CDMTCS
 Research

Ludwig Staiger
Martin-Luther-Universität
Halle-Wittenberg
Klaus W. Wagner
Julius-Maximilians-Universität Würzburg

CDMTCS-573
November 2023, revised April 2024

[^0]
The Forty Nine Kuratowski Lattices in the Cantor Space*

Ludwig Staiger ${ }^{\dagger}$
Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

and
Klaus W. Wagner
Julius-Maximilians-Universität Würzburg
Institut für Informatik
Am Hubland, D-97074 Würzburg, Germany

Abstract

Kuratowski observed that, starting from a subset M of a topological space and applying the closure operator and the interior operator arbitrarily often, one can generate at most seven different sets. We show that there are forty nine different types of sets w.r.t. the inclusion relations between the seven generated sets. All these types really occur in the Cantor space, even for subsets defined by finite automata. For a given type, it is NL-complete to decide whether a set M, accepted by a given finite automaton, is of this type.

In the topological space of real numbers only 39 of the 49 types really occur.

Keywords: topology, closure, interior, Cantor space, finite automata, NL-complete

[^1]
Contents

1 Topological Spaces in General 3
1.1 Introduction 3
1.2 The types 4
1.2.1 The case $\neg \mathrm{G} \wedge \neg \mathrm{H}$ 6
1.2.2 The case $\neg \mathrm{G} \wedge \mathrm{H}$ 7
1.2.3 The case $G \wedge \neg \mathrm{H}$ 8
1.2.4 The case $\mathrm{G} \wedge \mathrm{H}$ 9
1.3 Duality 10
1.4 Topological structure 10
2 The Cantor Space 13
2.1 Languages of infinite words 13
2.2 All types exist in the Cantor space 14
2.3 Topological complexity 16
2.4 Regular ω-languages and finite automata 17
3 The Topological Space of Reals 23
3.1 Connected spaces 23
3.2 All 39 types exist in the space of reals 24
The present paper addresses an issue relating elementary topology with automata theory. It considers, in a topological space \mathcal{X}, the inclusion structures, here called types, that can hold among the (up to) seven distinct sets a subset M generates under closure C and interior I. In [MMW07] it is shown that there are 49 different such types. Using a formal derivation system the authors of [MMW07] constructed several 10-element topologies presenting all 49 types. Here we show that these 49 types can be constructed by automata theoretic means. To this end we use the regular ω-languages and the setting of the Cantor space.
We first derive in the general case the properties of these 49 inclusion structures, and we consider the required topological properties for sets M having a certain type. In the subsequent Section 2 we show that for every of the 49 types there is a regular ω-language (subset of the Cantor space) representing this type. The connection to finite automata and decision problems is the topic of the next section. Here it is shown that, for a given finite automaton, the problem whether its accepted ω-language is of a certain type is NL-complete. The final section gives an example that not every space has subsets of all 49 types-the real line admits only 39 types.

1 Topological Spaces in General

1.1 Introduction

A topological space is a pair (X, \mathcal{O}) where X is a non-empty set and $\mathcal{O} \subseteq 2^{x}$ is a family of subsets of X which is closed under arbitrary union and under finite intersection. The family \mathcal{O} is usually called the family of open subsets of the space X. Their complements are referred to as closed sets of the space X.

Kuratowski observed that topological spaces can be likewise defined using closure or interior operators. A topological interior operator I is a mapping I: $2^{x} \rightarrow 2^{x}$ satisfying the following relations. It assigns to a subset $M \subseteq X$ the largest open set contained in M.

$$
\begin{align*}
\mathrm{IX} & =X \\
\mathrm{IIM} & =\mathrm{IM} \subseteq M, \text { and } \tag{1}\\
\mathrm{I}\left(\mathrm{M}_{1} \cap \mathrm{M}_{2}\right) & =\mathrm{IM} \mathrm{M}_{1} \cap \mathrm{IM}
\end{align*}
$$

Using the complementary (duality) relation between open and closed sets one defines the closure of (smallest closed set containing) M as follows.

$$
\begin{equation*}
\mathrm{CM}=\operatorname{def} X \backslash \mathrm{I}(X \backslash M) \tag{2}
\end{equation*}
$$

Then the following holds.

