two edge points and the vertex point. These points are
defined as:

* The face point is the centroid of the face of concern.

* The two edge points are the midpoints of the edges that are incident on the original
control point.

e The vertex point s the original control point.

Hence for an z-sided face, with the vertices labelled from p, to p, counter-clockwise, the
formula for the / new vertex, g, can be written as:

1 ,le’ potr pts,
9: =0 + +
4 7 2 2

]

+ P

rMmoOOod

where
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;;:Ep” i %1 . yl:%plﬂ Z:;tﬂ

gs, =1 Op, (=n

The 7 and s, simply denote the previous and the next vertex in the faces. The extra
complication 1s due to the cyclic nature of the labelling.

The equation is, more commonly, written as a weighted sum of the initial control points:

9 = in/p/
5=

L , . 2
where the weighting function IV, is given as™

Hn+2 .
o ,z—/|:0
8n
_Eﬂ+2 .o .
W, =0 ,z—/|—1 or |Z_/|—ﬂ_1
] 8
02 i=j>1 and |i=jl<n-1

ES% ’

The set of generated vertices are then reconnected to form the new control mesh. The way
to reconnect the mesh 1s best illustrated as the construction of 3 different types of faces,
namely F-faces, E-faces and V-faces.

R IR [

(m[m|| [T L

@ ®) ©

Figure 4.2. Three different types of faces in quadratic Catmull-Clark refinement

e Fach F-face 1s constructed by linking up the new vertices generated from all vertices of
one of the original faces. See figure 4.2(a).

e For each common edge in the original mesh, a four-sided E-face i1s constructed by
linking up the two corresponding edges on each of the F-faces generated trom the two
original faces that share the edge. See tigure 4.2(b).

%2 The formulais slightly different from that in the original paper, which ignored the cyclic nature of the
labelling for the sake of simplity.
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* For each closed vertex of the original mesh, a V-face is constructed by linking up all the
new vertices generated from that vertex. See figure 4.2(c).

4.3 Smoothness of Catmull-Clark Surface and Extraordinary Points

We have already proved that the uniform B-spline subdivision scheme produces a B-spline
surface at the limit. The resultant surfaces have C' and C? continuity for the quadratic and
cubic subdivision schemes respectively. Hence the Catmull-Clark surface will be smooth
except at a finite number of extraordinary points.

For the quadratic formulation, the extraordinary points are found at the centroids of all #-
sided original faces and all V-faces of #-valence vertices where # are not 4.

Fortunately, the number of extraordinary points 1s fixed after the first refinement step. The
key 1s to realise that all E-faces are 4-sided. Every non-4-sided face will give rise to one and
only one non-4-sided F-face. Four-sided E-faces however, always isolate this F-face. Hence
the number of extraordinary points remains constant from iteration to iteration. On the
other hand, a non-4-sided V-face will be generated it the number of edges incident on a
vertex is not 4. However this situation can only happen on the first step of refinement, as
every vertex on the refined mesh is always connected to an F-face, two E-faces and a V-face.
Hence the valence of all vertices after the first refinement step s exactly 4.

The smoothness over extraordinary points is only C°. Doo and Sabin [DS78] suggested a
remedy, as described in the following section.

4.4 Doo-Sabin Refinement

A Catmull-Clark surface exhibits a problem in smoothness over a finite number of
extraordinary points. Doo and Sabin [DS78] suggested improvements to both the Catmull-
Clark cubic and quadratic retinement schemes. A Doo-Sabin quadratic surface exhibits ideal
behaviour, which means it achieves GC' continuity over extraordinary points. That means
the Doo-Sabin quadratic surface is GC' continuous globally while achieving a local C'
continuity except at extraordinary points.

The Doo-Sabin quadratic subdivision scheme 1s very much like the Catmull-Clark quadratic
except in the way used to obtain new vertices. In a Doo-Sabin quadratic, new vertices can
again be written as a weighted mean of old vertices:

9 = in/p/
5=
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but the weighting function W, 1s modified to:

0

B n+5 iz

= 4n /
W, =0

|:| c

[B+2COSMH

] o » O .

H 4n '/

The new computed vertices are then reconnected Figure 4.3. Catmull-Clack (lefi

t) and
using the same method as in the quadratic Catmull- Doo-Sabin (right) Zluadratic

Clark refinement. surface defined with a unit
cube control mesh.
Doo and Sabin stated in their paper that:

...the ideal bebavionr may not be significantly better than
the Catmnll guadratic in normal use [DST8 pp360].

However, we can see in figure 4.3 that Doo-Sabin quadratic surface 1s significantly smoother
than Catmull-Clark quadratic over extraordinary points.

Another reason for using Doo-Sabin retinement is that although the weighting function used
1s somewhat more computationally expensive than the one in the Catmull-Clark quadratic, it
can be pre-computed for common values of 7z, / and ;j and table lookup can be used to
retrieve those pre-computed values.

4.5 Chapter Conclusion and Summary

Polyhedron bevelling, to some extent, differentiates itself from other volume-rounding
methods by its fast execution speed. The fast execution speed arise from the fact that it 1s
based on recursive subdivision methods, which themselves are fast and efficient.

This chapter gave a deeper insight into several recursive subdivision schemes namely
uniform B-spline refinement, the Catmull-Clark refinement [CC78] and the Doo-Sabin
refinement [DS78]. The focus was primarily on the mathematical formulation and properties.



Chapter 5 Polyhedron Bevelling by Mesh Pre-partitioning

In this chapter we describe our first approach of volume rounding: the mesh pre-partitioning
polyhedron bevelling method. The method is based on the Doo-Sabin [DS78] mesh
subdivision refinement scheme to obtain a smooth surface with a control mesh. The major
contribution of the method 1s that it allows a wser-defined degree of roundness by providing an
extra parameterisation.

The idea of mesh pre-partitioning 1s to modity the control mesh before applying the
recursive mesh subdivision. The desired resultant surface 1s achieved after the subdivision.
The beauty of this pre-processing approach is that the resultant surface is unaltered after the
tinal mesh subdivision phase. The tinal result 1s therefore a Doo-Sabin surface. As a result, it
inherits the well-defined limit behaviour and smoothness from a Doo-Sabin surface.

Our discussions in this chapter are limited to polyhedra with only convex faces. Any concave
polygonal faces should be cut into convex polygons in advance. We will come back to the
concavity problem in Chapter seven.

5.1 Architecture
The architecture of mesh pre-partitioning polyhedron bevelling 1s shown in tigure 5.1.

1
Mesh Partitioning

N

+ Mesh Subdivision 3

““““ = Mesh Optimisation

Mesh Pre-partiticning Polyhedron Bevelling

Figure 5.1. Architecture of mesh pre-partitioning polyhedron bevelling
In general, three separate phases can be identified as follows:

1. Mesh partitioning — The purpose of this phase 1s to mntroduce extra partitioning within the
control mesh so that the user-specitied roundness can be achieved when the subsequent
subdivision 1s applied. Desired planar areas are buffered by the partitioning and hence
turther mesh subdivision will not atfect their planarity.
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2. Mesh subdivision — Doo-Sabin refinement 1s applied to the partitioned control mesh
generated from the previous phase. In theory, this process 1s repeated ad infinitum until
the limit surface is obtained. In practice, two or three refinement steps are usually
enough to achieve a reasonably smooth polygon mesh. The recursive nature of this
phase 1s indicated with a dotted loop as shown on figure 5.1.

3. Mesh optimisation (optional) — A vast number of unnecessary faces i1s produced in the
previous phase. The number of faces grows very rapidly at each step of the recursion.
For practical reasons, over-detailed surface representation must be approximated using a
coarser polyhedron. Optional mesh simplitication or optimisation reduces the number of
primitives presented and enhances the rendering speed. They unfortunately add to the
cost of the rounding process. Examples of general-purpose mesh optimisation
techniques can be found in [HDD93][KT96]. They are, however, outside the scope of
the thess.

Over-applying mesh subdivision and then simplitying the resultant mesh is neither natural
nor efficient. As an improvement, pre-subdivision mesh optimisation will be discussed in the
next chapter. The optimisation method combines phase two and three of the algorithm as
the so-called zutegrated subdivision scheme. The modification avoids some of the unnecessary
subdivisions and hence increases the performance of the rounding method and also reduces
tragmentation.

5.2 Two-dimensional Analogy

A better understanding of mesh pre-partitioning polyhedron bevelling can be achieved via a
two-dimensional analogy, which is both simple and robust in comparison to the three-
dimensional case.

The Chatkin refinement scheme produces a quadratic B-spline curve from a set of control
points. It is, therefore, a logical equivalent of the Doo-Sabin refinement scheme for the
mesh subdivision phase i two dimensions. The Chaikin refinement method 1s briefly
covered below. It 1s followed by mesh pre-partitioning polyhedron bevelling in two-
dimensions. Finally, the problem with the mesh pre-partitioning approach is identified and
suggested remedy will be presented.

521 Chaikin Refinement Scheme

The Chatkin refinement scheme produces a quadratic B-spline curve in the limit. The proof
is given by Riesenteld [Ries75].

Figure 5.2(2) shows an example of a control polygon and the resultant quadratic B-spline
curve. The mput of the Chaikin refinement can also be a set of control points. In that case,
the resultant curve will be open instead of closed.
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Like Catmull-Clark or Doo-Sabin retinement, the method 1s recursive. At each step of the
recursion, a better piecewise linear approximation of the resultant quadratic B-spline curve 1s
produced. Two new control points, p,” and p,, are generated between each of the two
consecutive original control points, as illustrated in figure 5.2(b). The formulas are given as:

P =40t wpand p)= 4p 30

The original control points are then discarded and the new control points in each of the
successive segment form the control polygon of the next iteration.

Figure 5.2(c) shows the resultant control polygons after the first and second iteration. In the
limut, 1t will converge to the quadratic B-spline curve defined by the original control polygon.
As shown i1n the figure, the control polygon after the second iteration already gives a very
close approximation to the actual quadratic B-spline curve shown in figure 5.2(a).
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Figure 5.2. The Chatkin refinement scheme. (a) The control polygon and the resultant quadratic b-

spline curve (b) New control points generated on the first iteration (c) Control polygons
from the first two iterations superimposed on the original control polygon.

5.2.2 Mesh Pre-partitioning Polyhedron Bevelling in Two Dimensions

The preservation of straight-line segments of a polygon is obviously the two-dimensional
analogue of the preservation of planar regions of a polygonal face. Hence, the two-
dimensional problem can be described as fitting a quadratic B-spline curve over the linear
segments to be preserved, each of which belongs to a single edge of a polygon. The
segments to be preserved in a polygon are marked in red in figure 5.3(a).

plelpi P28 P2

@) ®) ©
Figure 5.3. Mesh pre-partitioning polyhedron bevelling in 2-dimensions. (a) Original
polygon with the desired final straight-line segments marked red (b) Extra
control points are added so that the endpoints of the final straight-line
segments are at the midpoints of those corner segments (c) A quadratic b-
spline curve defined on the pre-partitioned control polygon.
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Before we describe the solution, we will briefly review three important properties of B-spline
curves: locality, midpoint interpolation (quadratic B-spline only) and the convex hull
property. The locality property ensures that each point on an m-order B-spline curve is
defined solely by (+1) instead of all of the control points. Take a quadratic B-spline as an
example; the position of each portion of the quadratic B-spline curve is influenced
exclusively by three consecutive control points. The midpoint interpolation property
suggests that the portion of the curve controlled by the three control points starts at the
midpoint of the first and the second control points and ends at the midpoint of the second
and the third. Finally, the convex hull property guarantees that all points of that portion are
located inside the convex hull created by the three control points.

Equipped with these three properties, we now describe and explain our solution to the
problem mentioned. As indicated earlier, the essence of the mesh pre-partitioning
polyhedron bevelling 1s to modify the control mesh such that the desired shape 1s obtaned
after applying the mesh subdivision. In a two-dimensional case, we simply add extra control
points to partition the original edge of the control polygon betore applying the Chaikin
refinement. The term ‘edge’ refers to the straight-line segment between the two consecutive
control points.

