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Personalised modelling has become a dominant approach in personalised medicine and precision health. It 1

creates a computational model for an individual based on large data repositories of existing personalised data, 2

aiming to achieve the best possible personal diagnosis or prognosis and derive an informative explanation for it. 3

Current methods are still working on a single data modality or treating all modalities with the same method. The 4

proposed method, SAIN (Search-And-INfer), offers better results and an informative explanation for classification 5

and prediction tasks on a new multimodal object (sample) using a database of similar multimodal objects. The 6

method is based on different distance measures suitable for each data modality and introduces a new formula to 7

aggregate all modalities into a single vector distance measure to find the closest objects to a new one and then use 8

them for a probabilistic inference. 9

The paper describes SAIN and applies it to two types of multimodal data, cardiovascular diagnosis and EEG 10

time series, modelled by integrating modalities, such as numbers, categories, images, and time series, and using a 11

software implementation of SAIN. 12

Keywords: search in multimodal data; inference in multimodal data; personalised modelling; precision health. 13

1. Introduction 14

Multimodal data processing has become a new data science trend with applications in neuro-imaging, health 15

diagnosis and prognosis, environmental modeling, and financial modelling, see [1–3]. 16

Methods for searching relevant items in databases have been developed and used for decades, improving their 17

accuracy and speed. These searches are a significant part of personalised modelling (e.g. precision medicine), where 18

an optimal model is created for a given vector of person x data X and a database D of past personalised records 19

with labelled outcomes to predict x behaviour. Most methods (e.g. [3,4]) select a subset DX of closest vectors to X 20

from the database D (for example, the K-nearest neighbours) and build a machine learning model using this subset 21

DX. To select a subset DX of the closest vectors to X, the method searches D using predominantly Euclidean or 22

Hamming distances to measure the similarity between the new vector X and the vectors in D. These methods have 23

been applied in many applications and constitute the state-of-the-art in the field (e.g. [5–8]). 24

The enormous growth of personal multimodal data worldwide demands more advanced personalisation of 25

search and inference methods. Most methods for multi-modal data represent all modalities of data for one object as 26

a vector and then apply a single machine learning method, such as a deep neural network or a statistical regression 27

(e.g. [9,10]). In these cases, the specificity of each data modality cannot be considered, which negatively impacts the 28

inference results and explanation. 29

2. General Description of SAIN 30

The proposed new method offers new functionality and features for personalised search and model creation in 31

multimodal data, some of which are listed below. The method 32

1. is suitable for multimodal data searches in heterogeneous data sets, e.g. numbers, text, images, sound, and 33

categorical data, 34

2. uses a novel mathematical similarity measure superseding a single (e.g. Euclidean, Hamming) distance used in 35

the existing methods. In this way, inaccurate measurement of similarity on a large number of heterogeneous 36

variables is avoided, 37

3. search is fast even on large data sets, with millions of records and thousands of variables, 38

4. includes advanced personalised searches with multiple parameters and other features, 39

5. facilitates multiple solutions with corresponding probabilities, 40

6. is suitable for unsupervised clustering in multimodal heterogeneous data, 41

7. is suitable for personalised model creation to classify or predict specific outcomes based on multimodal and 42

heterogeneous data. 43
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3. Mathematical Description 44

In this section, we present the mathematical method. 45

3.1. Database 46

We will work with the multidimensional data described as follows: 47

1. m > 1 objects (samples) o1, . . . , om, 48

2. each object oi (1 → i → m) is defined by n > 1 criteria (variables) c1, . . . , cn with values in linearly ordered 49

domains Di with min Di and max Di; if some value ai,j ↑ Di (1 → i → m, 1 → j → n) is either missing or 50

uncertain, then its value is recorded as ∞, 51

3. n > 1 weights w1, . . . , wn in (0, 1) with ∑n
i=1 wi = 1, where each wi (1 → i → n) quantifies the importance of the 52

criterion ci; if wi =
1
n for all 1 → i → n, then all criteria are equally important; a criterion ci is ignore if wi = 0. 53

Data of independent variables are organised as follows: 54

Objects/Criteria c1 c2 . . . cj . . . cn
o1 a1,1 a1,2 . . . a1,j . . . a1,n
...

...
... . . .

... . . .
...

oi ai,1 ai,2 . . . ai,j . . . ai,n
...

...
... . . .