$$
\begin{align*}
\mathrm{C} \emptyset & =\emptyset \\
\mathrm{CCM} & =\mathrm{CM} \supseteq \mathrm{M} \tag{3}\\
\mathrm{C}\left(\mathrm{M}_{1} \cup \mathrm{M}_{2}\right) & =\mathrm{CM} \mathrm{M}_{1} \cup \mathrm{CM}_{2}
\end{align*}
$$

Since $I\left(M_{1} \cup M_{2}\right) \cap I\left(X \backslash M_{2}\right)=I\left(M_{1} \backslash M_{2}\right) \subseteq I M_{1}$ we obtain the following (see [Kur66, RS63]).

$$
\begin{equation*}
\mathrm{I}\left(\mathrm{M}_{1} \cup \mathrm{M}_{2}\right) \subseteq \mathrm{I} M_{1} \cup \mathrm{CM} M_{2} \subseteq \mathrm{CIM} \mathrm{M}_{1} \cup \mathrm{ICM}_{2} \tag{4}
\end{equation*}
$$

In the paper [Kur22] (see also [Kur66, Ch. I, § 4]) Kuratowski proved that starting from a subset M of X and applying C and I arbitrarily often, one obtains only the (not necessarily different) seven sets M, CM, IM, CIM, ICM, CICM, and ICIM. This can be easily verified using the following theorem.

Theorem 1 ([Kur22]) CICIM = CIM and IC ICM = ICM, for every M \subseteq x.

Because of the monotonicity and the idempotence of the operators C and I as well as the property $\mathrm{I} M \subseteq \mathrm{M} \subseteq \mathrm{CM}$ we obtain the inclusion structure between these seven sets shown in Fig. 1. We will refer to this structure in the sequel as the Kuratowski lattice of the set M. More precisely, given a topological space X and a set $M \subseteq X$ the Kuratowski lattice of the set M is the vector (M, CM, CICM, CIM, ICM, ICIM, IM), and we say that two Kuratowski lattices $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{7}\right)$ and $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{7}\right)$ are isomorphic provided $A_{i} \subseteq A_{j} \Leftrightarrow B_{i} \subseteq B_{j}$ for all $i, j \in\{1,2,3,4,5,6,7\}$.

The general shape of a Kuratowski lattice is depicted in Figure 1. It describes all inclusion relations between the seven sets which are necessarily fulfilled, that is, derivable from Eqs. (1) and (3) (see also [Kur66, Chapter $1, \S 4, \mathrm{~V}]$.$) .$

Figure 1: Kuratowski lattice

1.2 The types

Depending on the particular properties of the set M there might hold additional inclusions. These simplify the shape of the Kuratowski lattice. In this paper we are going to investigate how many, depending on the nature of the set M, non-isomorphic Kuratowski lattices might exist.

To this end we start with a list of the 14 possible additional elementary relations. These are given in Table 1. Here the first group (A) to (E) consists of inclusion relations - upper and lower bounds - between the set M and their six derived sets, and the second group (F) to (H) solely of inclusions between the derived sets.

The papers [Cha62, Lev61] contain some of these equivalences and, moreover, conditions on sets M to fulfil several identities like ICM = IM
etc.

Proposition 2

1. $\mathrm{ICM} \subseteq M \Leftrightarrow \mathrm{ICM}=\mathrm{I} M$, and $\mathrm{CIM} \supseteq M \Leftrightarrow \mathrm{CIM}=\mathrm{CM}$,
2. $\operatorname{ICIM} \subseteq M \Leftrightarrow \operatorname{ICIM}=I M$, and CICM $\supseteq M \Leftrightarrow C I C M=C M$,
3. $\operatorname{ICIM} \supseteq$ CIM \Leftrightarrow ICIM $=$ CIM, and CICM \subseteq ICM \Leftrightarrow CICM $=$ ICM,
4. $I C M \subseteq C I M \Leftrightarrow C I C M=C I M \Leftrightarrow I C I M=I C M$.