Figure 5.3(b) shows the segment ¢, defined as the final straight-line segment to be
preserved on pp,. On each edge, pp., of the mnitial control polygon we add two new control
point p,” and p,” such that ¢, is located at the middle of p, and p,” and ¢, is located at the
middle of p, and p,”. Thus two new control points are simply given as:

P =6 F (e-p;) and p= e+ (e - p)

The new control polygon after partitioning will hence have three times the number of
control points of the original control polygon. They are shown as the black dots in figure
5.3(b). Fach segment of the original control polygon is divided into three parts: one internal
segment and two corner segments. Corner segments are the ones at both ends and the
internal segment 1s the one in between.

Figure 5.3(c) shows the resultant quadratic B-spline curve after applying the Chaikin
refinement scheme to the partitioned control polygon. The curve preserves the straight-line
portions with the rounded corners smoothly joining those portions.

The following s the explanation of how the linear segment is preserved:

First, because of the midpoint interpolation property, the resultant quadratic B-spline curve
interpolates all the midpoints of the corner segments of the partitioned control polygon. By
construction, these midpoints are the endpoints of the straight-line segments to be
preserved. Hence the resultant curve 1s a smooth quadratic B-spline curve which interpolates
all the endpoints of those segments to be preserved.

Secondly, we need to show that portions of the curve in between those endpoints are
actually straight-lines. Again by construction, there will be four collinear control points on
every segments of the original control polygon: the two endpoints of the segment and the
two new control points introduced in the partition. By the locality property of the B-spline,
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the four consecutive control points will define a portion of the resultant quadratic B-spline
curve starting from the midpoint of the first two to the midpoint of the last two. Since the
tour control points are collinear, the convex hull formed by the four control points will also
be a straight-line. By the convex hull property, the portions of the curve in between those
endpoints must therefore be linear.

5.2.3 Problem and Remedy in Two Dimensions

The method described in the last section will have a problem if the length of the portion to
be preserved is very short in comparison to that of its original edge. The internal segments
created by the partitioning will be tlipped in such a case. Figure 5.4(a) depicts a partitioned
control polygon with all the internal segments flipped, as emphasised by the numbering of
the control points in the figure. Because of the flipped internal segments, the resultant
quadratic B-spline curve 1s also flipped and does not end on the desired endpoints as shown
in figure 5.4(b).

/ T~
>
®) ©

Figure 5.4. Artefacts produced by mesh pre-partitioning polyhedron bevelling in two dimensions.
(@) The desired final straight-line segments are shorter than half of the origmal
edges which lead to overlapping of control polygon segments (b) A quadratic b-
spline defined with a control polygon with overlapping (c) Quadratic b-spline
segments produced by only the corner segments of the control polygon.

It 1s not hard to show that the “/lipping edge” problem occurs when the length of the portion
to be preserved is less than half of the length of its original edge. Again for two consecutive
control points p, and p, of the original control polygon, we call the two newly introduced
control points p, and p,”and the endpoints of the desired final straight-line segment ¢, and e..
The length of the internal segment will be given as:

Length = ”pzv_pl v" = ”(62 + (62 ~ P »_ (61 + (51 2 )X|
= ”2(52 _51)_(pz _plm = 2”52 _51" _”pz _pln

Hence the length of the internal segment will be positive (no tlipping) it the length of the
desired final straight-line segment (¢, - ¢;) 1s greater than or equal to half of the length of the

original edge (p, - p,).

Fortunately, there are many ways to solve the problem. Perhaps the simplest one is to
produce those rounded portions of the quadratic b-spline curve by subdividing only the
corner segments of the partitioned control polygon as shown in figure 5.4(c). We can then
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simply join up those rounded corners with straight-lines, since those missing portions of the
curve are linear, as explained earlier.

The method works well on any arbitrary input configuration. The other beauty is that it
produces a more efticient implementation with less fragmentation because of the elimination
of unnecessary subdivision on the straight-line segments. This idea leads to the optimisation
scheme of mesh pre-partitioning polyhedron bevelling.

5.3 Locality, Centroid Interpolation and the Convex Hull Property

The planar region preservation is based heavily on the three properties of quadratic B-spline
curve introduced earlier. Unlike the Chaikin algorithm, which produces an exact quadratic B-
spline curve, Catmull-Clark and Doo-Sabin surfaces with non-quadrilateral control mesh are
only approximations to the quadratic B-spline surfaces. Hence, before moving to the
rounding algorithm in three dimensions, this section confirms that locality, centroid
interpolation and the convex hull property hold tor Doo-Sabin refined surfaces.

The locality property can be easily confirmed by the fact that each new control point on the
i+1" iteration mesh is computed by a linear combination of vertices only from one and only
one face in the /* iteration mesh. Hence the location of any points on the limit surface are
solely controlled by some subset of control points in the initial mesh.

For the midpoint interpolation property, we consider an #-sided face with vertices p, and the

corresponding face after one step of the Doo-Sabin refinement with vertices ¢, where / [
[1...7).

For the Doo-Sabin refinement, we know that:

0
B n+5 .
= 4n T/
g, ZZWZJP/ , where W, =0

=1 |:| L

’ [B+2COSMH
] J 7 B,z
H 4n

It 1s well known that a bi-quadratic B-spline surface interpolates the centre of each
rectangular grid cell on the control mesh. To show that it 1s also true for the Doo-Sabin
refinement, we need to show that the centroid of each face remains the same after one step
of refinement.

The centroid of a new face 1s given as:

L .
=24 =22 Wi
=1

=1 ;=1
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It can be concluded that s, always sum to zero’. The result shows that the new face centroid
stay unchanged after each step of refinement and therefore confirms the centroid
interpolation property for the Doo-Sabin subdivision.

The convex hull property can be proven by the fact that the weighting function, I, always

lies in between 0 and 1 as well as the sum of the weighting Z W, =1
J=1

With the three properties reconfirmed, we can now move to the explanation and description
of the algorithm.

5.4  Simple Mesh Pre-partitioning Polyhedron Bevelling

The objective of the mesh partitioning phase 1s to construct a partitioning of the mesh given
a scalar value roundness control, such that the preserved planar regions of the tinal shape are
reduced as the roundness control increases. This parameterised mesh partitioning phase can
be logically separated into two steps:

1. Definition of the planar regions based on the given roundness control.
2. Partition the initial mesh so that the planar regions are preserved atter mesh subdivision.

We will first look at how the planar regions are defined using a roundness control. Based on
the discussion i Chapter two, we identified that the ratio between the surface area of the
planar regions to the rounded regions is an intuitive measure of roundness of an object. We
will detine the rundedness, p, tor our rounding operation as:

® Proven by Mathematica®
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where A, and Aj are the area of the planar regions on the original polyhedron and the

rounded polyhedron respectively. Thus p is a value between 0 and 1, with 0 representing a
non-rounded polyhedron and 1 representing a completely rounded polyhedron with no
remaining planar areas. We will also assume the percentage reduction of planar area is the
same for every polygonal face.

The constraint of monotonic reduction of planar regions suggests the shrunken version of
the polygonal face should lie completely within the original face. Even then, there are
numerous ways to define the preserved region, and there is not a single “correct” answer.
We will assert only that the preserved region of an arbitrary n-sided convex polygon should
also be an n-sided polygon that sits entirely within the original face.

We have confirmed earlier that the limit surface interpolates the centroid. Hence, for an
arbitrary #-sided convex polygonal face, we can construct, by partitioning, # “corner faces”
with their centroids located at corners of the preserved region as depicted in tigure 5.5.

This, however, still does not uniquely define the
partitioning. As a result, we have gone through a
series of trials and errors in order to find out the
Original face “optimal” partitioning,
— Partitioning
Preserved region Lhe first “reasonable” approach detines the
Cornerfaces  partitioning by simple displacing each edge of the
polygonal face inwards by a certain amount such
Figure 5.5. Partitioning of a convex that resultant corner faces have their centroids
polygonal face interpolate the vertices of the shrunken face.

While this approach works well on small

rounding with some input configurations, it

suffers seriously from the stability problem in

some other configurations. In addition to

failing on concave faces, this partitioning

scheme fails even with convex polygons with a  Figure 5.6. Problem with partitioning scheme
very short edge as shown in figure 5.6. using absolute displacement

The problem arises when the absolute displacement chosen 1s large in comparison to the
length of an edge. This can easily be fixed by replacing the absolute displacement with a
displacement that 1s relative to the length of the current edge. The modified partitioning
scheme is described with a nomenclature shown in tigure 5.7:



Polyhedron Bevelling by Mesh Pre-partitioning .. ®

for each face F of original polyhedron
for each edge e =(pi , Pgi+1) mdan) Of F
Add vertex gz = pi + a (P(i+1) man — Pi) to mesh
Add vertex gz« = pivz + O (Pi — P(i+1) md n) tO mesh
for each “edge” g = (Q(zi-1) md 2n » G(2i+2) mod 2n)
Add to mesh the intersection point r; of gi and g(i-1 md n

Del ete face F from nesh

Add new face F* ={ro, rz, ... rpi) to mesh
for each vertex p, of F

Add new face {pi , Qi+ man . Fi . Gz} to mesh Figure 5.7. The nomenclature
for each edge e = (pr . Prey man) of F for a pre-partitioned face

Add new face {qgz , ri , r(i+1) mdn , Qz+} to mesh

The stability of this refined partitioning scheme 1s much better than that of the absolute
displacement scheme, but it may still fail in constructing the partitioning if the roundness
control, a, is larger than a fundamental limit of roundness control o, (F), which varies from
different input polygonal faces F. For example a_,. = 0.5 for a square face. This problem is
related to the “tlipping edge” problem as illustrated in the two dimensions, and remedy has
been proposed. The remedy in the three dimensions 1s, however, more complicated. We will
now accept the limitation and will come back to the solution later.

With the algorithm described, an #-sided polygonal face will be partitioned into 2#+1 taces
of three types:

*  Centroid face — Exactly one non-boundary #-sided centroid face will be produced, which 1s
located at the centre and buftered up with the adjacent coplanar faces.

*  Comer face — n corner faces are produced, each of which 1s located at the corner and
sharing one of the initial vertices. See figure 5.5. Note also that they are always 4-sided by
construction.

»  Edpe face — n edge faces are produced. They are
located 1n between two corner faces along the
initial boundary. Again they are always 4-sided
by construction.

Both the corner and edge faces are also referred
later as boundary faces.

Figure 5.8 shows an example of using the  Figure 5.8 Different partitioning result
partitioning scheme to produce rounded cubes in different roundedness

with different roundness.
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5.5 Justification of the Pre-partitioning Scheme

Two justitications are required:

First, it must be shown that the preserved region is actually planar. This can be trivially
proven by the locality and the convex hull properties as in the two-dimensional case. For any
n-sided polygonal face, 2#+1 faces will be produced and by construction all those adjacent
taces are coplanar. Since we have already mentioned that the two properties hold for Doo-
Sabin subdivision, the same arguments can be applied as in the two-dimensional case. The
(preserved) region of the resultant surface is solely controlled by the corresponding set of
coplanar adjacent faces, and the region must lie within the convex hull of those coplanar
taces and hence must be planar.

Second, as mentioned earlier, for an z-sided polygonal face, an z-sided planar region is
expected. We have already shown that the limit surface of the Doo-Sabin refinement
interpolates the centroid of each face. Hence we can tell that the resultant surface will land
on the centroids of all the corner faces after partitioning. However, by construction, 27
boundary faces are created for an z-sided polygonal face after partitioning. Consequently, in
order to show that the preserved region is an n-sided polygon, we need to show that the
centroid of each edge face s collinear with the two neighbouring corner faces. We must also
verify that the boundaries in between the centroids of two successive boundary faces are
actually linear. Although, unfortunately, both of the two criteria do not hold for arbitrary #-
sided polygons, we are able to show that the straight boundary property of the preserved
planar regions is satistied for any arbitrary 3-or-4-sided polygonal faces, which are the two
most common cases. The proot can be found in Appendix Al. For most other input
configurations, although the straight boundary property is not necessarily satistied in a
mathematical sense, the curvature 1s not apparent visually.