... . . .
...

om am,1 am,2 . . . am,j . . . am,n

w w1 w2 . . . wj . . . wn

Table 1. Unlabelled database

3.2. Distance metrics 55

A distance metric on a space X is a positive real-valued function d : X ↓ X ↔ R+ satisfying the following three 56

conditions for all x, y, z ↑ X: a) d(x, y) = 0 if and only if x = y, b) d(x, y) = d(y, x), c) d(x, z) → d(x, y) + d(y, z). 57

The domains X = Di can vary greatly: they can be sets of logical values, rational numbers, percentages, 58

digitally codified images, sounds, videos, and many others. We use a bounded distributive complemented lattice 59

(L,↗,↘, ¯ , 0, 1) to describe uniformly the domains Di, [11,12]. 60

61

Here is a list with illustrative, but far from exhaustive, examples of domains Di: 62

• Logical Boolean domain: ({0, 1}, max, min, ¯ , 0, 1), where x̄ = 1 ≃ x, x ↑ {0, 1}. 63

• Logical non-Boolean domain:
({

0, 1
N≃1

, 2
N≃1

, · · · , N≃2
N≃1

,1
}

, max, min, ¯ , 0, 1
)

, where x ↑
{

0, 1
N≃1

, 2
N≃1

, · · · , N≃2
N≃1

,1
}

64

and x̄ = 1 ≃ x,. 65

• Numerical domain with natural values: ({0, 1, . . . , N}, max, min, ¯ , 0, 1), where x̄ = N ≃ x, x ↑ {0, 1, . . . , N}. 66

• Numerical domain with rational values: ({x | a → x → A}, max, min, ¯ , a, A), where x̄ = A ≃ x, a → x → A. 67

• Binary code: ({0, 1}n, max, min, , 00 . . . 0, 11 . . . 1), where the domain consists of all binary strings of length n, 68

{0, 1}n = {x1x2 . . . xn | xi ↑ {0, 1}} and for all x1x2 . . . xn, y1y2 . . . yn ↑ {0, 1}n, max(x1x2 . . . xn, y1y2 . . . yn) = 69

max(x1, y1)max(x2, y2) . . . max(xn, yn), min(x1x2 . . . xn, y1y2 . . . yn) = min(x1, y1)min(x2, y2) . . . min(xn, yn), 70

x1x2 . . . xn = (1 ≃ x1)(1 ≃ x2) . . . (1 ≃ xn). 71

In the lattice (L,↗,↘, ¯ , 0, 1) we introduce, following [11], the metric: 72

d(x, y) =

{
(x ↘ ȳ) ↗ (x̄ ↘ y), if x ⇐= y,
0, otherwise ,

for x, y ↑ L. This metric d can be extended to L ⇒ {∞} as follows: 73

d∞(x, y) =






d(x, y), if x, y ↑ L,
σ(x), if x ↑ L and y = ∞,
σ(y), if y ↑ L and x = ∞,
0, otherwise ,

where σ(x) = max(x, x̄). 74

The metrics d∞,i on Li ⇒ {∞}, 1 → i → n, can be extended to (Li ⇒ {∞})n, i.e. to n-dimensional vectors, as 75

follows: 76

d∞(x1x2 . . . xn, y1y2 . . . yn) =
n

∑
i=1

d∞,i(xi, yi), (1)
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where xi, yi ↑ Li ⇒ {∞}, 1 → i → n. 77

In what follows, we write d for d∞ when the meaning is clear from the context. 78

3.3. Tasks specification 79

Data organised as in Table 2 consists of independent objects augmented with a column of labels, the weights of 80

criteria, and a new unlabelled object, see Table 2 and Table 3. 81

Additional information associated with data in Table 2 may include the range of each criterion cj and the 82

associated specific distance, e.g. the Euclidean distance for real numbers and the distance d for binary strings or 83

strings over a non-binary alphabet (e.g. for images or colours). 84

Objects/Criteria c1 c2 . . . cj . . . cn Class label
o1 a1,1 a1,2 . . . a1,j . . . a1,n l1
...

...
... . . .

... . . .
...

...
oi ai,1 ai,2 . . . ai,j . . . ai,n li
...

...
... . . .

... . . .
...

...
om am,1 am,2 . . . am,j . . . am,n lm

Table 2. Labelled database

Criteria weights c1 c2 . . . cj . . . cn
w w1 w2 . . . wj . . . wn

Table 3. Weights

Object/Criteria c1 c2 . . . cj . . . cn
x x1 x2 . . . xj . . . xn

Table 4. New unlabelled object

We consider the following tasks: 85

Task 1: Calculate the distance (or similarity metric) between the new object and each object in Table 2. If the distance 86

corresponding to ci is di, then 87

d(oj, x) =
n

∑
i=1

wi · di(ai,j, xj).