We give a short proof of the first part of Item 1, the other equivalences are proved in a similar manner.
Proof. Since $\mathrm{I} M \subseteq M$, ICM $=\mathrm{I} M$ implies ICM $\subseteq M$. If ICM $\subseteq M$ then $\operatorname{ICM}=\operatorname{IICM} \subseteq \mathrm{IM}$ by Eq. (1) and monotonicity of I. The other implication follows from $\mathrm{CM} \supseteq \mathrm{M}$ and the monotonicity of I .

lower bounds		upper bounds
(A_{0})	$C M=M$	$\left(\mathrm{A}_{1}\right) \quad \mathrm{IM}=\mathrm{M}$
$\left(\mathrm{B}_{0}\right)$	CICM $\subseteq M$	$\left(\mathrm{B}_{1}\right) \quad$ ICIM $\supseteq \mathrm{M}$
$\left(\mathrm{C}_{0}\right)$	$\mathrm{CIM} \subseteq M$	$\left(\mathrm{C}_{1}\right) \quad \mathrm{ICM} \supseteq \mathrm{M}$
(D_{0})	$\begin{aligned} & \mathrm{ICM} \subseteq M \\ & \mathrm{ICM}=\mathrm{IM} \end{aligned}$	$\begin{array}{ll} \left(\mathrm{D}_{1}\right) & \mathrm{CIM} \supseteq M \\ & \mathrm{CIM}=\mathrm{CM} \end{array}$
(E_{0})	$\begin{aligned} & \text { IC IM } \subseteq M \\ & \mathrm{IC} \mathrm{IM}=\mathrm{IM} \end{aligned}$	$\begin{array}{ll} \left(\mathrm{E}_{1}\right) & \text { CICM } \supseteq M \\ & \text { CICM }=\mathrm{CM} \end{array}$
relations between derived sets		
(F_{0})	$\begin{aligned} & \text { IC IM } \supseteq \text { CIM } \\ & \text { IC IM }=\text { CIM } \end{aligned}$	$\begin{array}{ll} \left(\mathrm{F}_{1}\right) & \text { CICM } \subseteq \mathrm{ICM} \\ & \text { CICM }=\mathrm{ICM} \end{array}$
(G)	$\mathrm{ICM} \subseteq \mathrm{CIM}$	
(H)	$\mathrm{CIM} \subseteq \mathrm{ICM}$	

Table 1: Possible inclusions between M and its derived sets.
By Proposition 2 conditions in the same box are equivalent.
However, the 14 elementary inclusions of Table 1 are not independent. First we give a diagram of some general implications which hold true.

Proposition 3 Let $\alpha \in\{0,1\}$. Then the following general implication structure holds true.

$$
\begin{align*}
& \mathrm{A}_{\alpha} \rightarrow \mathrm{B}_{\alpha} \circlearrowright \begin{array}{l}
\mathrm{D}_{\alpha} \\
\mathrm{C}_{\alpha}
\end{array} \begin{array}{l}
\nearrow \\
\\
\\
\\
\mathrm{E}_{\alpha}
\end{array} \tag{5}\\
& C_{\alpha} \\
& \mathrm{F}_{\alpha} \rightarrow \mathrm{H} \tag{6}
\end{align*}
$$

Next, we present some further implications which are needed in the sequel.
Proposition 4 Let $\alpha \in\{0,1\}$.

$$
\begin{align*}
\mathrm{D}_{\alpha} & \longleftrightarrow \mathrm{E}_{\alpha} \wedge \mathrm{G} \tag{7}\\
\mathrm{~B}_{\alpha} & \longleftrightarrow \mathrm{C}_{\alpha} \wedge \mathrm{G} \tag{8}\\
\mathrm{G} & \longrightarrow\left(\mathrm{~B}_{\alpha} \leftrightarrow \mathrm{C}_{\alpha}\right) \wedge\left(\mathrm{D}_{\alpha} \leftrightarrow \mathrm{E}_{\alpha}\right) \tag{9}\\
\mathrm{F}_{\alpha} & \longrightarrow\left(\mathrm{C}_{\alpha} \leftrightarrow \mathrm{E}_{\alpha}\right) \tag{10}\\
\mathrm{C}_{0} \wedge \mathrm{C}_{1} & \longrightarrow \mathrm{H} \tag{11}\\
\mathrm{C}_{\alpha} \wedge \mathrm{D}_{1-\alpha} & \longrightarrow \mathrm{A}_{\alpha} \tag{12}\\
\mathrm{G} \wedge \mathrm{H} & \longrightarrow \mathrm{~F}_{0} \wedge \mathrm{~F}_{1} \tag{13}
\end{align*}
$$

Proof. For Eqs. (7) and (8) the direction from left to right is in Eq. (5). The other directions and Eq. (9) follow from the identities in Item (G) of Table 1.

In a similar way the identities in the Items (F_{α}) imply the equivalences of $\left(C_{\alpha}\right)$ and $\left(E_{\alpha}\right)$.