5.6 Mapping from the Roundness Control Value to the Roundedness

Since we have claimed that the roundedness, p, 1s an intuitive measure for a rounding
operation, we will attempt to relating the roundness control, a, with it. Unfortunately, the
mapping between the two 1s not trivial. There are in general two problems.

The first problem arises from the fact the computation of o given p is very complicated.
Even with the assumption that the straight boundary property 1s satistied for all input faces,
not only does the a value depend on the number of size of a given face but also the actual
geometry of the face.

We therefore believe that the cost involved to compute the exact o value for every single
tace cannot justify the usefulness of the absolute accuracy. Since also the straight boundary
property 1s only an approximation, a heuristic method s adopted. We assume that the
mapping from o to P depends only on the size of the polygonal face, 7 Thereby we
approximate the required o value of an #7-sided input face I, based on the assumption that I
is a regular 7-gon.
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The mapping 1s therefore given as:

—_ 1_ —_
a:l—p Wheree:M

1+cosB 7
The proof of correctness 1s presented in Appendix A2.

The formula reveals the other limitation of the partitioning scheme. Since o 1s bounded by
the limit of 1 by construction, the fundamental limit on p 1s therefore:

P = 1 —cos’@
hence,
limp_, =0

Thus we cannot, for example, obtain any roundedness on a circular face composed by
infinite number of vertices using the partitioning scheme presented. For example, even with
a very large a value, the effect of rounding a polyhedral approximation of a cylinder, for
which both end faces are circular, is unnoticeable. We will ignore the occurrence and assume
input faces with a lot of vertices are cut into triangular or quadrilateral faces in advance.

The other problem that we encounter when T

mapping P to O is that different o values are L HH

required on different face of the input mesh. - “ i lﬂl

This 1s however not possible for the ]

partitioning algorithm presented earlier. The I —

subsequent mesh subdivision relies on the o3 Ol I

fact that vertices are shared along the g —

boundary faces on both sides of every edge. —

Figure 5.9(a) illustrates that, when different @) ®)
values are used, boundary faces after Figure 5.9. Using different O values on different
partitioning will not share common vertices faces

along the edges of the original mesh.

Several approaches have been tried to deal with the problem. The simplest approach takes
an o value for each edge by averaging the o values from the two adjacent faces. While this
approach is straightforward and simple to implement, the major drawback is that the process
alters the preserved planar regions. It 1s illustrated by the difference between the blue regions
shown in figures 5.9(a) and (b). Various other more robust but complicated methods are
possible.

Although the use of roundedness 1s, to some extent, more an academic interest rather than a
practical requirement, methods that allow the use of different alpha values is important to
the development of non-uniform rounding. However, since our study is primarily concerned
with a global rounding operations, this side-1ssue will not be further discussed.
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57 Results

With mesh pre-partitioning polyhedron bevelling, we
are able to produce rounded volume with user .
specified degree of roundness. Figure 5.10 shows an
image of five mesh pre-partitioning polyhedron
bevelled cubes rounded with o values range trom 0.1

to 0.5.

Figure 5.11 shows an image of a stapler, smooth
shaded, with the original non-rounded model aside
tor comparison. The stapler model 1s composed with

tive different separated components. Rounding on
each component is performed separately with
different roundness control value.

Figure 5.10. Five mesh pre-partitioning
polyhedron bevelled cubes
with different roundedness

The algorithm also executes fast. Rounding of the entire stapler model takes less than 0.1
second with a Java implementation running on a 166MHz Penttum desktop computer
performing three steps of Doo-Sabin refinement. This result 1s promising for our initial aim
of real-time usage. Figure 5.12 depicts more examples of mesh pre-partitioning polyhedron
bevelled objects. Note that all concave input faces, for example the stapler’s base, are broken

into smaller convex faces 1h advance.

Figure 5.12. Other examples of mesh
pre-partitioning

Figure 5.11. The final rounded stapler with polyhedron bevelled
the original in the background objects

5.8 Chapter Conclusion and Discussion

Pertect polyhedral models in computer graphics have a harsh appearance that detracts trom
the realism of the scene. Our first attempt at volume rounding — mesh pre-partitioning
polyhedron bevelling — was presented in this chapter. The essence of the method 1s to
introduce partitioning into the initial mesh such that the desired shape i1s produced after the
applying recursive mesh subdivision. Users adjust a single scalar roundness control o, which
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alters the partitioning and hence indirectly controls the degree of roundness of the resultant
shape.

The elegance of the approach is that the resultant surface 1s simply a limit surface of the
recursive mesh subdivision process. Doo-Sabin refinement was selected as the mesh
subdivision scheme and, as a result, mesh pre-partitioning polyhedron bevelled volumes will
have GC' continuity as if Doo-Sabin surfaces. The new rounding method produces excellent
quality results on a wide range of models.

The algorithm also executes very quickly. Typical models can be rounded in less than a
second. For example, the stapler model as shown in figure 5.11 takes less than 0.1 second for
the entire rounding process. This promising result makes the method appropriate for the
“just in time” modification we proposed earlier and numerous other real-time applications.

However, the method 1s not perfect. It suffers from several drawbacks.

Firstly, the algorithm does not work on concave polygonal faces, which must be cut into
convex polygons in advance.

Secondly, the stability of the partitioning scheme 1s of concern. There is a fundamental limit
which 1s not achievable with the partitioning scheme
presented. The fundamental limit o, of a face varies from one to another depending on the
shape of the input face. For example, it 1s not possible to produce rounded cubes with a >
0.5 with the method. More seriously is the problem with the fundamental limit on the
roundedness, P, For an z-sided input polygonal face, the etfect on the resultant roundness
of a diminishes as # increases. Therefore the method works well only for input faces with a
small number of vertices.

on the roundness control «

max>

Last but not least, the method produces far more fragmentation then optimal. General-
purpose optimisation methods can be employed for better rendering speed. This, however,
adds to the cost of rounding.



Chapter 6 Optimisation Methods for Mesh Pre-
partitioning Polyhedron Bevelling

Figure 6.1. The high fragmentation
problem illustrated by a
rounded cube with randomly
coloured faces

One obvious problem with mesh pre-partitioning
polyhedron bevelling is the high fragmentation of
the resultant surface. The problem is highlighted
in figure 6.1, which shows a cube rounded by the
method with each face shaded with a random
colour.

It 1s apparent that there are many redundant
subdivisions. For example, subdividing two
coplanar neighbouring faces will always result in a
set of smaller coplanar faces, which can be more
appropriately combined into a larger element.

This idea leads to the development of pre-subdivision optimisation, which avoids redundant
subdivisions by removing appropriate faces right before the subdivision phase. Pre-
subdivision optimisation not only reduces fragmentation but also speeds up the rounding
algorithm since a huge amount of unnecessary subdivision 1s avoided.

6.1 Optimisation by Extracting Planar Regions

There 1s no doubt that the most distinguishing characteristic of a polyhedron-bevelled object
1s the large area of preserved planar regions. Since we know in advance that the regions are
planar, any subdivision over those regions will be obviously redundant. An improvement can
be achieved by extracting those regions before mesh subdivision and fitting a large polygon

over each of the planar faces.

Wiinsche [Wins96] was the first to
employ this 1idea in his Triage ~ Partitioning
polygonisation. Flat regions are removed

R

~ Mesh

Coplanar Faces

right at the beginning of the algorithm Removal
and thus give rise to a fast polygonisation Mesh

scheme with low fragmentation.

Our refined algorithm is best summarised
in the architectural diagram shown in

tigure 6.2.

Subdivision

Planar Region
Fitting

Figure 6.2. Architecture of optimisation with
planar regions extracted
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In the optimised method, the original mesh subdivision phase has been separated into three
parts, namely: coplanar neighbonr removal, mesh subdivision and planar region fitting.

The mesh subdivision phase 1s identical to the original. In the subsequent sections, we will
concern ourselves with the coplanar neighbour removal and the planar region fitting phase.

6.1.1 Coplanar Neighbour Removal

As the name implies, the coplanar neighbour removal phase removes any faces that are
coplanar with all their neighbours. Any subdivision on such a face will simply result in a large
set of smaller coplanar faces.

By considering our mesh pre-partitioning scheme given in the previous chapter, one should
notice that only the centroid faces after partitioning will be removed at this stage. Although
there 1s an exception that some edge faces should be removed if two adjacent faces are
coplanar even before mesh pre-partitioning, this situation is uncommon. Since the removal
of the coplanar non-corner boundary faces is not essential to the “correctness” of the
algorithm, we claim that it is more “economical” to simply ignore them and remove only the
centroid faces.

Figure 6.3(a) shows a cube after mesh partitioning and coplanar neighbour removal. Three
steps of Doo-Sabin subdivision are then applied and the result 1s shown n figure 6.3(b).

@ ®)

Figure 6.3. A cube: (a) after mesh pre-partitioning with all the centroid faces removed (b) after
mesh subdivision; both with randomly coloured faces to illustrate the partitioning

6.1.2 Planar Region Fitting

It is clear that the remaining job is to fit the missing planar regions back into the mesh. The
planar region fitting phase 1s nothing more than identitying all the missing holes from a
polygon mesh and then replacing them with polygonal faces.
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An example algorithm is:

Initialise Eto be the set of all boundary edges of the mesh
/1 i.e. all edges that belong to only a single face
while Eis not empty

Initialise e be any element in E

F < {}
e « g
E - E\ {eq}
r epeat
Find e = ( eep2, _) OE

/'l where e.p; and e.p, is the first and second point of e respectively
/1 and _ denotes any point
E - E\ {e’}
F « F+{e.p}
e ~ ¢
until e = ( _, €.p1)
Add F to mesh

Three points are worth emphasising. First, the sentence Find e = ( e.p, , _ ) O EIs
essentially searching for a successor edge segment from the set of all boundary edges. This
can be done in constant time, using any of a wide range of well known techniques. A
dynamically-sized hashtable 1s used in our implementation. Secondly, the algorithm requires
access to the set of boundary edges of the mesh. These are determined at almost no cost
during the final step of mesh subdivision. Finally, one should also notice the algorithm
presented 1s based on the assumption that the input volume is closed.

6.1.3 Result of the Optimisation by Extracting Planar Regions

Figure 6.4 shows the resultant cube rounded by the optimised method by first extracting
planar region. The result is promising. Huge amount of fragmentation over those planar
regions is completely eliminated.

In the case of a cube, original 3458 polygons are
reduced to 2114 polygons with three steps of Doo-
Sabin subdivision. The exact saving depends upon
the input mesh and the required number of steps of
mesh subdivision. Roughly, a 30-40% reduction in
the number of polygons 1s attainable.

b

The optimised method also cuts the required
execution time approximately in half by avoiding

o Figure 6.4. Resultant cube rounded with
large amount of unnecessary mesh subdivisions.

the optimised method by first
extracting the planar regions
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6.2

Optimisation by Corners Subdivision and Reconstruction

Even with the optimisation method of extracting planar regions, it can be seen in figure 6.4
that the curved “fillet” along the straight edges of the polyhedron is still unnecessarily
tragmented: single polygon strips from one corner to the other would be more efticient.

This section presents a further improvement over the last method, which eliminates also the
unnecessary fragmentation over those curved edges. Figure 6.5 shows the resultant cube
rounded by such improved method.

This turther improvement is achieved by performing the
mesh subdivision only on the corners of the original
shape and fitting back the appropriate edges and planar
taces afterwards.