Task 2: Given a threshold δ > 0, calculate all objects oi at a distance at most δ to x. 88

Task 3: Calculate the probability of a new object to belong to a labelled class (e.g. low risk vs. high risk) using a 89

threshold δ and Table 2. 90

Task 4: Rank the criteria in Table 2 and calculate the marker or markers criterion/criteria, that is the most important 91

one/ones. 92

Task 5: Assign alternative weights to criteria. 93

Task 6: Test the accuracy of data and method for Task 4. 94

3.4. Tasks Solutions 95

For Task 1 we calculate the distances d∞(oi, x) between each object oi in Table 2 and x in Table 4. 96

For Task 2, given a threshold δ > 0, we calculate all objects in Table 2 at a distance at most δ to x, that is, the
objects which are δ-similar to x:

Cδ,x = {oi | d(x, oi) → δ, 1 → i → m},

and its complement Cδ,x. 97

For Task 3 we calculate the probability that x is in class label lt, which is the ratio of the number of objects in 98

Cδ,x with the label lt to the size of the cluster Cδ,x: 99

Prob (x has label lt) =
#{oi ↑ Cδ,x | li = lt}

#(Cδ,x)
,

where #{. . . } means the number of elements in the set {. . . }. 100
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For Task 4, we work with Table 2. Recall that for each criterion ci we have a domain Di augmented with 101

information “high" or “low," indicating whether higher or lower values are desirable. Based on this information, 102

we can construct a hypothetical object which has as the most desirable values for each criterion: one could see this 103

object as an “exemplar" one. 104

Object/Criteria c1 c2 . . . cj . . . cn Class label
oE n1 n2 . . . nj . . . nn lh

Table 5. Hypothetical exemplar object

Sometimes, criteria are interrelated or correlated. This means that in some cases, there is no unique “exemplar 105

object", but a couple of them have to be studied in ranking the importance of criteria. 106

For example, fix an “exemplar object" oE. 107

1. Compute the distances d∞(oi, oE) between each object oi in Table 2 and oE, so obtain a vector with n non-negative 108

real components V0 = (d0
1, . . . d0

n). 109

2. For each 1 → t → m, compute the distances d∞(oi, oE) taking into consideration all criteria in Table 2 except ct: 110

obtain the vector Vt = (dt
1, . . . dt

n). 111

3. Compute the distances between dist(V0, Vt), 1 → t → m using the formula 112

dist(V0, Vt) =
n

∑
i=1

|d0,i ≃ dt,i|,

and sort them in increasing order. The criterion ct is a marker if dist(V0, Vt) ⇑ dist(V0, Vj), for every 1 → j → m. 113

We repeat this procedure for each “exemplar object" and study possible variations. 114

For Task 5, normalise the distances dist(V0, Vt) and use these values to construct the weights w⇓
i , 1 → t → m. 115

For Task 6 assume we have weights (wi) associated to Table 2 (see Table 1). To test the accuracy of the data and 116

method used for Task 4, compare the original weights (wi) with (w⇓
i ). Serious discrepancies should signal issues 117

either with the data or the choices made in the applications of the method. 118

3.5. An example 119

We illustrate the above tasks with an example of a labelled database in (see Table 6) and a new object (see 120

Table 7), all having the following seven characteristics (the last column has the label classes 1 and 2): 121

122

c1: real number {0 ≃ 100}, e.g. age, weight, BMI etc.; 123

c2: Boolean value {0, 1}, e.g. gender; 124

c3: integer number {0 ≃ 10, 000}, e.g. gene expression; 125

c4: categorical {small, med, large }, e.g. size of tumour, body size, keywords; 126

c5: colour {red, yellow, white, black}, e.g. colour of a spot on the body, on the heart; 127

c6: spike sequence of {≃1, 0, 1} e.g. encoded EEG, ECG; 128

c7: black and white image, e.g. MRI, face image. 129

In this example, for simplicity, we didn’t use weights. 130

The first step is to code the data in Tables 6 and 7. The new data is in Table 8 and Table 9. 131

Then, we normalise the data in Table 8 and Table 9 – the entries in the first, third and fourth columns have been 132

divided by 100, 10,000 and 2, respectively, and the entries in the last three columns have been transformed in reals in 133

the unit interval, and the column of labels has been removed. 134

In this way, we have obtained Table 10 and Table 11. 135

Then, we choose an appropriate distance according to each criterion. In this example, we used the Euclidean 136

distance for all criteria. 137

We can compute Cδ,x = {oi | d(oi, x) → δ} and, accordingly, the probability that x would be labelled in class 1 138

or class 2. 139

If δ = 3.5, then C3.5,x = {o1, o2, o3, o5, o6, o7, o8} so the probability that x is in class 1 is 2/7 and the probability 140

that x is in class 2 is 5/7. If δ = 2.5, then its closest cluster is C2.5,x = {o2, o3, o5, o6, o7, o8}, so the probability that x is 141

in class 1 is 1/3 and the probability that x is in class 2 is 2/3. 142

which induces a ranking of the objects in the Table 8: o3, o6, o7, o5, o2, o8, o1, o9, o2,. 143
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68.2 0 6789 small red 0,1,-1,-1,1,1,0,0, 1,-1 1,1,0 1
0,0,1
0,0,1