To prove Eq. (12), for $\alpha=0$ we have CIM $\subseteq M$ and $M \subseteq$ CIM. Thus $M=C I M$ which implies that M is closed. The case $\alpha=1$ is similar.

Eq. (13) is obvious.
All in all, there are 2^{14} possible combinations of the 14 conditions. In the rest of this section we show that, using the implications from Proposition 3 and 4 , only 49 combinations can satisfy these conditions. Thus, we obtain at most 49 different Kuratowski lattices.

We split our proof into four groups according to whether the conditions G and H hold or do not hold. In what follows, for $\Gamma \in\left\{A_{0}, A_{1}, B_{0}, \ldots, G, H\right\}$ we write $\Gamma=1(0)$ if Γ holds (does not hold, respectively) for the set M under consideration.

1.2.1 The case $\neg \mathrm{G} \wedge \neg \mathrm{H}$

This is the only case where CIM and ICM are incomparable.

According to Eqs. (5) and (6) we have $\mathrm{A}_{\alpha}=\mathrm{B}_{\alpha}=\mathrm{D}_{\alpha}=\mathrm{F}_{\alpha}=0$ and $C_{\alpha} \rightarrow E_{\alpha}$ for $\alpha \in\{0,1\}$, and ($C_{0}=0 \vee C_{1}=0$) from Eq. (11). This yields the following eight combinations listed in Table 2. ${ }^{1}$

$\begin{aligned} & \text { type } \\ & \text { of } M \end{aligned}$	M fulfils								
	$A_{0} A_{1}$	$\mathrm{B}_{0} \mathrm{~B}_{1}$	C_{0}	C_{1}	$\mathrm{D}_{0} \mathrm{D}_{1}$			G	,
1	00	00	0	0	00	00	00	0	0
2a	0 0	00	0	0	0 0	10	$0 \quad 0$	0	0
2b	00	00	0	0	00	01	00	0	0
3a	0 0	0 0	1	0	0 0	10	00	0	0
3b	00	0 0	0	1	0 0	01	$0 \quad 0$	0	0
4	0 0	0	0	0	00	11	00	0	0
5a	0 0	0 0	1	0	0 0	1	00	0	0
5b	00	$0 \quad 0$	0	1	$0 \quad 0$	1	$0 \quad 0$	0	0

Table 2: The case $\neg \mathrm{G} \wedge \neg \mathrm{H}$

1.2.2 The case $\neg \mathrm{G} \wedge \mathrm{H}$

Here we have CIM \subset ICM.
As in the previous case, Eq. (5) implies $A_{\alpha}=\mathrm{B}_{\alpha}=\mathrm{D}_{\alpha}=0$ and $\mathrm{C}_{\alpha} \rightarrow$ E_{α} for $\alpha \in\{0,1\}$. If $\mathrm{F}_{\alpha}=1$ we have additionally $\mathrm{C}_{\alpha}=\mathrm{E}_{\alpha}$ by Eq. (10).

This gives nine combinations in the case $\left(F_{0}, F_{1}\right)=(0,0)$, six combinations in each of the cases $\left(\mathrm{F}_{0}, \mathrm{~F}_{1}\right) \in\{(0,1),(1,0)\}$, and four combinations in the case $\left(F_{0}, F_{1}\right)=(1,1)$ as shown in Table 3.

[^2]| $\begin{aligned} & \text { type } \\ & \text { of } M \end{aligned}$ | $A_{0} A_{1}$ | | M fulfils | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | C_{0} | | D_{0} | | | E_{1} | | | G | | |
| 6 | 00 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
| 7 a | 0 | 0 | | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | |
| 7b | 0 | 0 | | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | |
| 8a | 00 | 0 | | 1 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | |
| 8b | 00 | 0 | | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | |
| 9 | 0 0 | 0 | | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | |
| 10a | 0 | 0 | | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | |
| 10b | 00 | 0 | | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | |
| 11 | 0 | 0 | | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | |
| 12a | 00 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | |
| 13a | 0 | 0 | | 0 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
| 14a | 0 | 0 | | 1 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
| 15a | $0 \quad 0$ | 0 | | 0 | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | |
| 16a | 00 | 0 | | 0 | | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | |
| | 0 0 | 0 | | 1 | | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | |
| 12b | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | |
| 13b | 00 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | |
| 14b | 00 | 0 | | 0 | | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | |
| 15b | 0 | 0 | | 1 | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | | |
| | 0 | 0 | | 1 | | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | |
| 17b | 0 | 0 | | 1 | | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | |
| 18 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | |
| 19a | 0 | 0 | | 1 | | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | |
| 19b | 0 | 0 | | 0 | | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | |
| 20 | 00 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | |

Table 3: The case $\neg \mathrm{G} \wedge \mathrm{H}$

1.2.3 The case $\mathrm{G} \wedge \neg \mathrm{H}$

Here we have ICM \subset CIM.
In view of Eqs. (5), (6), (11), (9), and (12) we get $A_{\alpha} \rightarrow B_{\alpha} \rightarrow D_{\alpha}$, $\mathrm{F}_{0}=\mathrm{F}_{1}=0,\left(\mathrm{C}_{0}=0 \vee \mathrm{C}_{1}=0\right), \mathrm{B}_{\alpha}=\mathrm{C}_{\alpha}, \mathrm{D}_{\alpha}=\mathrm{E}_{\alpha}$, and $\mathrm{C}_{\alpha} \wedge \mathrm{D}_{1-\alpha} \rightarrow \mathrm{A}_{\alpha}$. This results in the ten possible combinations shown in Table 4.

| type
 of M | A_{0} | A_{1} | B_{0} | B_{1} | C_{0} | C_{1} | D_{0} | D_{1} | E_{0} | E_{1} | F_{0} | F_{1} | G | H |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| 22 a | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| 22 b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |
| 23 a | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| 23 b | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |
| 24 a | $\mathbf{1}$ | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| 24 b | 0 | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |
| 25 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |
| 26 a | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |
| 26 b | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | 0 |

Table 4: The case $\mathrm{G} \wedge \neg \mathrm{H}$

1.2.4 The case $G \wedge H$

Here we have CIM = ICM.
Because of Eq. (13) we have $F_{0}=F_{1}=1$. Now, from Eqs. (10) and (9) we conclude $\mathrm{B}_{\alpha}=\mathrm{C}_{\alpha}=\mathrm{D}_{\alpha}=\mathrm{E}_{\alpha}$. By Eqs. (5) and (12) we get $A_{\alpha} \rightarrow B_{\alpha}$ and $\left(B_{0} \wedge B_{1}\right) \rightarrow\left(A_{0} \wedge A_{1}\right)$. Table 5 shows the resulting six possible combinations.

| type
 of M | A_{0} | A_{1} | B_{0} | B_{1} | C_{0} | C_{1} | D_{0} | D_{1} | E_{0} | E_{1} | F_{0} | F_{1} | G | H |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 28 a | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 28 b | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 29 a | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 29 b | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 30 | $\mathbf{1}$ |

Table 5: The case G $\wedge \mathrm{H}$

So far it is not yet clear that each of the 49 types can really occur in a topological space. In the following we will see that they can occur in the Cantor space. Before we proceed to this goal we discuss the topological complexity which is necessary for a subset $M \subseteq X$ to generate a Kuratowski lattice of a certain type.

1.3 Duality

First we refer again to the duality of the operators C and I. From Eq. (2) we know that for the operations C and I the duality principle $X \backslash \mathrm{CM}=$ $I(X \backslash M)$ holds.

Proposition 5

1. Duality Let $\Gamma \in\{A, B, C, D, E, F\}$.

Condition Γ_{0} holds for M if and only if condition Γ_{1} holds for $X \backslash M$.
2. Self-Duality Let $\Gamma \in\{\mathrm{G}, \mathrm{H}\}$.

Condition Γ holds for M if and only if condition Γ holds for $X \backslash M$.
Proof. The first part follows from the duality relation $\mathrm{C}(X \backslash M)=X \backslash \mathrm{IM}$ (see Eq. (2).

For the second, applying the duality relation Eq. (2) twice we obtain $\mathrm{IC}(X \backslash M)=\mathrm{I}(X \backslash \mathrm{IM})=X \backslash \mathrm{CIM}$ and $\mathrm{CI}(X \backslash M)=\mathrm{C}(X \backslash \mathrm{CM})=$ $X \backslash$ ICM. Then, in case $\Gamma=\mathrm{G}$, the hypothesis $\mathrm{ICM} \subseteq \mathrm{C}$ IM (CIM \subseteq ICM, respectively) yields the assertion.
Due to the duality between conditions shown in Proposition 5 there is a duality between types in Tables 2, 3, 4 and 5.