One may notice that this method is only an
approximation of the original mesh pre-partitioning
method since, as explained before, the edge of the
preserved planar region may not be linear on faces that
are not 3 or 4-sided.

Figure 6.5. Resultant cube

rounded by the Our argument is that the straight edges of the preserved
optimised method planar region are exactly what we want. It 1s, however,
that perform mesh important to notice that the result (and hence the

subdivision only on continuity) may not be the same as the original method.
corner faces

6.2.1 Architecture of Corners Subdivision and Reconstruction

Figure 6.6 shows the immediate results for rounding a cube with the optimised method.
Each of them corresponds to a single phase of the method. They are:

1.

Corner Extraction — 1s an analogue of the mesh partitioning phase ot the original method
except that only the corner faces are retained in the process. Extra topological (or
connectedness) information of the input shape is required for the reconstruction of the
volume in the later stage. A set of disjoint corner meshes 1s created after this phase.

Mesh Subdivision — 1s the same as the original. Since only the corners are retained from the
original shape, the rounding applies only to them. Unfortunately, not only does the mesh
need to be refined, the topological information needs to be modified at each step of the
refinement in order to reconstruct the volume after this phase.

Edges Fitting — 1s the first part of a volume reconstruction process. In this phase, the rounded
edges are reconstructed based on the retined topological information.

Planar Regions Fitting — 1s the second part ot a volume reconstruction process. It is the same as
the one used in the first optimisation method except the number of vertices of each
planar face is dramatically reduced.
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Figure 6.6. Immediate result of each step of the corners subdivision & reconstruction method

6.2.2 Volume Reconstruction of Corners Subdivision and Reconstruction

The reconstruction of the volume requires the topological information of the original mesh,
which unfortunately will normally be lost atter the mesh subdivision phase. In order to
reconstruct the volume, this information must be stored elsewhere and updated during the
process of mesh subdivision.

We will present in this section our implementation of the volume reconstruction process.

Our method starts with labelling each of the disjoint corner meshes during the corner
extraction phase. The intention here 1s to set up virtual linkages between each of the disjoint
corner meshes and its neighbour meshes.

First, we detine any edge that belongs only to a single face as a boundary edge and any vertex
that 1s connected to the boundary edges as a boundary vertex.

Artificial “/abels” containing topological information are attached to each of the boundary
vertices of each corner mesh. Fach label of vertex p contains two pieces of information. The
tirst one indicates the opposite corner meshes to which p should connect. The second 1s the
relative indexing along all pairs of vertices between the two corner meshes. Since there are,
by construction, three pairs of vertices on each edge of the original mesh, the initial indexing
will either be 0, 1 or 2. Figure 6.7(a) shows an example configuration after the initialisation.
The labelling of the boundary vertices sets up implicit linkage along different corner meshes,
which makes volume reconstruction possible.

The label-initialising algorithm is given as:

M. — initial input nesh
Ms — nesh after extracting corners
for each disjoint corner mesh M in M
Label M.p with p; where p; is the commpn vertices of M and M
for each disjoint corner mesh M in M
for each boundary vertex p of M
if pisonsomre edgee=( M.p, g) or (g, M.p) of M
Label pwith ( g, 1)
else ( pis on sone face F={ ..., pi-1, pPi , Pi+1, ...} of M

Label pwith ( pi.x, 0) and ( pisa , 2)
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|:|]3_.- 1} Epi-’ 2}
(P4, 0}

——

Figure 6.7. Topological information used in the corner subdivision and reconstruction method
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The remaining issue is to update those labels at each step ot mesh subdivision, so that the
implicit linkages (relative indexing) are maintained during the process.

We now define parent-and-child relationships between zertices on the / and 41" refined
mesh of mesh subdivision. For mesh subdivision, any vertex on the H1™ refined mesh is
given as some linear combinations of the vertices on the /" refined mesh. We can therefore
define a vertex p on the /" refined mesh to be the parent of vertex ¢ on the 41" refined
mesh if p has the highest coefticient in the linear combination that defined 4.

We can now define the updating process as:

for each face F on the mesh
for each refined vertex g, on F
for each label ( x , n) attach on the parent p; of gi
if alabel ( x, n-1) is attached on the predecessor p;.; of pi in F
Attach label ( x, 2n-1) to gi
el se

Attach label ( x, 2n) to gq;

Figure 6.7(b) shows that the labelling of the boundary vertices 1s propagated on to the next
step of the refined mesh. The topological information s passed through this parent-and-
child hierarchy during the mesh subdivision phase. After the mesh subdivision phase, each
edge of the original mesh will end up with some configuration as shown in figure 6.8.
Appropriate long strips can be added according to the indexing to fit over each edge. Finally
the process of fitting planar regions with large polygons is identical to the one described
before.

A

A, 0)
1)
i, 2)

(8. 0)

(A, o)

B

Figure 6.8. The topological labelling on each curved edge

6.2.3 Result of Corners Subdivision and Reconstruction

With this method, we are able to bring down the number of polygons from the original 3458
to only 602 in case of rounding a cube with three steps of Doo-Sabin refinement. In general,
this optimisation method outputs only about 20% of the polygons of the original method.
Even with the overhead required to manage the topological information for the volume
reconstruction, the execution speed is approximately twice that of the first optimisation
method presented in section 6.1 because of the huge reduction in unnecessary subdivisions.
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For the stapler model shown in figure 5.11, an execution time of 0.02s is recorded on a
166MHz Pentium with this method. That 1s, approximately 4 — 5 times faster than the
original method presented.

Furthermore, the corners subdivision and reconstruction method ofters a better algorithmic
stability than the original method. As stated before, there 1s a fundamental limit on the
roundness control o, which 1s not achievable in the original mesh pre-partitioning method.
The problem arises as the centroid and edge taces will tlip if the o value is too large.

Since the new method performs rounding only on corner

taces, it does not matter even if the two other types of .
taces are tlipped. Figure 6.9 shows five cubes rounded by

the new method with a values range from 0.5 to 0.9,
which are normally unachievable with the original
method. In theory, a,,, of 1 is achievable with the
method if the mesh subdivision phase 1s recursive ad
infinitum. In practice, a sufficient number of subdivision
must be applied to pull the corner meshes apart so that
they do not overlap each other. For example, rounded
cubes with a equals 0.87 and 0.93 are attainable with
three and four steps of subdivision respectively.

Figure 6.9. Five cubes rounded
using the corners
subdivision and

The benefits of the method, however, do not come

reconstruction
without a price: The algorithm is considerably harder to optimisation method
implement especially maintaining the topological with roundedness that
information in each step of mesh subdivision. The normally are
tollowing section will be devoted to describing how the unachievable using the
volume reconstruction works in the implementation level. normal method

6.3 Chapter Summary and Conclusion

Mesh pre-partitioning polyhedron bevelling sufters from the problem of high fragmentation,
some of which is unnecessary and avoidable. Two optimisation methods, namely planar
regions extraction and corner subdivision and reconstruction, were developed and presented in this
chapter. Not only have we achieved an approximately 30% and 80% cut in fragmentation
trom the two methods respectively, but also the execution speed roughly doubles and
increases four times due to the fact that most unnecessary subdivisions are avoided.

An extra benefit of the corner subdivision and reconstruction method is that 1t offers better
algorithmic stability by pushing the fundamental limit of the roundness a,,, close to the
optimal value of 1.



Chapter 7 Polyhedron Bevelling by Target-driven

Subdivision

The preceding chapters focus on the mesh pre-partitioning polyhedron bevelling method,
which rounds volume with user specitied roundness by introducing partitioning that
indirectly controls the tinal shape. In this chapter, we will shift our focus to polyhedron
bevelling by target-driven subdivision or, simply, target-driven polyhedron bevelling, which
varies the actual mesh subdivision process to preserve planar regions in a more direct
manner. Our discussion starts with why the former method 1s not appropriate in some rare
situations, which led to the parallel development of both methods. At the end of the chapter,
we will compare and contrast the two.

7.1 Rationale

The development of the target-driven approach is largely because of the unsatistactory result
of the mesh pre-partitioning approach in some circumstances. The major limitation ot the
mesh pre-partitioning approach s perhaps the assumption of convex input faces.

The concavity problem 1s faced by many
polygon-based algorithms. Interestingly enough,
a common approach taken by these algorithms
1s to simply ignore the concavity problem by
assuming convex input or to rely on pre-
processing methods such as triangulation.

Recursive mesh subdivision, unfortunately,
takes the same approach to resolve the
concavity problem. Although the author is
unaware of any reference from literature, the
problem can be realised from tigure 7.1. The
diagram shows a shape in wireframe processed
by the Doo-Sabin subdivision method. An
undesired lump can be clearly noticed on the
concave corner in the enlargement. The
tormation of the lump is due to the fact that
each vertex 1s moving toward the face centroids Figure 7.1. An example of artefacts produced

in each step of recursion, while the face on a input mesh with concave
centroids of a concave face may lie outside of faces by the Doo-Sabin
the face itselt. refinement scheme

The concavity problem encountered by recursive mesh subdivision, to some extent, justifies
why we do not consider concave faces in the mesh pre-partitioning approach. Given that
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recursive mesh subdivision is, by definition, one of the separated phases of mesh pre-
partitioning polyhedron bevelling, it seems unlikely that any mesh pre-partitioning method
can get around with the problem and, at the same time, keep the mesh subdivision phase
unaltered.

Apart from that, the partitioning scheme presented in
Chapter five fails on concave faces. Several alternative
partitioning schemes were explored and examined,
which involve special handling of concave corners.
However, not only do those methods compromise the
simplicity of the algorithm, but also none of the
attempts 1s robust enough to handle arbitrary concave

inputs.

Figure 7.2. An example of partitioning
All the above give rise to the development of target- of a concave tace _W_ith_Oﬂe
driven polyhedron bevelling, which avoids the of the special partitioning

partitioning phase altogether. scheme explored

7.2  Two-dimensional Analogy — A New Concept of “Centroids”

As mentioned in the previous section, recursive mesh subdivision fails on the concavity
problem mainly because the centroid of a concave polygon may lie outside the polygon
itself. The target-driven polyhedron bevelling method resolves the problem by introducing
the concept of “destination point’. However, betore going into the details, we will in this
section reorganise the presentation of the two-dimension mesh subdivision given in Chapter
tive, but from a perspective of moving vertices towards the centroids at each step of
recursion.

7.2.1 Mesh Subdivision as Moving Vertices Towards Centroids

Recall from Chapter five that the Chatkin refinement scheme computes the two new vertices
on each successive edge by a linear combination of the two endpoints of the edge.

Let p; be the /th vertices on the /” iteration mesh. , ﬁcg_j__..*p? "
Then the refinement rule given earlier can be written p%r________,‘- \%1
as: P;?l =2 P+ < P4 for all even vertices and D-}v:.-"' _,.3ﬂ
P;J;lﬂ =4 pu + 4 p) forall odd vertices. c%}; Eg‘ pg
Pss ~
Now we define also ¢ as the centroid of the /th puE%
0/

segment of the /" iteration mesh, where the /" segment

is the one that has endpoints of p; and p; - See Figure 7.3. The nomenclature for a
tigure 7.3. step of Chatkin refinement

The refinement rules can now be rewritten in terms of 5; as:
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i+1

— 1 z 1 .z — 1 z 1 .7
pZ/_Ep/—i_EE/ and p2/+1_5p/+1+551

Note also that the centroids remains unchanged in each step of recursion. That is, any even
centroid in the /41" iteration mesh will be the same as the corresponding centroid in the /*

i+1

tteratton mesh: ¢, ~ = ¢). The Chatkin refinement can hence be described as a process of

moving vertices towards the centroids.

At each step of recursion, each vertex 1s moving halt way towards the centroid of the
corresponding segment. Examining the arithmetic sequence, 1 +++++4&+ ... = 1,
confirms the vertex coincides with the centroid at the limit. We therefore call the centroid of
each segment the destination point of the recursion.