93 1 98000 medium yellow 0,-1,-1,-1,-1,0,0, 1,-1,1 1,0,0 1
0,0,1
0,0,1

44.5 1 5600 large red 0,1,-1,1,-1,1,0,0, 1,-1 1,1,0 1
1,0,1
1,1,1

56.8 0 89 small white 1,-1,-1,-1,-1,1,0,0, 1,-1 1,1,0 1
0,1,1
1,0,1

26.3 0 9456 large black 1,-1,-1,-1,0,1,0,0, 1,-1 1,1,0 2
1,1,1
1,0,1

81.5 1 78955 medium red 0, 1,-1,1,-1,-1,0,0, 1,-1 1,1,0 2
0,0,1
1,1,1

56.7 1 68900 small black 1,- 1,-1,1,-1,1,0,0, 1,1 1,1,1 2
0,0,1
1,1,1

20 0 7833 large yellow 1,1,-1,-1,1,1,0,-1, -1,1 1,0,0 2
0,0,1
1,1,1

20 0 7833 ∞ yellow 1,1,-1,-1,1,1,0,-1, -1,1 1,0,0 2
0,0,1
1,1,1

Table 6. Example of labelled data

48.5 1 45679 large red 1, 0, 0, -1, 1, -1, 1, 0, 0, 1 1,1,0
0,0,1
1,0,1

Table 7. Example of new unlabelled object

For Task 4, assume that the criteria c1, . . . , c7 in Table10 have the additional information (m, m, m, m, m, M, M), 144

where m (M) means that the exemplar value is the minim (maximum) value. Based on this vector, we compute the 145

exemplar object: 146

Next we calculate V0, . . . , Vt, see Table 14, and finally the distances Dist(V0, Vt), t = 1, 2, . . . , 7 and the weights 147

as their normalised values, see Table 16. The marker, in this case, is the criterion c5. 148
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o1 68.2 0 6789 0 FF0000 0122110012 110001001 1
111111110000000000000000

o2 93 0 98000 1 FFFF00 0222200121 110001001 1
111111111111111100000000

o3 44.5 1 5600 2 FF0000 0121210012 110101111 1
111111110000000000000000

o4 56.8 0 89 0 FFFFFF 1222210012 110011101 1
111111111111111111111111

o5 26.3 0 9456 2 000000 1222010012 110111101 2
000000000000000000000000

o6 81.5 1 78955 1 FF0000 0121220012 110001111 2
111111110000000000000000

o7 56.7 1 68900 0 000000 1221210011 111001111 2
000000000000000000000000

o8 20 0 7833 2 FFFF00 1122110221 100001111 2
111111111111111100000000

o9 20 0 7833 ∞ FFFF00 1122110221 100001111 2
111111111111111100000000

Table 8. Coded labelled data

x 48.5 1 45679 2 FF0000 1002121001 110001101
111111110000000000000000

Table 9. New unlabelled object coded

o1 0.682 0 0.06789 0 0.2 0.0122110012 0.110001001
o2 0.93 1 0.98 0.5 0.6 0.0222200121 0.100001001
o3 0.445 1 0.056 1 0.2 0.0121210012 0.110101111
o4 0.568 0 0.00089 0 1 0.1222210012 0.110011101
o5 0.263 0 0.09456 1 0 0.1222010012 0.110111101
o6 0.815 1 0.78955 0.5 0.2 0.0121220012 0.110001111
o7 0.567 1 0.689 0 0 0.1221210011 0.111001111
o8 0.2 0 0.07833 1 0.6 0.1122110221 0.100001111
o9 0.2 0 0.07833 ∞ 0.6 0.1122110221 0.100001111

Table 10. Coded labelled normalised data

x 0.485 1 0.45679 1 0.2 0.1002121001 0.110001101
Table 11. New unlabelled object coded normalised

d(o1, x) 0.197 1 0.3889 1 0 0.4 0.11111111 3.09701111
d(o2, x) 0.445 0 0.52321 0.5 0.33333333 0.6 0.22222222 2.62376556
d(o3, x) 0.04 0 0.40079 0 0 0.5 0.22222222 1.16301222
d(o4, x) 0.083 1 0.4559 1 0.66666667 0.45 0.11111111 3.76667778
d(o5, x) 0.222 1 0.36223 0 0.33333333 0.45 0.22222222 2.58978556
d(o6, x) 0.33 0 0.33276 0.5 0 0.45 0.11111111 1.72387111
d(o7, x) 0.082 0 0.23221 1 0.33333333 0.45 0.22222222 2.31976556
d(o8, x) 0.285 1 0.37846 0 0.33333333 0.45 0.22222222 2.66901556
d(o9, x) 0.285 1 0.37846 1 0.33333333 0.45 0.22222222 3.66901556

