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Abstract

We present a method to construct an N -dimensional quantum random number generator (QRNG) certified via
value-indefiniteness (Kochen-Specker Theorem), working in a Hilbert space of dimension larger than 2, that generates
quantum random N -digits with a pre-given probability distribution with 0 < p1, p2, . . . , pN < 1 and

!N
i−1 pi = 1.

Our construction is based on a unitary decomposition corresponding to a physically realisable photonic embodiment
via photonic primitives such as beamsplitters and phase shifters. We prove that every sequence of quantum random
digits generated by the N -dimensional QRNG is highly incomputable and Borel normal, hence its randomness quality
is better than that of every pseudo-random generator.

1 Introduction

Over the past decade, the use of quantum random number generators (QRNGs) has grown significantly due to the
limitations and sometimes catastrophic failures of pseudo-random number generators [15], and the increasing demand
for high-quality randomness across various fields including cryptography, statistics, information science, medicine, and
physics. QRNGs are often regarded as superior to PRNGs because they rely on the inherent unpredictability of carefully
selected and controlled quantum processes [13]. However, the superiority of a QRNG over any PRNG warrants deeper
scientific justification, and to date, the only QRNG for which such a theory was developed is the 3D QRNG [7, 6].

In this paper, we generalise the construction in [6] to develop a uniform approach for constructing a class of photonic
N -dimensional QRNGs for N > 2. This method is based on a universal unitary operator and a strategy for preparing
quantum value-indefinite states that comply with the Located Kochen-Specker Theorem [2]. Measurements on these
states yield outcomes with an a priori specified probability distribution.

We prove that every sequence of quantum random digits generated by the N -dimensional QRNG is highly incomputable
and Borel normal, hence its randomness quality is better than that of every pseudo-random generator.

2 Notation and Definitions

An observable is a physical property or physical quantity that can be measured. In quantum physics, an observable
is value-definite if it always yields the same value when measured, even if the system is in a superposition of states.
The values of a value-definite observable are called eigenvalues, and the system states that correspond to these values
are called eigenstates. A Hermitian operator is a linear operator that equals its own conjugate transpose, that is, it is
self-adjoint. If each eigenvalue of a Hermitian operator has a unique corresponding eigenvector, then it has a unique
orthonormal basis; in this case, we say that it has a non-degenerate spectrum. For more details, see [17].

By R we denote the set of reals and by CN the complex Hilbert space of dimension N > 2.

3 Theoretical Results

In this section, we summarise the main known theoretical results.



3.1 Localising value-indefinitness

Value-indefiniteness is the main concept in this paper, and the Kocken-Specker Theorem [14] shows that in a Hilbert
space of dimension N > 2, value-indefinite observables exist. This result is proved by assuming the following three
hypotheses.

• Admissibility. This hypothesis guarantees agreement with quantum mechanics predictions. Fix a set O of one-
dimensional projection observables on CN and the value assignment partial function v : O → {0, 1}. Then v is
admissible if for every context C of O, we have

!
P∈C v(P ) = 1. Accordingly, only one projection observable in

a context can be assigned the value 1.

• Non-contextuality of definite values. Every outcome obtained by measuring a value definite observable is non-
contextual, i.e. it does not depend on other compatible observables which may be measured alongside it.

• Eigenstate principle. If a quantum system is prepared in the state |ψ〉, then the projection observable Pψ is value
definite

Kocken-Specker Theorem proves only the existence of value-indefinite observables, hence it is not enough for our
QRNGs, which work by measuring value-indefinite observables. The following result solves this problem:

Theorem 1 (Located Kochen-Specker Theorem[2, 3]) Assume a quantum system prepared in the state |ψ〉 in a Hilbert
space CN with n ≥ 3 , and let |φ〉 be any quantum state such that 0 < |〈ψ|φ〉| < 1. If the following three conditions are
satisfied: i) admissibility, ii) non-contextuality, and iii) eigenstate principle, then the projection observable Pφ is value
indefinite.

4 Photonic Components

In this section, we present the photonic components of the QRNGs.

4.1 Beamsplitter

We use a transformation produced by a lossless beamsplitter and an external phase shifter to represent the annihilation
operators of the quantum harmonic oscillator [11]. Here, the transmittance and reflectivity parameters are described
within the unitary matrix, and the input and output states are represented with modes (u, v) and (u′, v′), respectively:

"
u
′

v
′

#
=

"
cos θ ie

iϑ sin θ
i sin θ e

iϑ cos θ

#"
u

v

#
,

where θ describes the square root of the reflectivity, the transmittance is given by sin θ and cos θ respectively, and ϑ
represents the phase of an external phase shifter on the second input port.