7.2.2 Rounding by Moving Vertices Towards Target Points

We will now extend the concept of destination points of recursion to achieve polygon
rounding with a user specification of roundedness.

In two dimensions, there are two endpoints on each segment of the mesh. We would like the
two endpoints to move to two different final positions, so that a final linear segment with a
used-detined length is preserved in between. We theretore define the target, a generalisation
of centroid, of the /" segment on the /* iteration mesh as a tuple of two destination points:

£, =(dy),dy))
where doi and dl(; are the two endpoints of the /* desired final linear segment.

The target 1s a generalised concept of a normal “centroid”. Hence the even target 1s defined
like the centroid as:

i+1

ZZ/ = l‘/
while the odd target 7, ., = (d,} ,,» 4y, ,4,) will have two coincident destination points that
are the same as the normal centroid: 4, ,, = d\, 4 = 3 s + 3 P34, foralli> 0.

The refinement rules for both even and odd vertices also need to slightly alter to reflect the
tuple nature of the target:

i+1 1 +1 i

— i 1 g — 1 i 1
2y _E/j/"i_ido/ and p2/+1_5P/+1+5d1/

In this modified refinement scheme, each vertex is moving towards a corresponding
destination point, which may or may not be the same as the centroid.
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Figure 7.4. Target-driven polyhedron bevelling in 2-dimensions: (a)
initial polygon and nomenclature (b) after one step of subdivision

Figure 7.4 shows an example of how the moditfied refinement scheme performs rounding in
two dimensions. The endpoints of the desired final linear segments are marked as red points
in figure 7.4(a). Fach vertex is moving towards the corresponding destination points in the
directions shown by the arrows. Figure 7.4(b) shows the resultant polygon after the first step
of subdivision.

We can see in the figure that all the even segments are portions of the initial segments and
the even target (“centroids”) remain unchanged. Odd segments are inserted and odd targets
are computed by the normal definition of centroid. The process then carries on recursively
ad infinitum.

The same lmit curve is obtained as the mesh pre-partitioning method with the pre-
partitioning phase totally eliminated.

We will finish the discussion by summarising the three parts of the functional definition of
the target, which 1s the key aspect of the extended method:

1. Initial targets, z‘j, also known as the zero iteration targets, defines the preserved linear

0

regions. In the case of z‘j = (¢,

cf), the resultant curve will be identical to that generated

with the Chaikin method. This shows the Chaikin refinement is a proper subclass of the
extended method.

2. Even targets, 1, ., are defined to be the same as the targets of the previous iteration: Z;J;l =

7. 'This guarantee the “centrotd” interpolation property, which requires the “centroid”

to stay unchanged in each step of refinement.

3. Odd targets, 1, ,,, are defined as a tuple of two coincident points, both of which are the

normal centroid of the segment. This ensures the method to be identical to the Chaikin
method in case of z‘j: (52,53) and thus guarantees the smoothness of the resultant

curve.
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7.3 Treatment in Three-Dimensions

We are now going to look at how the treatment can be mapped into three dimensions. The
key part of the method is again the functional detinition of the target. The target function of
an #n-sided polygonal face 1s extended to an »-tuple or z-vector:

o= (dol/,dllj, e dﬂ_ll/)
while z‘; denotes the target of the /th polygonal tace of the M iteration mesh.

For an n-sided polygonal face, /= { p,, pi,» --» P, }, cach vertex p,’ is moving half

way towards its corresponding destination point 4 élj . The new control points are connected

as if with the normal quadratic Catmull-Clark/Doo-Sabin refinement. Hence the concept of
odd and even segments in two dimensions needs to map to the three face-types (F, E and V-
taces) in quadratic Catmull-Clark refinement. At each level of recursion, F-faces, which
correspond to even segments in the two dimensions, are computed based on the image of

each of the original faces, f:

f/z+1 = {pol;-l’ pll;-l?"'? pn—ll/+1} forOS/SNz

where

+1 z

— 1 1 z
Pe;, T b, T Edé/ and
. . th . .
N, 1s the number of faces in the /" iteration mesh

Figure 7.5(a) shows an initial mesh with the destination points, z‘j, defined in red, in which

we define the boundary of the desired planar regions. Fach vertex is moving half way
towards the corresponding destination points and these define the control mesh of the next

iteration. E-faces and V-faces, f;ﬂ tor N, <j < N_,, are constructed as if the Catmull-Clark

refinement as shown in figure 7.5(b).

F-targets, like the even targets in two dimensions, remain as is:

rt=r for 0< j< N,

J 7?2

while E-targets and V-targets, z‘;ﬂ tor N, < j < N,,, are computed by a specific functional

definition, which we will discuss in the tollowing section. E and V-targets are marked with
question marks in figure 7.5(c). The new control points are continuously refined by moving
steadily towards the corresponding destination points.
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Figure 7.5. Polyhedron bevelling by target-driven subdivision in 3D. (a) initial mesh
with mnitial centroids defined. (b) the mesh after the first step of subdivision.
(c) the E and V-targets are re-computed and the new control points are
moving towards the corresponding destination points in the subsequent
refinements

7.4  Defining the Target Function - The Skeletal Target

The behaviour of the target-driven polyhedron bevelling method depends largely upon how
functional definition of the targets within the generic framework. The function atfects both
the use of the rounding parameter and the continuity of the resultant shape.

We believe that two criteria are essential to the way the target of the polygonal face, p, 1s
defined. They are:

1. All the destination points must lie within .
2. 'The target must, to some extent, describe the topology of .

It 1s not hard to notice the two criteria are very much reflecting the quality criteria of a
rounding operation in Chapter two. For instance, the tirst criterion is directly related to the
criterta of monotonic reduction of planar area.

Our research in this point 1s driven heavily by the second criterion. This led to the
development of the concept of ‘skeletal target. This functional definition of target makes use
of a simple vartant of skeleton called straight skeleton [AA9G]. We begin with a brief
background on skeletons and an introduction to the straight skeleton. Most importantly how
the straight skeleton is employed in the definition of the target function is presented
afterwards. Since our primary focus here in this chapter 1s to describe and detine the volume
rounding method, the divide-and-conquer algorithm we employed for computing straight
skeleton 1s included only in the Appendix B.
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7.4.1 Background on Skeleton

Skeletons or medial axis transforms [BB82| are heavily used in image processing and
computer vision. The concept of a skeleton 1s a useful representation of many topological
and size characteristics of the polygon. As its name implies, the skeleton always lies within
the boundary of the polygon. All these properties make it 1deal for serving as a replacement

of the normal definition of polygonal centroid.

The skeleton or medial axis transform of a two-
dimensional region 1s defined as the locus of the centre
of an inscribed circle of maximal diameter as it moves
inside the object as shown in figure 7.6. Another
definition of medial axis transform is that 1t consists of
all interior points with more than one closest point on
the polygon boundary.

We call segments of the skeleton that are equidistant
trom two adjacent edges Zmbs of the skeleton while the
rest of it we will call the backbone.

Figure 7.6. Medial axis transform

Note that the medial axis transform is made up of straight-line segments and parabolic arcs.
The parabolic arcs are formed at points that are equidistant from a concave vertex and
‘opposing’ edges. These parabolic arcs are considered as disadvantage in our application

both in terms of representation and construction.

7.4.2 Introduction to Straight Skeleton

Recently, Aichholzer and Aurenhammer [AA96]
introduced a new type of skeleton, the straight skeleton,
which has the nice property that it consists of only
straight-line segments with no parabolic arc. An
example of a straight skeleton is shown in figure 7.7.

Unfortunately, while the medial axis transform is
defined geometrically, Aichholzer and Aurenhammer,
although attempted, could not come up with a nice
geometric definition of the straight skeleton.

The straight skeleton 1s defined’ procedurally as follows:

Figure 7.7. Straight skeleton

For an n-gon G, 7 wavetronts arises initially from the #» edges for G. Fach wavefront
propagates inwards simultaneously, at the same speed, and in a selt-parallel manner. The

4 The definition given hereis slightly simplified from that given in the original paper which works on an

arbitrary straight line graph rather than just a closed polygon.
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endpoints of each wavefront move along the angular bisectors with the two adjacent
wavetronts.

Each point on the wavefront continues to propagate until it hits some other wavefront. The
straight skeleton of G 1s then defined as all points where wavetronts hit.

While the straight skeleton represents many of the same topological and size characteristics
of the polygon as the medial axis transform does, it 1s different from the medial axis
transform in two major aspects:

1. Straight skeleton contains only straight-line segments while medial axis transform will
have parabolic arcs it concave vertices exist. This makes the straight skeleton
computationally easier to compute. In fact, medial axis transforms are mostly employed
in image-based application since the vector-based construction of medial axis is
extremely hard and computational expensive, while the pixel-based approximation is
simple to compute.

2. More importantly, every single vertex of a polygon will have a corresponding limb in the
straight skeleton while only convex vertices will have a limb in the medial axis transtorm.
Hence for an z-sided polygon, the straight skeleton will have exactly # limbs.

Both of these make the straight skeleton particularly suitable for our application.

7.4.3 Functional Definition of Targets Using the Straight Skeleton

Recall from earlier in the chapter that a complete definition of a target function in three
dimensions can roughly be divided into three parts namely: the initial targets, the F-targets
and the E or V-targets.

Since all F-targets are by detinition given as: z‘;ﬂ = 1, for 0 < j < N,, only the initial targets

and the E or V-targets need to be specitied for the skeletal target function. Again, NN, 1s the
number of faces of the /" iteration mesh.

Let ¢( /) be a function which maps an #-sided
polygon face /= { py, p1 -5 Py § to an z-tuple (j,
Jis -5 Ju1), While j; 1s the joint point between the
limb of p, and the backbone of the straight skeleton

of /.

Figure 7.8 shows the joint points of a straight
skeleton. The correspondence of each joint point
with the vertex 1s stressed by the indexing in the
tigure

Pa

Figure 7.8. Joint points of straight
E or V-targets for any non-zero iteration mesh face skeleton
1s simply given as:
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1=0(/) for /> 0and N, </ < N,
The zero iteration targets implicitly define the preserved planar regions of the resultant shape
and hence the roundedness of the resultant shape, and so 1t 1s sensible to define them either
with automatic or interactive methods. We will focus here only on the automatic definition
with a single scalar control of roundness.

We can define the zero iteration targets with the roundness parameter, Q, as:
0 _ 0 0
=00 V) ad(f)

where V( /) is the vertex function for an input face f t.e. a function which maps an #-sided
polygonal face, £ to an n-vector ( py, pi, .-, p,1) where p, is the /* vertex of £

Zero iteration targets defined using
the straight skeleton offer many
advantages over those defined using
the partitioning scheme in the mesh
pre-partitioning approach. Not only
' does the former support concave
‘ ' input faces, but also it produces
more “reasonable” result in situation
like input face having collinear
boundary segments or large relative
length between different edges.

Figure 7.9. Preserved planar regions defined using
the straight skeleton (upper row) and
mesh pre-partitioning (lower row)

Figure 7.9 shows in the upper row the preserved regions defined using a straight skeleton on
three ditferent shapes. The lower row shows the corresponding ones defined using the mesh
pre-partitioning approach. The first pair in the left illustrates the behaviour on concave faces.
The pair in the middle shows a triangular face with two extra vertices on its base edge. It can
be seen that the preserved region defined using a straight skeleton is more robust to the
collinear segments. The last pair shows that rounding is applied more evenly with a
preserved region detined using a straight skeleton on a face with a large aspect ratio.