Table 12. Normalised distances from the new object to all objects

d(o3, x) 0.04 0 0.40079 0 0 0.5 0.22222222 1.16301222
d(o6, x) 0.33 0 0.33276 0.5 0 0.45 0.11111111 1.72387111
d(o7, x) 0.082 0 0.23221 1 0.33333333 0.45 0.22222222 2.31976556
d(o5, x) 0.222 1 0.36223 0 0.33333333 0.45 0.22222222 2.58978556
d(o2, x) 0.445 0 0.52321 0.5 0.33333333 0.6 0.22222222 2.62376556
d(o8, x) 0.285 1 0.37846 0 0.33333333 0.45 0.22222222 2.66901556
d(o1, x) 0.197 1 0.3889 1 0 0.4 0.11111111 3.09701111
d(o9, x) 0.285 1 0.37846 1 0.33333333 0.45 0.22222222 3.66901556
d(o4, x) 0.083 1 0.4559 1 0.66666667 0.45 0.11111111 3.76667778

Table 13. Ranking of distances in increasing order in Table 12

oE 0.2 0 0.00089 0 1 0.1222210012 0.100001001
Table 14. Exemplar object
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V0 V1 V2 V3 V4 V5 V6 V7
1.469 0.987 1.469 1.402 1.469 0.669 1.359 1.459
3.709 2.979 2.709 2.730 3.209 3.309 3.609 3.709
3.220 2.975 2.220 3.165 2.220 2.420 3.110 3.210
0.378 0.010 0.378 0.378 0.378 0.378 0.378 0.368
2.167 2.104 2.167 2.073 1.167 1.167 2.167 2.157
3.824 3.209 2.824 3.035 3.324 3.024 3.714 3.814
3.066 2.699 2.066 2.378 3.066 2.066 3.066 3.055
1.487 1.487 1.487 1.410 0.487 1.087 1.477 1.487
1.487 1.487 1.487 1.410 0.487 1.087 1.477 1.487

Table 15. Vectors V0, . . . , Vm, rounded to two decimals

Distances 2.870 4.00 2.826 5.00 5.60 0.450 0.061
Weights 0.137 0.192 0.135 0.240 0.269 0.021 0.002

Table 16. Distances Dist(V0, Vt) and (normalised) weights

4. Survival analysis in SAIN 149

Medical survival analysis evaluates the time until an event of interest occurs, like death or disease recurrence, 150

in a group of patients. This analysis is often used to compare treatment outcomes or predict prognosis. 151

4.1. Data and tasks 152

We are given the following data: 153

1. Table 17 in which the first column lists the patients treated for the same disease with the same method under 154

strict conditions and the last column records the times till the patient’s deaths. 155

Patients/Criteria c1 c2 . . . cj . . . cn Units of time
p1 a1,1 a1,2 . . . a1,j . . . a1,n t1
...

...
... . . .

... . . .
...

...
pi ai,1 ai,2 . . . ai,j . . . ai,n ti
...

...
... . . .

... . . .
...

...
pm am,1 am,2 . . . am,j . . . am,n tm

Table 17. Survival database

2. Table 18, which includes the record of the new patient p. 156

3. A threshold δ which defines the acceptable similarity between p and the relevant pi’s in the Survival database 157

(i.e. d(p, pi) → δ). 158

We consider the following tasks: 159

160

Task 1: What is the life expectancy of p? 161

162

Task 2: What is the probability that the life expectancy of p is greater than or equal to a given T? 163

4.2. Tasks solutions 164

Using a standard method of survival analysis 165

1. For Task 1, 166

(a) Compute the set of patients that are similar up to δ to p: 167

Cδ,p = {pi | d(p, pi) → δ, 1 → i → m}. (2)

(b) Using Cδ,p, compute the probability that p will survive the time tj: 168

Probδ (p survives time tj) =
#{pi ↑ Cδ,p | ti = tj}

#(Cδ,p)
. (3)
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Patient/Criteria c1 c2 . . . cj . . . cn
p x1 x2 . . . xj . . . xn

Table 18. New patient record

(c) Compute the life expectancy of p using the formula: 169

LEδ(p) =
m

∑
j=1, tj↑Cδ,p

tj ↓ Probδ (p survives time tj). (4)

2. For Task 2, calculate the probability that the life expectancy of p is at least time T: 170

Probδ(LE(p) ⇑ T) =
m

∑
j=1, tj↑Cδ,p , tj⇑T

Probδ (p survives time tj). (5)

4.3. An example 171

We illustrate the above tasks with an example of a database in which columns 2–8 record patients’ medical test 172

results, and the last column records time to death (see Table prec) and a new patient (see Table 20): 173

174

patients c1 c2 c3 c4 c5 c6 c7 units of time
p1 0.682 0 0.06789 0 0.2 0.012211001 0.110001001 12.3
p2 0.93 1 0.98 0.5 0.6 0.022220012 0.100001001 15
p3 0.445 1 0.056 1 0.2 0.012121001 0.110101111 68
p4 0.568 0 0.00089 0 1 0.122221001 0.110011101 1.4
p5 0.263 0 0.09456 1 0 0.122201001 0.110111101 40.5
p6 0.815 1 0.78955 0.5 0.2 0.012122001 0.110001111 97.2
p7 0.567 1 0.689 0 0 0.122121001 0.111001111 97.2
p8 0.2 0 0.07833 1 0.6 0.112211022 0.100001111 55.7
p9 0.2 0 0.07833 ∞ 0.6 0.112211022 0.100001111 63.7