Proposition 6 1. Let $\tau \in\{1,4,6,9,11,18,20,21,25,27,30\}$.
The set M is of type τ if and only $X \backslash M$ is of type τ.
2. Let $\tau \in\{1,2, \ldots, 30\} \backslash\{1,4,6,9,11,18,20,21,25,27,30\}$.

The set M is of type τ a if and only $X \backslash M$ is of type τb.

1.4 Topological structure

In this section we investigate the necessary topological structure for sets $M \subseteq X$ to be of a certain type τ. Given any topological space X, let $\mathbf{F}={ }_{\operatorname{def}}\{M \mid M \subseteq X \wedge M$ is closed $\}$ and $\mathbf{G}=\{M \mid M \subseteq X \wedge M$ is open $\}$ be the families of closed and open subsets, respectively. Moreover, define $\mathbf{F} \vee \mathbf{G}={ }_{\operatorname{def}}\{F \cup E \mid F \in \mathbf{F} \wedge E \in \mathbf{G}\}$ and $\mathbf{F} \wedge \mathbf{G}={ }_{\operatorname{def}}\{F \cap E \mid F \in \mathbf{F} \wedge E \in$ $\mathbf{G}\}$, and let, as usual, \mathbf{F}_{σ} be the set of countable unions of closed sets. First we consider the topologically simple types.

Lemma 7 1. M is of type 30 if and only if M is open and closed.
2. M is of type $24 a, 26 a$ or 29 a if and only if M is closed, but not open.
3. M is of type $24 b, 26 b$ or $29 b$ if and only if M is open, but not closed.

Proof. Since M is closed if and only if M fulfils $\left(A_{0}\right)$ and M is open if and only if M fulfils $\left(A_{1}\right)$, the proof follows from inspecting the Tables 2 to 5 .

Lemma 7.2 and 7.3 can be made more precise.
Corollary 8 1. M is of type 26a if and only if $\mathrm{M}=\mathrm{CIM}$ and M is not open. ${ }^{2}$
2. M is of type 29a if and only if $\mathrm{IM}=\mathrm{CIM}$ and M is closed but not open.
3. M is of type $26 b$ if and only if $M=$ ICM and M is not closed. ${ }^{3}$
4. M is of type $29 b$ if and only if $\mathrm{CM}=$ ICM and M is open but not closed.

Proof. (1) A look at Tables 2, 3, 4, and 5 shows that M is of type 26a if and only if it satisfies $\left(C_{0}\right)$ and $\left(D_{1}\right)$ but not $\left(A_{1}\right)$. But $\left(C_{0}\right)$ and $\left(D_{1}\right)$ is equivalent to $M=C I M$, and $\left(A_{1}\right)$ is equivalent to M being open.
(2) A look at Tables 2, 3, 4, and 5 shows that M is of type 29a if and only if it satisfies $\left(A_{0}\right),\left(E_{0}\right)$, and (F_{0}) but not $\left(A_{1}\right)$. But (E_{0}) and (F_{0}) is equivalent to $I M=C I M,\left(A_{0}\right)$ is equivalent to M being closed, and $\left(A_{1}\right)$ is equivalent to M being open.

The assertions (3) and (4) follow by duality.
For the structure of the sets of the remaining 42 types the following notion is helpful. A set $M \subseteq X$ that satisfies ICM $=\emptyset$ is called nowhere dense, that is, if the closure CM does not contain a non-empty open set. Clearly, this condition is equivalent to C ICM $=\emptyset$.

As an immediate consequence we obtain the following relation to the types 28a, 29a and 30.

Proposition 9 Let $M \subseteq X$ be nowhere dense. Then

1. M is of type $28 a, 29 a$, or 30 .
2. M is of type 30 if and only if $M=\emptyset$.
3. M is of type 29 a if and only if $M \neq \emptyset$ and M is closed, and
4. M is of type $28 a$ if and only if M is not closed.

The papers [Cha62, Lev61] show that equality up to nowhere dense sets (cf. Theorem 10.2) is related to several of the identities in Table 1.

[^3]Moreover, the following holds (cf. with [Cha62, Theorem 4] and [Kur66, Chapter 1.V]).

Theorem 10 Let X be a topological space.

1. The family $\mathcal{G}={ }_{\operatorname{def}}\{M \mid M \subseteq X \wedge \operatorname{ICM} \subseteq \mathrm{CIM}\}$ is a Boolean algebra which contains all open (and closed) and all nowhere dense subsets of X.
2. $M \in \mathcal{G}$ if and only if there is an open set $P \in X$ such that $M \backslash P$ and $P \backslash M$ are nowhere dense.