The solution, however, i1s not perfect. Problems can arise in
the definition of the initial skeletal target with some very
concave faces when the required rounding is large. Figure 7.10
shows a case where the detfined region to be preserved is not a
valid polygon. The suggested approach to dealing with the
situation 1s partition on detection. Since it 13 easy to detect the
validity of the preserve regions once created, we can
triangulate the polygonal face if needed. This approach
minimises the triangulation required. Triangulation, to some Figute 7.10. Problem of the
extent, destroys the essential polygonal nature of the mesh, initial skeletal
which we would like to preserve during the rounding process. target

* Preserved Region
-+ Straight Skeleton
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Figure 7.11 shows examples of target-driven polyhedron bevelling using the skeletal targets
on both convex and concave input faces. The straight skeletons are shown in blue and the
targets are in red.

HD

Figure 7.11. The initial and the first iteration mesh of target-driven polyhedron
bevelling using skeletal targets

7.5 Results and Discussion

The major contribution of target-driven polyhedron bevelling is the stability offered by
elimmnating the partitioning process. It does not suffer from the limitation of fundamental
limit of the roundness a,, as in the mesh pre-partitioning polyhedron bevelling. The
method is stable for all input meshes with convex faces. It 1s also applicable to concave input
faces in most circumstances.

Figure 7.11 shows some example objects rounded by the method. They are normally
unachievable by the mesh pre-partitioning method without having their concave faces cut
into convex polygons in advance.

Figure 7.11. Examples of target-driven polyhedron bevelling using skeletal targets

The other area of concerns is the continuity of the resultant surface. Although one can see
trom tigure 7.11 that the results are visually pleasing, their continuity is unknown to the
author. The resultant surface is not the same as the standard Catmull-Clark/Doo-Sabin
surface both because of the replacement of centroids with the skeletal targets and the idea of
stepping linearity halt way towards the destination per iteration.
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Figure 7.12 depicts the fragmentation of a target-driven
polyhedron bevelled object. The result is similar to that of
the corners extraction and reconstruction method described
in the previous chapter. The fragmentation occurs only
where necessary, over the regions of rounded corners and
edges, and large area of planar region are left untouched.

Figure 7.13 shows a yellow stapler, which 1s the same stapler
in figure 5.11 rounded by the target-driven polyhedron
bevelling method. Beside it is the one in red rounded by the
mesh pre-partitioning method for comparison. One may _
notice some slight differences between the two like the front Figure 7.12. Fragmentapon of
corners in the stapler’s bases. Both of them are, however, 2 target-driven

. . polyhedron
visually pleasing. bevelled object

Figure 7.13. Staplers rounded with the two different polyhedron bevelling methods.

Owing to the algorithmic simplicity, the method also executes very quickly. Its execution
speed 1s even faster than the mesh pre-partitioning approach and 1s approaching the speed of
the Catmull-Clark/Doo-Sabin subdivision methods. The only extra computation, apart from
the mesh subdivision, is to calculate the skeletal targets. The computation of the straight
skeleton can be rather expensive; however, the target of each face needs to be computed
only once and stays unchanged throughout the recursive process. Also, all E and V-faces
generated after the second iteration are only 4-sided and hence their straight skeleton can be
computed very fast. Its execution speed is sufficient for real-time usage. For instance, our
Java implementation achieves an execute-time approximately of 0.02s for the yellow stapler
shown in figure 7.13.
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7.6 Comparison with the Mesh Pre-partitioning Approach

Most of the differences between target-driven polyhedron bevelling and mesh pre-
partitioning polyhedron bevelling have already been discussed. Key points are tabulated

below.

Features Polyhedron Bevelling by Mesh Polyhedron Bevelling by Target-
Pre-partitioning driven Subdivision

Algorithmic Fair. The method does not support The stability is very much enhanced.

Stability concave faces. Even with convex It suffers from neither the Omax not
input faces, there is a fundamental the Pmax problems, as the pre-
limit on the roundness parameter, partitioning phase is completely
Omax, which cannot be achieved. The  eliminated. Any arbitrary convex
optimisation method ‘corners faces are supported. Concave
subdivision and reconstruction’ polygonal faces are as well supported,
resolves this limitation by pushing but the definition of mitial target
the fundamental limit close to the using straight skeleton may fail on
optimal value of 1; however, the such mput if the desired roundness 1s
method still suffer from the low large. Fortunately the problem is
fundamental limit on the easily detectable once the target 1s
roundedness, Pmax ON an input face constructed. Such concave face can
with large number of vertices be then cut into convex polygons.

Continuity Analytical smooth, GC1, but Visually smooth. Analytical

Execution Speed

Fragmentation

occastonally produces unpleasant
results in situations like several
consecutive collinear edges in a
polygonal face.

Fast in comparison with most
existing volume rounding methods.
Models with typical complexity can
be rounded within a second.

The resultant surface exhibits much
higher fragmentation than necessary.
The problem is however resolved by
the more complicated optimisation
methods.

smoothness is unknown. One may
notice the result, in some cases, 1s not
as smooth as that of the mesh pre-
partitioning approach by very careful
examination; however, it is generally
more robust to situation like
consecutive collinear edges and so
forth.

Even faster than the mesh pre-
partitioning method. Our prototype
indicated an approximately the same
execute speed as the optimised mesh
pre-partitioning method ‘corners
subdivision and reconstruction’. We,
however, believe that the method 1s
potentially a lot faster due to its
simplicity.

The fragmentation is similar to that
resulted from the corners-subdivision
and reconstruction method.
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7.7  Chapter Summary and Conclusion

This chapter presented the polyhedron bevelling by target-driven subdivision. The idea of
the method is to modify the actually mesh subdivision phase to achieve the task of
preserving planar region in a more direct and simple manner.

The target-driven polyhedron bevelling method arises directly from the idea of two-
dimensional Chatkin refinement method where, at each step of refinement, each vertex is
moving haltway toward the edge centroid. The generic framework of target-driven
polyhedron bevelling replaces the concept of centroid by the so-called zargets or a set of
destination points towards which the vertices are moving gradually at each step of recursion.

The choice of target function atfects both the use of the rounding parameter and the
continuity of the resultant shape. The use of a target that makes uses of the straight skeleton
was investigated and proved very effective except for polyhedra with extremely concave
taces.

The target-driven approach differentiates itself from the mesh pre-partitioning approach
largely by the stability advantages offered. It is robust to all arbitrary convex input polygonal
faces as well as to most concave ones.

Although the result is visually pleasing, the continuity 1s unknown to the author due to the
lack of geometrical definition of straight skeleton. This opens up future research directions
in studying the exact mathematical properties and, if necessary, in developing a new target
tunction that leads to an analytically smooth resultant surface.



Chapter 8 The Just-In-Time Implementation

In this chapter, we shift our focus to the practical implementation of the VRML just-in-time
volume rounder. Since the preceding chapters have already covered the rounding algorithm
— polyhedron bevelling — the focus here will be primarily on the architecture and various
other details of the implementation.

The discussion in this chapter assumes familiarity with the VRMLI7 language definition
[VRML97] and the notation used in that detinition. The chapter 1s, however, designed so
that readers unfamiliar with the definition can understand without too much concerning
about the exact VRML syntax.

8.1 Scope and Objective

The aim of the implementation 1s to extend VRML to allow scene object with user specitied
roundness. We will limit our scope to deal with only polyhedra (or, in VRML terminology,
IndexedlaceSel); other types of VRML built-in scene object like “cylinder” or “box” will be
not considered here. The first version of the prototype system will also assume closed nput
mesh.

As we have briefly mentioned right at the beginning in Chapter one, the target system is a
just-in-time implementation: the VRML file describes the original “unrounded” volume and
the rounding operation s performed just before rendering. The benefits of the approach
have already been discussed in section 1.4. The JIT moditication 1s best described by its
conceptual model shown in figure 8.1. The VRML file may be located either in a remote
host or locally on a client machine. It is transterred over a communication link upon request.
The communication link can be the Internet or a local area network using the hypertext
transter protocol (HI'TP) or merely a local data bus if it 1s a local file. The JIT plug-in (or
browser extension) 1s launched and the rounding algorithm 1s executed. The rounded mesh
s, tinally, rendering by the VRML browser.

Remote Host Local Machine

)

\

) ) | 3 ) ) 3 3 4
Communication Link

4 JIT Plugin
+ FRounding
Specification

VRML Browser

Figure 8.1. Conceptual model of the JIT modification
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The rounding specification of the prototype system is limited to a global rounding operation
with a single scalar control. The system should, however, be easily extendable to allow more
complex roundness control.

Three other requirements / design goals are as listed below:

1. The effort required to convert existing VRML models so as to benefit from the rounding
extension should be minimised.

2. 'The integration between the JIT plug-in and the VRML browser should be as seamlessly
as possible.

3. 'The client-side installation should be avoided / minimised.

8.2  Extensibility of VRML

Before we move on to our implementation details, we will first briefly describe how VRML
offers extensibility to the base language. Being one of the six design criteria stated in the
international standard [VRMLI7], extensibility s mainly provided via two mechanisms in
VRML. They are prototyping and scripting, both of which will be used in our
implementation.

8.2.1 Prototypes

Prototyping 1s a mechanism for defining new node types in terms of already-defined node
types. The VRML standard defines a set of built-in node type. Node types are detined in the
standard as:

“A characteristic of each node that describes, in
general, its particular semantics. For example, Box, Node
Group, Sound, and SpotLight are node types.”

[VRML97 3.67] |
Node Type
A node is the fundamental component of the ™

scene described in a VRML file. The relationships LA 1
between nodes, node types, built-in node types Built-in

and prototypes are best illustrated in a metamode! Node Type
shown in figure 8.2. The diagram reads as follow:
each node has a node type, which can be either a

Prototype

Figure 8.2. A portion of the metamodel

built-in type or a prototype. A prototype is in turn of VRML using the
defined using a set of nodes of already-defined notation of the Unified
node types. Modelling Language [FS97]

5 The term “metamodel” means a model that describe a model.
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The prototyping mechanism allows extension to the base language. One can, for instance,
define a geometry node type of a “Cube” using the “Box” built-in node type with syntax:

PROTO Cube [] { Box [] }

The ‘Cube’ node can then be instantiated as if standard node type:

Shape { geonetry Cube { } }

More complex node types can be defined by both aggregation and parameterisation. For
example, more than one node type can be used to define a single new type, and also
parameters or “fields” can be added to differentiate the behaviours of each instantiation of
the same node type.

8.2.2 Scripts

Scripting s yet another mechanism allowing extensibility in VRML. With scripting, a VRML
world can change dynamically in response to user inputs, external events and the current
state of the world. There are two scripting languages proposed by the standard’. They are
Java and ECMAScript. The extension that allows one of an object-oriented, general-purpose
programming language like Java provides virtually unlimited ability for dynamically
manipulating the virtual world. Our discussion will focus only on scripting with Java.

Java source code 1s first compiled into “bytecode” or “class file”, which can be executed
within the virtual machine of the browser. The binding between the bytecode and VRML file
1s established via a “Script” node with syntax:

Script { url "..... /foo.class" }

where the #7/ field of the Script node contains the uniform resource locator (URL) of a file
containing the Java bytecode.

Scripting in VRML 1s event-driven. Events to the Script node will trigger the corresponding
methods in the script. On the other hand, the script manipulates the world again by sending
events. The output events generated from the script are routed to the appropriate node in
the scene graph in order to vary its behaviour.

8.3 The Language Extension

The implementation of the JIT VRML volume-rounding extension is accomplished by
definition of a new geometry node type using the prototyping mechanism in VRML. We call
this new node type “BevelledPolybedron”. VRML authors should be able to use the new node
type as if it was a the standard geometry node type:

® Note, however, that no particular scripting language is compulsory to the standard. The only available
VRML browser that currently supports Java implementation is Cosmoplayer 2.x by Silicon Graphics.
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Shape { geonetry Bevel | edPol yhedron { ... } }
where the ellipsis stands for various input fields, which will be discussed in this section.

As mentioned before, prototyping in VRML allows parameters or fields to be included so as
to differentiate the behaviour of each mnstantiation. Fach field has a type, a name and an
optional default value.