Table 19. Patient records

xp 0.485 1 0.45679 1 0.2 0.1002121001 0.110001101
Table 20. New patient records

The distance for column 4 is d(x, y) = |x ≃ y| = and d∞(x, ∞) = max(x, 1 ≃ x). For example, d∞(1, ∞) = 175

max(1, 1 ≃ 1) = 1. For all other columns, the distance is d(x, y) = |x ≃ y|. Finally, the total distance is the sum of 176

individual distances (7 terms), with the results in Table 21. 177

The results for Task 1, (a), (b) and (c) are listed below: 178

1. For δ ⇑ 3.37, Cδ,p = {v1, v2, v3, v4, v5, v6, v7, v8, v9}, that is the entire database. Then 179

(a) LEδ(p) = 50.11, 180

(b) i. Probδ (p survives time = 12.3) = 1/9, 181

ii. Prob (p survives time = 15) = 1/9, 182

iii. Probδ (p survives time = 68) = 1/9, 183

iv. Probδ (p survives time = 1.4) = 1/9, 184

v. Probδ (p survives time = 40.5) = 1/9, 185

vi. Probδ (p survives time = 97.2) = 2/9, 186

vii. Probδ (p survives time = 55.7) = 1/9, 187

viii. Probδ (p survives time = 63.7) = 1/9. 188

(c) i. Probδ(LEδ(p) ⇑ 1.4) = 1, 189

ii. Probδ(LEδ(p) ⇑ 12.3) = 8/9, 190

iii. Probδ(LEδ(p) ⇑ 15) = 7/9, 191

iv. Probδ(LEδ(p) ⇑ 40.5) = 6/9, 192

v. Probδ(LEδ(p) ⇑ 55.7) = 5/9, 193

vi. Probδ(LEδ(p) ⇑ 63.7) = 4/9, 194

vii. Probδ(LEδ(p) ⇑ 68) = 3/9, 195

viii. Probδ(LEδ(p) ⇑ 97.2) = 2/9, 196



9 of 14

d1 d2 d3 d4 d5 d6 d7 Distance d
d(p1, p) 0.1970 1 0.388900 1.0 0.0 0.08800109890 0.000000100 2.67390119890
d(p2, p) 0.4450 0 0.523210 0.5 0.4 0.07799208800 0.010000100 1.95620218800
d(p3, p) 0.0400 0 0.400790 0.0 0.0 0.08809109890 0.000100010 0.52898110890
d(p4, p) 0.0830 1 0.455900 1.0 0.8 0.02200890110 0.000010000 3.36091890110
d(p5, p) 0.2220 1 0.362230 0.0 0.2 0.02198890110 0.000110000 1.80632890110
d(p6, p) 0.3300 0 0.332760 0.5 0.0 0.08809009890 0.000000010 1.25085010890
d(p7, p) 0.0820 0 0.232210 1.0 0.2 0.02190890100 0.001000010 1.53711891100
d(p8, p) 0.2850 1 0.378460 0.0 0.4 0.01199892200 0.009999990 2.08545891200
d(p9, p) 0.2850 1 0.378460 1.0 0.4 0.01199892200 0.009999990 3.08545891200

Table 21. Distances between all patients and the new patient

We can calculate other probabilities, for example, Probδ(LEδ(p) ⇑ 60) = Probδ(LEδ(p) ⇑ 63.7) + 197

Probδ(LEδ(p) ⇑ 68) = 3/9 + Probδ(LEδ(p) ⇑ 97.2) = 2/9 = 1/9 + 1/9 + 2/9 = 4/9. 198

2. For δ ⇑ 2.5, Cδ,p = {v2, v3, v5, v6, v7, v8}. Then 199

(a) LEδ(p) = 62.27, 200

(b) i. Prob (p survives time = 15) = 1/6, 201

ii. Prob (p survives time = 68) = 1/6, 202

iii. Prob (p survives time = 40.5) = 1/6, 203

iv. Prob (p survives time = 97.2) = 2/6, 204

v. Prob (p survives time = 55.7) = 1/6, 205

(c) i. Probδ(LEδ(p) ⇑ 15) = 1, 206

ii. Probδ(LEδ(p) ⇑ 40) = 5/6, 207

iii. Probδ(LEδ(p) ⇑ 55.7) = 4/6, 208

iv. Probδ(LEδ(p) ⇑ 68) = 3/6, 209

v. Probδ(LEδ(p) ⇑ 97.2) = 2/6. 210

Similarly, we can calculate the probabilities Probδ(LEδ(p) ⇑ 45) = 4/6, Probδ(LEδ(p) ⇑ 100) = 0. 211