For the sake of completeness we give a proof.
Proof. (1) Obviously, the family \mathcal{G} contains all open and all nowhere dense subsets of \mathcal{X}. By Proposition 5.2 the family \mathcal{G} is closed under complementation.

In order to show closure under union we observe that due to the idempotence of the operator C and Eqs. (3) and (4) $\operatorname{IC}\left(M_{1} \cup M_{2}\right)=I\left(C M_{1} \cup\right.$ $\left.\mathrm{CM}_{2}\right) \subseteq \mathrm{ICM}_{1} \cup \mathrm{CICM}_{2}$.

By Proposition 2.4, $\mathrm{ICM}_{2} \subseteq \mathrm{CIM}_{2}$ implies $\mathrm{CICM}_{2}=\mathrm{CIM}_{2}$. Then by the hypothesis $\mathrm{ICM}_{1} \subseteq \mathrm{CIM}_{1}$, Eq. (3) and the monotonicity of C and I, we have $\operatorname{IC}\left(M_{1} \cup M_{2}\right) \subseteq C I M_{1} \cup C I M_{2} \subseteq C I\left(M_{1} \cup M_{2}\right)$.
(2) Assume, $M \backslash P$ and $P \backslash M$ be nowhere dense for some open set P.

Then, $I C M \subseteq I(C P \cup C(M \backslash P)) \subseteq C I C P \cup \operatorname{IC}(M \backslash P)=C I C P$ in view of $\operatorname{IC}(M \backslash P)=\emptyset$ and Eq. (4).

As P is open and $P \backslash M$ is nowhere dense, we have, again using Eq. (4), $C I C P \subseteq C I C I(M \cup(P \backslash M)) \subseteq C I C(C I M \cup \operatorname{IC}(P \backslash M))=C I M$.

Conversely, let $M \in \mathcal{G}$. Since $I M \in \mathcal{G}$, we have $M \backslash I M \in \mathcal{G}$ and, consequently, $\mathrm{IC}(M \backslash \mathrm{IM}) \subseteq \mathrm{CI}(M \backslash \mathrm{IM})=\emptyset$, as $\mathrm{I}(M \backslash \mathrm{IM})=\emptyset$. Thus $M \backslash I M$ and $\mathrm{I} M \backslash M=\emptyset$ are nowhere dense.

The last part of the preceding proof shows the following.
Corollary $11 M \in \mathcal{G}$ if and only if $M \backslash I M$ is nowhere dense, and if $M \in \mathcal{G}$ then M contains a non-empty open subset or M is nowhere dense.

Now we show that a set $M \in \mathbf{F} \vee \mathbf{G}$ is closed when $C I M \subseteq M$, hence no set of type 23 a and 28 a is in $\mathbf{F} \vee \mathbf{G}$. It follows by the duality principle that no set of type 23 b and 28 b is in $\mathbf{F} \wedge \mathbf{G}$.

Theorem 12 Let X be a topological space, $M_{1} \subseteq X$ open and $M_{2} \subseteq X$ closed .

1. If $M=M_{1} \cup M_{2}$ and $C I M \subseteq M$ then M is closed.
2. If $M=M_{1} \cap M_{2}$ and ICM $\supseteq M$ then M is open.

Proof. We prove only the first assertion, the second follows by the duality principle.

Consider $\mathrm{CM}=\mathrm{C}\left(\mathrm{M}_{1} \cup \mathrm{M}_{2}\right)=\mathrm{CM}_{1} \cup \mathrm{CM}_{2}$. Then $\mathrm{CM}_{2}=\mathrm{M}_{2}$ and, since M_{1} is open, we have $M_{1} \subseteq I M$. So $C M \subseteq C I M \cup M_{2} \subseteq M$, thus M is closed.
None of the sets M of types $1, \ldots, 20$ satisfies ICM \subseteq CIM. Thus from Lemma 7 and Theorems 10, and 12 we obtain the following corollary.

Corollary 13 1. A set of type $1, \ldots, 20$ cannot be in the class \mathcal{G}.
2. A set of type 21, 22a, 22b, 25 or 27 cannot be in $\mathbf{F} \cup \mathbf{G}$.
3. A set of type 23 a or 28 a cannot be in $\mathbf{F} \backslash \mathbf{G}$.
4. A set of type $23 b$ or $28 b$ cannot be in $\mathbf{F} \wedge \mathbf{G}$.