For our application, two parameters are required. They are the mnitial mesh configuration and
the rounding specification. Since we are interested in a global rounding operation with a
single scalar control, the rounding specification 1s therefore simply a tloating-point value
trom zero to one. We use the roundness control, a, in the algorithm directly for the sake of
simplicity and name it the rundnessParameter. A detault value ot 0.5 1s given. The declaration
is therefore:

field SFFl oat roundnessParaneter 0.5 #[0, 1]

As for the initial mesh configuration, there are numerous different representations. However
due to the fact that one of our design goals i1s to minimise the effort required to convert
existing VRML models in order to benefit from the rounding extension, the exact same
representation employed by the VRML IndexedFaceSet node type is chosen. The
corresponding declarations are:

field SFNode coord NULL
field MFInt32 coordl ndex []

The coord field contains a Coordinate node that defines the three-dimensional vertices
referenced by the coordlndex field. BevelledPolyhedron uses the indices in its coordlndex field
to specity the polygonal faces of the initial mesh by indexing into the coordinates in the
Coordinate node. An index of "-1" indicates that the current face has ended and the next
one begins. The last face is optionally followed by a "-1" index.

FEach face of the node will have:

1. at least three non-coincident vertices,

2. vertices that define a planar polygon,

3. vertices that define a non-selt-intersecting polygon.

We assume also that the input mesh is closed. Therefore:

1. Each edge defined by two connected vertices must be shared by two polygonal faces

Figure 8.3 shows the syntax of a rounded scene object and its corresponding non-rounded
IndexedFaceSet. The minor differences are shown in bold. Also because of the default value
in the roundness parameter, that field is optional. Hence the only mandatory conversion 1s to
simply change the name of the node type.
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Shape { Shape {
geonetry Bevel | edPol yhedron { geonetry | ndexedFaceSet {
coord Coordinate { coord Coordinate {
point [ 00O, 100, point [ 00O, 100,
110 010, 110 010,
001, 101, 001, 101,
111, 011]} 111, 011]}
coordlndex [ 0, 3, 2, 1, -1, coordindex [ 0, 3, 2, 1, -1,
6, 7, 4, 5 -1, 6, 7, 4, 5 -1,
7, 3, 0, 4, -1, 7, 3, 0, 4, -1,
2, 6, 5 1, -1, 2, 6, 5 1, -1,
4, 0, 1, 5, -1, 4, 0, 1, 5, -1,
2, 3, 7, 6, -1] 2, 3, 7, 6, -1]
roundi ngParaneter 0.5 }
} appear ance Appearance { }
appear ance Appearance { } }
}

Figure 8.3. VRML code for a rounded scene object and its corresponding non-rounded version

Finally, an optional field comvex can be included. This is a hint that may be used for future
optimisation purposes. This field specifies whether the input mesh contains only convex
polygonal faces. It deftaults to zue.

field SFBool convex TRUE

8.4 Implementation and Architecture of the Just-In-Time Modification

The essence of JI'T modification 1s that the actual rounding operation 1s performed in real-
time using the scripting mechanism. The rounding algorithm is implemented in the Java
scripting language compiled into bytecode.

The architecture of the system is shown in figure 8.4. The intention here is to introduce a
JIT VRML plug-in into the VRML browser, so that the VRML files with the extended
syntax can be processed just in time by the plug-in before they are rendered in the browser.
There are two components in our JIT VRML plug-in. The first is the prototype definition of
the BevelledPolyhedron node type, which defines the parameterisation, sets up the proper
event routing and indicates the location of the Java bytecode. The second is the actual Java
bytecode, which implements the polyhedron bevelling method.

The two components integrate seamlessly into a VRML browser. The left-hand side of the
tigure 8.4 shows an internal structure ot a typical VRML browser. The VRML file containing
the extended syntax s received by the browser. The file is first interpreted by the parser. The
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parser “understands” the extended syntax by reading in the prototype definition from the
plug-in. The scene graph 1s then built and the execution engine fires the mitialising event,
which triggers the Java bytecode of polyhedron bevelling to run. The rounding method s
performed and the scene graph is moditied accordingly. The rounded volume is finally sent
to the presentation module for rendering.

VRML
file

JIT VRML Plug-in

HE B

VEML Browser

BavelledPolyhedron
PROTO Definition

Y
).

L
:3‘ Java Bytecode of

Figure 8.4. The integration of JIT VRML plug-in and VRML browser

The architecture shown in figure 8.4 requires Internet/intranet

that the JIT VRML plug-in be installed on 3y

the local machine prior to the mnterpretation e

of the VRML file. The requirement of the e ’f;u";p
client side pre-installation of the plug-in may

detract from its commercial value, since L
casual users may not be bothered to mstall or = = = == —_————1
serious users may refuse to do so for security 10ce

reasons.

Machine
‘ = Proxy

Figure 8.5 shows a more general structure in
which the plug-in may be sitting on a
network remote to the local machine.

Figure 8.5. Network transparency of the JIT
modification

The VRML browser can access the plug-in as if they are on the same machine. This,
however, requires the VRML file to include the declaration of the external prototype
definition:

EXTERNPROTO Bevel | edPol yhedron [...] "http://.../bevel | edpol yhedron. w|"

where the parameter list is included in between the square brackets and the URL of the
VRML file containing the prototype definition s indicated at the end of the declaration. The
client-side installation is, thereby, completely eliminated.
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The complete declaration of the BevelledPolyhedron prototype is included in figure 8.6.
Various other implementation details such as event routing and field binding will not be
discussed here. Readers are referred to the standard [VRMLI7] for those concepts.

PROTO Bevel | edPol yhedron [
field SFNode coord NULL
field MFINnt32 coordl ndex []
field SFFl oat roundi ngParameter 0.5 #[0, 1]
field SFBool convex TRUE
1 {
DEF shape | ndexedFaceSet {
coord DEF coordi nate Coordinate { }
creaseAngle 3.14
convex | S convex
}
DEF script Script {
field SFNode coord IS coord
field MFInt32 coordl ndex IS coordl ndex
field SFFl oat roundi ngParameter 1S roundi ngPar anet er
event Qut MFVec3f vertices_changed
event Qut MFI nt 32 coordl ndex_changed
url "Pol yhedronBevel | i ng. cl ass”
}
ROUTE scri pt.verti ces_changed TO coordi nat e. set_poi nt
ROUTE scri pt . coordl ndex_changed TO shape. set _coor dl ndex

}
Figure 8.6. The prototype definition of the BevelledPolyhedron node type

8.5 Result

Figure 8.7 shows a stapler rounded by target-driven polyhedron bevelling using the JIT
approach in a VRML browser. The file containing the initial mesh with the rounding
specification 1s only four kilobytes in size. In contrast, the fully expanded file 1s of 215
kilobytes.

Assuming a typical home-use network connection with 56 kbps (kilobits per second) at full
capacity, the full file takes half a minute or more to transter. While it takes only
approximately halt a second to download a tour kilobytes file plus one tenth of a second to
perform the rounding operation with the JI'T approach.



.. ® JIT VRML Volume Rounding with Polyhedron Bevelling
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Figure 8.7. A rounded stapler in VRML browser

The reduction of the downloading time together with the enhanced readability and
reusability of the file format has proven the tremendous potential of the JIT approach.

8.6 Chapter Summary and Conclusion

The chapter has discussed the mmplementation and architectural details of just-in-time
volume rounding using VRML as the base language. We have proposed a language extension
to VRML that allows rounded object to be specitied in terms of the initial control mesh and
a rounding specification. The implementation integrates seamlessly into the VRML
environment and shows encouraging results.



Chapter 9 Conclusions

We have now presented our new volume rounding method — polyhedron bevelling — and its
practical implementation in the just-in-time VRML volume rounding extension. The results
are very promising. Chapter nine concludes with a summary of the achievements of the
thesis and suggestions for future work.

9.1 Research Overview

Our research was mitiated from the goal of developing a fast volume rounding algorithm
and, ultimately, a practical VRML volume rounding tool. Throughout the year, we have gone
through several different stages of development.

Beginning with the problem analysis and requirement gathering, we explored the conceptual
view of the problem. The meaning of “rounding” of a three-dimensional object was
investigated. The subject 1s neither scientitically defined nor of an objective nature. A survey
on how humans perceive roundness was therefore conducted and, as a result, a set of quality
criterta of a rounding operation was developed. Most importantly, we have identified the
surface area ratio between the planar regions and the rounded regions as the most influential
tactor that affects an object’s perceived roundness. This finding led to a significant effort
being put into preserving planar regions with our rounding algorithm.

Two polyhedron-bevelling methods have been developed. Both are based on recursive mesh
subdivision. The mesh pre-partitioning approach leaves the recursive mesh subdivision
phase unaltered while adding a pre-partitioning phase to indirectly control the resultant
roundness. Mesh pre-partitioning polyhedron bevelling inherits the analytical smoothness
trom a recursive subdivision surface; however, the pre-partitioning phase suffers from
several construction limitations and stability problems if the desired roundness is large. The
target-driven approach, on the other hand, modifies the actual recursive mesh subdivision to
accomplish more directly the task of preserving planar regions. The method is more stable.
It works on any arbitrary convex polygonal faces and most concave ones. The two methods
produce excellent results on a wide range on mput meshes both in terms of execution speed
and resultant quality.

The final stage involved implementing a JIT VRML plug in, which allows rounded VRML
scene objects to be specified by the initial mesh and the rounding specification. Mostly,
VRML files are located on a remote machine and get transterred upon request. Hence,
because of the huge difference in size between a VRML file containing rounded scene
objects and one with the corresponding initial meshes, the JIT approach saves enormous
cost in network traffic and downloading time. The rounding algorithm can be executed
within a fraction of a second just before the scene 1s rendered. The development of the JIT
implementation has proven the practicality of the polyhedron bevelling methods.
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9.2 Limitations and Directions of Future Research

The development of polyhedron bevelling 1s still in its infancy. Although the resultant
surface of the target-driven polyhedron bevelling 1s visually smooth, its continuity 1s yet to be
investigated. We wish to understand the exact mathematical behaviour of the target-driven
polyhedron bevelled surface with skeletal targets. Better still, alternative functional
definitions of targets that guarantee analytical smoothness are sought.

The practical implementation of polyhedron bevelling works beautifully in VRML. The
major limitation of the current implementation 1s the lack of texture mapping [FV96]
supports. With texture mapping, one can position a texture on a shape hence adding fine
details to the scene without imposing the cost of explicit modelling of the geometric details.
Because of its benetfit, texture mapping is widely employed in most computer graphics scene
modelling, and thus the lack of texture mapping support severely constraints the practical
use of polyhedron bevelling. We realise the real solution here is the three-dimensional
texture mapping; however, the support for three-dimensional textures is expensive and
therefore uncommon. For example, VRML currently support only two-dimensional texture
mapping. Since our ultimate goal is to round existing VRML scene object with polyhedron
bevelling and most of the existing scene are two-dimensional textured, we believe that the
two-dimensional texture mapping support for polyhedron bevelled object will be, by itself, a
challenging and viable topic.

A final research direction we wish to suggest 1s related to the recent interest in view
dependent modification and levels of detail. While it is adequate to perform polyhedron
bevelling to a typical scene with moderate complexity in real time, the situation will not be
the same for highly complicated scene objects. The idea of view dependent modification and
levels of detail 1s to give the best accuracy to the parts of the scene that are clearly viewable
in the current view while ignoring the exact computation of the other parts. The scene is
adjusted accordingly in real time when the viewpoint is changed. The idea 1s applicable to
polyhedron bevelled objects, since the quality of the resultant shape 1s dependent upon the
number of refinement steps taken. The initial mesh gives a rough approximation to the final
shape and a better approximation 1s obtained from each extra step of refinement with an
increasing computation cost. The number of refinement steps taken is hard-coded in the
current JI'T plug-in. View dependent and levels of detail support which adjust the required
quality dynamically 1s desired in the future.