5. SAIN: A Modular Diagram and Functional Information Flow 212

In Figure 1 and Figure 2, we present the modular diagram and the functional information flow of SAIN. 213
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Figure 1. A modular diagram of the proposed SAIN computational framework

6. Case Studies for Medical Diagnosis and Prognosis 214

We present three case studies in which we applied SAIN. 215

6.1. Heart disease diagnosis 216

We worked with the well-known Cleveland dataset, which contains multiple data types [13]. The UCI Heart 217

Disease data set contains 76 attributes. As in most articles, the attributes in our experiment data were restricted to 14, 218

see Table 22. 219

The problem is a binary classification on whether the patient has or does not have heart disease. 220
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Figure 2. A flow of data and information processing in the SAIN computational framework

                                                                                               
 

 

 

Fig.1c. The neighborhood Dx of a new sample/vector  X (as a circle) consists of samples of class 1 
(in red) and class two (in blue).  The sample  X is classified in class 1 based on wwKNN method 
[14]. The samples/vectors are represented in a 3D X,Y,Z space of the top 3 ranked variables, which 
can belong to different modalities.  

Figure 3. The neighborhood Dx of a new sample/vector X (as a circle) consists of samples of class 1 (in red) and class two (in
blue). The sample X is classified in class 1 based on wwKNN method [14]. The samples/vectors are represented in a 3D X,Y,Z
space of the top 3 ranked variables, which can belong to different modalities.
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Name Data type Definition
age integer age in years
sex binary sex
cp {1,2,3,4} chest pain type
trestbps integer resting blood pressure
chol integer serum cholesterol in mg/dl
fbs binary fasting blood sugar > 120 mg/d
restecg {0,1,2} resting electrocardiographic results
thalach I integer maximum heart rate achieved
exang binary exercise-induced angina
oldpeak float ST depression induced by exercise relative to rest
slope {1,2,3} the slope of the peak exercise ST segment
ca {0,1,2,3,} number of major vessels colored by flourosopy
thal {3,6,7} heart status
num {0,1,2,3,4} diagnosis of heart disease

Table 22. The 14 variables used in the heart disease diagnosis case
                                                                                               
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Every time series can be represented as a 3-value vector through a spike encoding method over time [15]. If at a time t
the times series is increasing in value, there will be a positive spike (1), if decreasing – negative spike (-1) and if no change – no
spike (0) (left figure). Each element in this vector represents the change of the signal at a time. If necessary, the original signal can
be recovered over time using this vector (right figure). The length of the vector is equal the time points measured.

First, we selected suitable distance metrics and weights to classify the attributes. For binary objects, the distance 221

metric is simply whether they are equal; for non-binary discrete objects such as resting electrocardiographic results, 222

the appropriate distance measure is not obvious and should be informed by an expert. We give electrocardiographic 223

results 0 for normal, 1 for having ST-T wave abnormality, and 2 for showing probable or definite left ventricular 224

hypertrophy following Estes’ criteria. 225

Many studies with the Cleveland dataset have been tested with different machine learning techniques. For 226

example, [14] lists different algorithms and performances ranging from 47% to 80% accuracy. SAIN achieved an 227

82% accuracy score. Why SAIN? The search is fast, it uses appropriate distances chosen by a medical expert, it 228

provides explainability at a personal level including probabilities. If offers different scenarious for modelling by 229

experimenting different sets of features, parameters and preferred outcome vizualitations. 230

6.2. Time series classification 231

Many data sets for classifying outcomes of events consist of multiple time series. Each variable in a time 232

series may depend on other variables that change in time. The proposed model can deal with this problem by 233

encoding time series (signal) into binary vectors which can be processed for classification in the SAIN framework. 234

The variables for this data set are 14 channels of temporal EEG data channels, located at places of interest on the 235

human scalp. 236

The signals measured over the same time period are the EEG channels, fMRI voxels, ECG electrodes, seismic 237

sensory signals, financial time series, gene expressions, voice, and music frequency bands [8]. Even when the 238

variable (signal) measurements are independent, the signals may have an impact on each other as they represent the 239

same object/person at the same time period. The number N of these signals can vary from just a few for a short time 240

window T (Fig 4) to hundreds and thousands when the time varies from a few milliseconds to minutes, hours, days, 241

etc. 242

Fig 5 shows an EEG experiment and Fig 6 shows one cardio-vascular disease signal. 243

Next we present a simple example how this search can be computed for a new record X consisting of only 3 244

variables/signals (e.g. EEG channels, ECG electrodes) over a short period of 5 time moments and the data base D 245

constituting of only 6 such records which are labelled by an outcome labels 1,2,3 (e.g. diagnosis, prognosis). 246

In addition to the record X, a weight vector is supplied with the weighted importance of the signals at 247

different time points, e.g. W = [0.1, 0.2, 0.4, 0.2, 0.1], meaning that the most important and informative part of the 248

measurements is at time point 3. 249
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Figure 5. EEG signals taken from EEG electrodes spatially distributed on the scalp are spatio- temporal signals (left figure). Each
time series signal from an electrode is measured every 1 millisecond. The figure on the right shows the measurements of 14
EEG electrodes over time of 124 milliseconds. Each signal can be encoded into 124 element vector according to Fig. 4, making
altogether 14 such vectors to be processed in the SAIN framework.