4.2 A N -multiport beamsplitter

As demonstrated in [18], given an arbitrary N -dimensional unitary operator, we can represent a generalised rotation
through the decomposition of the unitary matrix using a series of phase shifters and standard beamsplitters implemented
in an optical experiment. A multiport beamsplitter is called symmetric if the norm of all its matrix elements are equal.
To model the behaviour of an N -dimensional system, it is useful to generalise the effect of a standard beamsplitter to
a single multiport symmetric beamsplitter acting on N -input modes and N -output modes. For dimension N , we may
express it by:

BSN =
1√
N

$

%%%&

1 1 . . . 1
1 e

iϕ22 . . . e
iϕ2N

...
...

. . .
...

1 e
iϕN2 . . . e

iϕNN

'

((()
.
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The parametric family of this type of operator is known, allowing for a physical realisation with an N -multiport beam-
splitter [16, 18].

A natural example occurs for dimension 2, where a lossless symmetric beamsplitter may be used to perform a Hadamard
transformation on a qubit:

"
|0′〉
|1′〉

#
=

1√
2

"
1 1
1 −1

#"
|0〉
|1〉

#
.

5 An N -dimensional QRNG

In this section, we present the construction of an N -dimensional QRNG by measuring a value indefinite observable in
CN , for an arbitrary N ≥ 3.

5.1 Preparation: the first measurement operator

We choose an N -dimensional unitary Hermitian operator with non-degenerate spectra. From Theorem 1, it follows
that for any diagonalisable observable O with spectral decomposition O =

!N
i=1 λiPλi

, where λi denotes each distinct
eigenvalue with corresponding eigenstate |λi〉, O has a predetermined measurement outcome if and only if each projector
in its spectral decomposition has a predetermined measurement outcome.

Ideally, we want an operator with eigenvectors corresponding to the standard Cartesian basis on dimension N . If this is
the case, the basis states correspond to the N input modes of the final measurement device (the alternatives that satisfy
the requirements are equivalent to a change of basis). For an arbitrary N ≥ 3, we may construct the spin state operators
to find a suitable candidate (up to a change of basis) [1]. For example, in [8], for N = 3 the first measurement operator

Ux =
1

2

$

&
1

√
2 1√

2 0 −
√
2

1
√
2 1

'

)

corresponds to the spin state operator S(π2 , 0) by considering the orthonormal standard Carthesian basis.

We will use the first measurement operator to provide a value definite state (preparation state) so that its interaction
with a secondary operator satisfies Theorem 1; that is, the eigenstates of the second measurement operator are neither
orthogonal nor parallel to the preparation state.

5.2 Number generation: the second measurement operator

We choose an N -dimensional unitary Hermitian operator with distinct eigenvectors different from the one used in the
first measurement operator to fulfill the conditions required to apply the Located Kochen-Specker Theorem.

We can construct such a unitary Hermitian operator by working with the parametric family of symmetric multiport
beamsplitters on dimension N and finding an appropriate phase value.

This operator may be degenerate due to the role of such operators and the non-contextuality assumption in the original
formulation of the Kochen-Specker Theorem. We recall the following conditions on a value assignment map V to
proceed.

• For any self-adjoint operator O corresponding to an observable O, we have that V (O) ∈ {oi}, where {oi} are the
eigenvalues of O. That is, each observable corresponds to an element of physical reality, and the values assigned
correspond to the set of possible outcomes.

• (Quasi-linearity) For commuting operators A,B, that is [A,B] = 0, we have that V (aA+bB) = aV (A)+bV (B),
where a, b ∈ R.

• (Non-contextuality) All observables are assigned values simultaneously, regardless of what else is being measured
with a given observable, that is, regardless of the measurement context.
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From quasi-linearity, it follows that the map must preserve the algebraic structures of the operators. That is, for any
Borel function f , we have that V (A) = f(V (B)), whenever A = f(B). This core element leads to a contradiction in
many proofs of the Kochen-Specker Theorem. However, the contradiction only occurs for degenerate operators in the
original Kochen-Specker formulation as a result of the following properties: If an operator A is degenerate, for some
non-degenerate operators B, C and Borel functions f, g, we have that

A = f(B) and A = g(C), with [B, C] ∕= 0.

Thus, from quasi-linearity it follows that

V (A) = f(V (B)) = g(V (C)).