Appendix A Mathematical Proofs

A.1 Proof of Linear Boundary Property

This section provides the proof of the linear boundary . s
property of preserved regions of a mesh pre-partitioning *‘;ﬁiﬁ’f Ps

polyhedron bevelled volume for arbitrary 3 or 4-sided
input faces.

The proof will be given in two parts. We know that the
resultant limit surface will interpolate the centroid of the
boundary face in between the two corner faces. The first
part of the proof shows the linearity of the three
consecutive centroids of an original edge. See figure A.1.

The second part of the proof shows the boundaries of Figure A.1. Linearity of centroids of
the preserved region are straight lines joining the three consecutive
consecutive centroids. Because of the symmetry of the boundary faces
configuration, we need to show only that one of the

segments 1s actually straight.

By construction, all boundary taces atter pre-partitioning are 4-sided. Hence we can write the
centroids 7, 7, and 7z, in tigure A.1 as:

7771:%@1""?2""?5"'[56): 7772:1@2+P3+P6+P7): 7”3:% s+ Pyt Pyt D)

Also due to the linearity of p, p,, p; and p,, we can write p, and p, in terms of p,, p, and the
roundness control, O, as

p=apt (1-a)p,  and  py=ap + (1-a)p,
Similarity, p, and p, can be given as:
Pe=Bps + (1-Bps and  p =Xps + (1-X)ps

where B and X are the énternal edge length ratios in which,

Y| )5

B X
|75 24| |75 25
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It is easy to verify that 7, 1s the mid-point of 7, and #; 1.e. 7, 7, and 7, are collinear, it B =
X- Hence in order to show the linearity of 7,, 7, and m;, we need to show the length of pip,
1s the same as that of p.p,.

First, for the sake of simplicity, we will consider an arbitrary triangular face as shown in

tigure A.2. For the constraint B = X to be satistied, we need to show that the length of psp; 1s
the same as that of p,p;.

= 2,
|P5P12| _ |P8P12| — 1-a Py

\pibu| |pirsl 1 ’

Ps
il Dsprops and pip,p, are similar triangles. P,
7 |_2
O Pibs !/ psps N . )
Similarly, it can be shown that p,py; // pip1,- Therefore all ,

the corner faces are parallelograms.

Since,

Thus |p5p6| = |p1p2| = |p7p8| = |p3p4| =q. Figure A.2. Partitioning of a

triangular face

We have thereby completed the first part of the proot of the linear boundary property for
any arbitrary triangular face.

For a quadrilateral, we define four edge vectors
4, to 7, as shown in figure A.3.

Uy = P4 -~ P1s Y = P16~ Pas
Uy =DP1s-Pres V5= P13 Do

We can also express the fourth vector in terms

of the other three as:

m=yty Ty

Figure A.3. Partitioning of a quadrilateral face
By assuming p, 1s located at the origin for simplicity, p,, ps, 1, and ps can be written as:
P2 = Qzy
Py =yt Ay

P = ot o+ (-,
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ps=0ap =0y + o+ oy)
Now the intersection point, pg, of p,p, and psps can be expressed as either:

s = P2 O(pra-p2)

or
s = ps T E(Ps - ps)
where 6 = M and & = |P5P(,|
|22 214] |5 25

By expanding both the equations of p, and comparing the coefticients of ¢, # and 2, one
can verity that a = & = €. Also, because of the symmetry of the configuration, it is sufticient

to show that |P5pc|:|p7ps > |P9P10|:|P11p12 > |pzpc|:|P10P14| and |P3P7|:|P11P15|-

Hence the constraint B = X is satistied for an arbitrary quadrilateral.

Note that not only are all the internal edge length ratios the same for any 3 or 4-sided
polygonal face, but also all of them are equal to the roundness control a. This tinding 1s
useful in later part of the proof.

We will now move onto the second part of the proot, in which we need to show that the
boundaries of the preserved region are actually straight lines joining consecutive boundary
centroids.

As previously noted, because of the symmetry of the partitioning, we need to show only one
of the segments 1s actually straight. We can show that the boundary segment between 7, and
m, 1n tigure A4 1s linear.

__________- -, ..'.

—_ h

T~ "7 Contral mesh after a single step \ﬂ !
_____ of Doo-Sabin refinement = |

Figure A.4. Linearity of the boundary segment between two consecutive boundary centroids

In order to prove that, we will show the boundary control points (¢;, ¢,, ¢; and ¢, as well as
Js» s> 47 and gg) remain collinear after one step of mesh subdivision. The proof can hence be
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applied recursively to show that all points on the limit boundary between 7, and , are
collinear. That 1s, the segment 1s a straight line.

Because of the partitioning scheme, p,, p, and p; are collinear and so are p,, ps and p,. We
want to show that ¢,, ¢,, ¢; and ¢, as well as ¢, ¢;, ¢, and ¢, in the next step of refinement are
also collinear. Again due to the symmetry of the setting, we need only to show ¢,, ¢, and ¢,
are collinear.

First because of the linearity of segment p,p,p; and segment p,pspe, we can rewrite p, and pg
as:

Py = D2t @D —py)
Ps = D5 T Y(ps — pa)
where @and y are some scalar constant are the length ratios p,p; : pip, and psps : pps.

Due to the fact that all the boundary faces after partitioning are 4-sided, the control points
after a single step of Doo-Sabin refinement are given as:

— 9 3 3 1
1= wht bt wht whs
— 9 3 3 1
= 1wt b Tl T kb

9= 6D T 36D T b T 6k
Again, the linearity of ¢;, ¢, and ¢, 1s satistied if and only it we can rewrite ¢; in the form:

4= ¢+ N(g—a1)

By substitution and comparison, we can again verify the linearity property is satisfied if Q=Y.
That 1s, the length ratio between p,p, and p,p; 1s the same as that between pps and pspg in
tigure A.4. This condition holds for any arbitrary 3 or 4-sided polygonal face after the mesh
pre-partitioning, as we have already proven that all the internal corner edge ratios are a.
Hence both @and y must be equal to (1-20) : a.

Since we have shown that ) is also a constant, the consecutive edge length ratio for the next
refinement step (4,4, : 9,95 and ¢,¢s : ¢s9s) will again be the same because of the symmetry of
the contiguration. This completes the proof that the boundary of the preserved region is
linear between two consecutive boundary face’s centroids.

This together with the first part of the proot show that the resultant preserved region for a 3
or 4-sided polygonal face is actually a 3 or 4-sided polygon respectively. It can be shown
numerically that the property does not hold for any arbitrary n-sided polygonal faces. This,
however, does not necessarily disprove the property tor all non-“3 or 4-sided” input faces.
For example, it can be shown that the linear boundary property holds also for all input of
regular 7-gons.
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A.2 Mapping pto a for Regular N-gons

This section shows how the mapping from roundedness, p, to the roundness control, O, on a
regular n-gonal face with mesh pre-partitioning polyhedron bevelling 1s derived.

Figure A.5 shows the nomenclature used in this derivation.

~ ~ ~ ’ ’ 7
~ ~ ~ /’ # r
~ - ~ / s /
~ » " \ / ’ s
~ ~ ’ /’

v M, adn Fas1s sy

-1 'q2n+2

% >, me
AN a
pn o q}n q2n+1(1 pn+l

Figure A.5. The nomenclature used in deriving the roundness control from the roundedness
For simplicity, we assume that the length of each edge of the regular #-gon be 1.

Hence the length of each edge of the corner faces will be a by construction. Also since the
lengths of the edges ¢,,,p, and ¢,,,,p,.; are both o and the internal angle 8 of the n-gon is the
same at any vertex, any internal edge ¢,,,4,,., will be parallel to the corresponding initial edge

p;PnJrl .
Given that:

p =1- —
s
where A, 1s the area of the preserved region and A, 1s the area of the original polygonal face.

. m | 2
_ n nt+l _
p=1- E—l—kﬂnmm

PP

= 1—p

[ |7”/”n+1

Since 7, is the centroid of the /" 4-sided corner face,

|pn + an—l + an + rn - pn+1 + an*‘l + an"‘Z + rn"'l | — '1 _
4 4 | g

with some algebra, it can be shown that:

1-a-odcos®=41-p
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U a:—l_“l_p
1+cosB
(ﬂ_Z)T[

where 8 = =———— for the internal angle of a regular 7-gon
n



Appendix B Implementation of Straight Skeleton

Although an algorithm for constructing straight skeletons can be found in the original paper
[AA96], we have followed a slightly different approach. This section presents our divide-and-
conquer method for computing straight skeletons.

At each step of the recursion, we compute the minimum collapsing time, 7,,,, detined as the
time taken for the wavefronts to propagate betore a collision occurs between two non-
adjacent wavetronts. Each wavefront then propagates inwards with time 7,,. Zero or more
polygons, separated by the collision point, will be formed by the current edges of the
wavefronts. The process is then recursively applied to each of the polygons formed.

We illustrate with an example in figure B.1. Wavefronts are initiated from the edges of a
polygon and propagate simultaneously until two non-adjacent wavefronts hit at the collision
point as shown in figure 7.7(a). Two polygons, a triangle and a quadrilateral, are formed. The
algorithm is recursively applied on each of them. Figure 7.7(b) shows further propagation in
the quadrilateral, in which only one polygon is formed after the process. Figure 7.7(c) shows
that the algorithm terminates when no further polygons are formed by the process. Figure
7.7(d) shows the computed straight skeleton.

AN Collision point
X Collision point

@ o)

Figure B.1. A divide-and-conquer method for computing straight skeleton

Collision point

The remaining question is how to determine the minimum collapsing time, 7, at each step
of the recursion. This nvolves the calculation of the time taken for each angle-bisecting
vector, v, hits each of the non-adjacent wavefront of 2. We define the angle-bisecting vector
at each vertex as the vector pointing inwards with the direction of the angle bisector of the
vertex while the length of the vector indicates how fast the adjacent wavefront propagates.
See figure B.2. We assume each wavefront propagates inwards at a constant speed of 1. The
length or the speed of angle-bisecting vector is hence given by sin , where 8 is the internal

angle at the vertex.
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Figure B.2. Angle-bisecting vectors

The time taken for an angle-bisecting vector to hit a wavetront », can be approximated by
calculating the required hit time between the vector and a halfspace 4, which moves inwards
perpendicular at unit speed. The haltspace 4, 1s defined by a partitioning plane that coincide
with the edge of the corresponding wavetront .. This approximation gives incorrect answer
occastonally. Figure B.3(a) shows an angle-bisecting vector hits a halfspace in a short time;
however, the actual location of collision 1s outside of the wavetront. Therefore it is required
to check whether the collision point is actually located inside the corresponding wavetront.
The problem however 1s that we do not know the exact shape of a wavefront until we have
completed the calculation of the straight skeleton.

@ ®)

Figure B.3. Calculating hit time between an angle-bisecting vector and a wavefront

Fortunately, we can approximate the shape of a wavefront », by a pseudo-wavefront »’,
which 1s the space clipped by the edge of », and the two adjacent angle-bisectors. Pseudo-
wavefronts are shown as the red regions in the figure B.3. Figure B.3(a) shows the case in
which the collision point is not inside the pseudo-wavetront. Since the pseudo-wavetront is
guaranteed to be a super-set of the corresponding wavetront, we know immediately that the
angle-bisecting vector will not hit the wavetront. Figure B.3(b) shows the case in which the
collision point 1s inside the pseudo-wavefront but not the actual wavefront. This potential
tault, however, will not aftect the correctness of the solution, since we are interested only in
the minimum collision time. If an angle-bisecting vector », hits a halfspace 4, within the
pseudo-wavefront »’, but not the corresponding wavefront », at time 7, there must exist
another collision between », and some other angle-bisecting vector v, at time , which cause
the shape of », to change, while 7, < 7, The minimum collision time obtained with this
heuristic must therefore be correct.
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