Figure 6. ECG (Electro cardiogram) signals (a- nosy and b- filtered) can be encoded into binary vectors according to the spike
encoding methods from Fig. 4. Spike encoding is robust to noise, as any noise below a threshold would not cause the generation
of a spike (either positive or negative) and the encoder will act as a filter. The length of this vector will be equal to the number of
measurement time points. The vector data can be further processed in the SAIN framework.

The new record X = [1, 1,≃1, 0, 1] (signal, EEG channel 1) 0, 1, 1, 1, -1 (signal, EEG channel 2) 1, 1, -1, -1, 0 250

(signal, EEG channel 3), W = [0.1, 0.2, 0.4, 0.2, 0.1] 251

252

The database contains records (Records, R1, R2, R3, R4, R5, LabelsL) where: 253

254

Record Channel 1 Channel 2 Channel 3 Label
R1 (1, 1, -1, 0, 1) (0, 1, 1, 1, -1) (1, 1, -1, -1, 0) 1
R2 (1, 0, -1, 0, 1) ( 0, 1, 1, 1, -1) (1, 0, -1, -1, 1 ) 1
R3 (1, 1, -1, 0, 1) (0, -1, 1, 1, -1) (1, 1, -1, 0, 1) 2
R4 (1, 1, -1, 0, 1) (0, -1, 1, 0, -1) (1, 1, -1, 0, 1) 2
R5 (1, 1, -1, 0, 0) (0, -1, 0, 1, -1) (1, 1, -1, 1, 1) 3
R6 (1, -1, -1, 0, 1) (0, -1, 1, 0, -1) (1, 1, -1, 0, 1) 3

Table 23. Caption

The new record X of EEG-signals will be classified in class 1 as it is closest according to the Euclidian distance 255

class 1 data samples R1 and R2. 256

6.3. Predicting longevity in cardiac patients 257

We utilised a data set in which we applied a binary classification on whether the patient had an event (e.g. 258

death) and further to those that had an event whether this would occur in the near future (within the next 180 days, 259

e.g. approximately six months). The data set contained a set of 150 variables and an outcome, with 295 patients in 260

the first data set and 49 in the second. The data included a mix of variables that could be grouped as follows: 261

• demographics, risk factors, disease states, medication and deprivation scores, 262

• echocardiography, cardiac ultrasound measurements, 263

• advanced ECG measurements, 264

The other data includes the days until the event occurred of the censor date for the Cox proportional hazard 265

monitoring. 266

The objectives are to predict an arrhythmic event or death. 267

Before running the algorithm, the data was normalised, and to account for the data being unbalanced, we 268

utilised smote each time we left one out (ensuring that we did not smote when the true data point was part of the 269

data set). For the event classification data set, the model achieved an accuracy of 79%. This is broken down into 270

classifying no event (198/247, 80%) and an event with (36/49, 73%) accuracy. It is worth noting the confidence of 271

each individual could be explored with a sample of the confidence for classification in Firgue 7. 272

For the second experiment, we normalised the dataset and removed any columns with unknown values. We 273

then applied a genetic algorithm to find the set of features to use for classification. We found a set of 34 variables 274
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Figure 7. Sample of the classification breakdown and the confusion matrix (class 2 would be utilised when we wish to have an
uncertain class, but here we have classified based on probability > 50%).

which would provide an accuracy of 81% with (34/34) for class 0 and (6/15) for class 1. Alternatively, we find 275

that if we apply smote and focus more on the accuracy of class 1, we obtain 69% accuracy, however, more evenly 276

distributed with (24/34) for class zero and (10/15) for class 1. 277

7. Data and Software Availability 278

The data has been obtained from the following: UCI Cleveland data available at https://archive.ics.uci.edu/ 279

dataset/45/heart+disease EEG data available at https://github.com/KEDRI-AUT/NeuCube-Py/tree/master/ 280

example_data Access to the software is available on request. 281

8. Conclusions 282

The paper presents a new method for search and inference, called here SAIN, for multi-modal data integration 283

and personalised model creation based on these multi-modal data. The model not only evaluates the outcome for a 284

person more accurately than traditional machine learning methods using a single modality data, but it also explains 285

the proposed solution in terms of probability and visual explanation. 286

The proposed method is implemented as a computer system and applied to several case studies to illustrate its 287

advantages and applicability. The SAIN method described in Section 2 was implemented as a software system. 288
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