The sum of the projectors of a complete orthonormal set of states yields the identity operator. So, since orthogonal
projectors commute, the sum of their assigned values must be one. For one-dimensional degenerate operators, we get
a single projector with value one and N − 1 zero-valued projectors for an N -dimensional Hilbert space. This leads
to a contradiction when considering all complete sets of projectors since a projector is a function of different non-
commuting, non-degenerate operators. In other words, degenerate one-dimensional operators must be assigned the same
value regardless of which non-degenerate operator it is considered to be a function of. Consequently, we are forced to
accept the existence of value-indefinite observables or some form of contextuality.

Note that the first measurement operator helps to prepare the measurement context with a corresponding value definite
preparation state. Moreover, all Hermitian operators are self-adjoint, so degeneracy of an observable can be understood
as having more than one measurement basis (or measurement context) for an observable and is not detrimental when
localising a value-indefinite observable (nor is it required in the localised variant of the Kochen-Specker Theorem).

“What we observe is not nature itself, but nature exposed to our method of questioning”, W. Heisenberg, [12]

5.3 State preparation, outcome probabilities, strong incomputability and Borel normality

Choose any probability distribution p1, p2, p3, . . . , pN with
!

i pi = 1 and 0 < pi < 1. We apply the process described
in [8] to select a preparation state |ψ〉 defined with the first measurement operator. In this way, we ensure that the
conditions imposed by the Localised Kochen-Specker Theorem are met by performing the second measurement on |ψ〉.
That is, we may construct value indefinite observables which, by measurement, produce outcomes with the probabilities
p1, p2, p3, . . . , pN .

An N -dimensional QRNG can operate indefinitely many times in an algorithmic fashion of the form “preparation,
measurement, reset" and generate infinite sequences. Generalising the certification of a 3D QRNG in [6], one can
show that every sequence generated by any N -dimensional QRNG is incomputable, that is, no sequence produced by an
N -dimensional QRNG can be reproduced exactly by any algorithm, in particular, by any pseudo-random generator. This
shows that the quality of the quantum random digits produced by every N -dimensional QRNG is provably better than
that produced by any pseudo-random number generator.

A stronger result can be obtained by using the non-probabilistic model for unpredictability [4, 5], the Eigenstate principle
and:

epr principle: If a repetition of measurements of an observable generates a computable sequence, then this
implies that these observables were valued definite.

The proof of Theorem 5.1 from [6] can be generalised from N = 3 to every N > 2:

Theorem 2 Assume the epr and Eigenstate principles. Let x be an infinite sequence generated by an N -dimensional
QRNG. Then no single digit xi of x can be predicted.

Now, fix an integer m > 1 and consider the alphabet Am
b = {a1, . . . , abm} of all strings x ∈ A

∗
b with |x|b = m, ordered

lexicographically. A string x ∈ A
∗
b will be denoted by x

m when we emphasise that it belongs to (Am
b )∗. By A

ω
b we

denote the set of all infinite sequences x = x1x2 · · · with xi ∈ A
∗
b .

Take for example, for A2 = {0, 1},m = 2, A2
2 = {00, 01, 10, 11}; the string x = 10110100 ∈ A

∗
2 will be denoted by

x
2 = (10)(11)(01)(00) when considered in A

2
2. Clearly, |x|2 = 8 and |x2|4 = 4. In the same way a sequence x ∈ A

ω
b

will be written as xm when considered in (Am
b )ω.
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Let Ni(x) be the number of occurrences of i ∈ Ab in the string x ∈ A
∗
b and for every u ∈ A

m
b let Nm

u (xm) be the
number of occurrences of u in the string x

m ∈ (Am
b )∗. Recall that for x ∈ A

ω
b and n ≥ 1, x(n) = x1x2 . . . xn ∈ A

∗
b .

The sequence x is called m-Borel normal (m ≥ 1) in case for every u ∈ (Am
b )∗ one has:

lim
n→∞

N
m
u (xm(⌊ n

m⌋))
⌊ n
m⌋ =

1

bm
.

The sequence x ∈ A
ω
b is called Borel normal if it is Borel m-normal, for every natural m ≥ 1, [9].

For applications that require binary strings, to ensure the results from [7, 8] apply, we need to choose a suitable probability
distribution and a suitable alphabetic morphism; this is dependent on the dimension N .

In particular, for dimension N = 2m with positive integer m > 1, choosing an equally likely distribution of outcomes
allows us to achieve Borel m-normality through a simple alphabetic morphism ϕ: assign a different string from the
alphabet Am

2 to each of the possible N outcomes.

Theorem 3 Let m > 1 and the 2m-dimensional QRNG described above, in which the preparation state was selected so
that each outcome occurs with probability of 2−m. Fix an alphabetic morphism given by a bijection ϕ : A2m → A

m
2 .

Then, for every sequence x generated by the QRNG, the binary sequence ϕ(x) is m-Borel normal.

6 A 4-dimensional Example

We can find the first measurement operator for an arbitrary N ≥ 3 by constructing the spin state operator for N . For
dimension N = 4, we have the Hermitian non-degenerate operator

1

2

$

%%&

3 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −3

'

(() .

Since the operator is non-degenerate, we can map distinct eigenvectors and eigenvalues to each input port. These are
given by {3

2 ,
1
2 ,−

1
2 ,−

3
2} and the corresponding eigenvectors with respect to the Cartesian Standard basis are:

|1〉 =

$

%%&

1
0
0
0

'

(() , |2〉 =

$

%%&

0
1
0
0

'

(() , |3〉 =

$

%%&

0
0
1
0

'

(() , |4〉 =

$

%%&

0
0
0
1

'

(() .

For the second measurement operator, an element of the family of symmetric multiport beamsplitters on dimension 4 is
given by:

1

2

$

%%&

1 1 1 1
1 e

iφ −1 −e
iφ

1 −1 1 −1
1 −e

iφ −1 e
iφ

'

(() .

Choosing the phase φ = π, we get the unitary Hermitian operator

1

2

$

%%&

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

'

(() ,

with eigenvectors

|1U 〉 =

$

%%&

0
−1
0
1

'

(() , |2U 〉 =

$

%%&

−1
2
1
0

'

(() , |3U 〉 =

$

%%&

2
1
0
1

'

(() , |4U 〉 =

$

%%&

1
0
1
0

'

(() .
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Figure 1: Photonic realisation of the unitary decomposition. The numbering on the left side indicates the input modes.

For dimension N = 4 and equally likely outcomes (14 ,
1
4 ,

1
4 ,

1
4) this process yields the state

|ψ〉 = 1

2
|3〉+ 1

2
|4〉 .

Indeed, applying the second measurement to |4〉 we get that

〈1U |ψ〉 = 〈4|ψ〉 = 1

2
〈4|4〉 = 1

2
, =⇒ |〈1U |ψ〉|2 =

1

4
,

〈2U |ψ〉 = 〈3|ψ〉 = 1

2
〈3|3〉 = 1

2
, =⇒ |〈1U |ψ〉|2 =

1

4
,

〈3U |ψ〉 = 〈4|ψ〉 = 1

2
〈4|4〉 = 1

2
, =⇒ |〈1U |ψ〉|2 =

1

4
,

〈4U |ψ〉 = 〈3|ψ〉 = 1

2
〈3|3〉 = 1

2
, =⇒ |〈1U |ψ〉|2 =

1

4
.

So we get a value-indefinite outcome with the desired probability distribution. Using the alphabetic morphism given by
the bijection ϕ : A4 → A

2
2 defined by ϕ(0) = 00,ϕ(1) = 01,ϕ(2) = 10,ϕ(3) = 11 and Theorem 3, the 4D-QRNG

generates strongly incomputable 2-Borel normal 4-ary and binary sequences; the binary sequences are generated faster
than the 3D-QRNG in [6].

6.1 Unitary decomposition

Consider the following beamsplitter matrix:

BS =

"
e
iφ cos θ − sin θ
e
iφ sin θ cos θ

#
.

We note that BS is equivalent to the beamsplitter matrix presented in Section 4.1 by a phase factor. We work here with
the matrix BS because its form facilitates the decomposition technique in [10].

Here, φ represents a phase and θ an angle. Let BSi,j represent the beamsplitter between modes i and j, then we have:

Beamsplitter θ φ

BS1,2
π
4 0

BS3,4
π
4 −π

BS2,3
π
4 0

BS1,2
π
2 −π

BS3,4
π
2 2.55

BS2,3
π
4 π
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7 Conclusions

We have described a method for generalising, to dimensions greater than three, the construction of the class of QRNGs
presented in [19]. This method describes a photonic realisation of the generalised construction using the same tools
described in [19]. In addition, due to the relevance of applications requiring binary random strings, we showed, using
a simple alphabetic morphism, that this construction can generate m-Borel normal sequences for dimensions N = 2m.
Hence, the N -dimensional QRNG generates a strongly incomputable sequence through a succession of measurements,
each producing multiple bits. Finally, we illustrated the generalised construction by providing a 4-dimensional QRNG
which generates strongly incomputable and 2-Borel normal 4-ary and binary sequences.
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