In Section 2.3 we will see that these lower bounds cannot be improved.

2 The Cantor Space

2.1 Languages of infinite words

The Cantor space may be introduced conveniently using the notation known from Formal Language Theory. Let X be an alphabet of cardinality $|X| \geqslant 2$. Then X^{*} is the set of finite words on X, including the empty word e, and X^{ω} is the set of infinite strings (ω-words) over X. Subsets of X^{*} will be referred to as languages and subsets of X^{ω} as ω-languages.

For $w \in X^{*}$ and $\eta \in X^{*} \cup X^{\omega}$ let $w \cdot \eta$ be their concatenation. This concatenation product extends in an obvious way to subsets $W \subseteq X^{*}$ and $M \subseteq X^{*} \cup X^{\omega}$. For a language W let $W^{*}=_{\operatorname{def}} \bigcup_{i=0}^{\infty} W^{i}$, and $W^{\omega}={ }_{\text {def }}$ $\left\{w_{1} \cdots w_{i} \cdots \mid w_{i} \in W \backslash\{e\}\right\}$ be the set of infinite strings formed by concatenating non-empty words in W. If $W=\{w\}, w \neq e$, we will sometimes write w^{*} and w^{ω} instead of $\{w\}^{*}$ and $\{w\}^{\omega}$, respectively. Furthermore, $\operatorname{pref}(M)$ is the set of all finite prefixes of strings in $M \subseteq X^{*} \cup X^{\omega}$. We shall abbreviate $w \in \operatorname{pref}(\{\eta\})\left(\eta \in X^{*} \cup X^{\omega}\right)$ by $w \sqsubseteq \eta$.

As usual, we consider X^{ω} as a topological space (Cantor space). The closure of a subset $M \subseteq X^{\omega}, \mathrm{CM}$, is described as $\mathrm{CM}={ }_{\text {def }}\{\xi \mid \operatorname{pref}(\{\xi\}) \subseteq$ $\operatorname{pref}(M)\}$. The open sets in the Cantor space are the ω-languages of the form $W \cdot X^{\omega}$. Accordingly, IM $=\bigcup\left\{w \cdot X^{\omega} \mid w \cdot X^{\omega} \subseteq M\right\}$ is the interior of $M \subseteq X^{\omega}$.

For the purposes of our paper it is convenient to represent certain subsets of the Cantor Space as regular ω-languages, that is, ω-languages defined by
finite automata. To this end we mention that a language $W \subseteq X^{*}$ is regular if it can be obtained from finite subsets of X^{*} by a finite number of applications of the operations \cup, \cdot, and *; and a subset $M \subseteq X^{\omega}$ is a regular ω-language if it is of the form $M=\bigcup_{i=1}^{n} W_{i} \cdot V_{i}^{\omega}$ where $W_{i}, V_{i} \subseteq X^{*}$ are regular languages. The relation between regular ω-languages and finite automata will be explained in Section 2.4.

We assume the reader to be familiar with the basic facts of the theory of regular languages and finite automata. For more details on ω-languages and regular ω-languages see the book [PP04] or the survey papers [Sta97, Tho90].

2.2 All types exist in the Cantor space

In this section we will show that in the Cantor space there are really 49 different types of sets.

The following proposition is very helpful because it enables us to construct (sets of) new types from other (given) types.

For a set $M \subseteq X^{\omega}$ and a $\Gamma \in\left\{A_{0}, A_{1}, B_{0}, \ldots, G, H\right\}$ we write $M(\Gamma)=1(0)$ if M fulfils Γ (does not fulfil Γ, respectively). Furthermore, we say that M is of type $\tau=\left(M\left(A_{0}\right), M\left(A_{1}\right), M\left(B_{0}\right), \ldots, M(G), M(H)\right)$.

Proposition 14 Let $M_{0}, M_{1} \subseteq X^{\omega}$ and $\mathrm{a}, \mathrm{b} \in X$ such that $\mathrm{a} \neq \mathrm{b}$.

1. If M_{0} is of type $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{14}\right)$ and M_{1} is of type $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{14}\right)$ then $a \cdot M_{0} \cup b \cdot M_{1}$ is of type $\left(\alpha_{1} \wedge \beta_{1}, \alpha_{2} \wedge \beta_{2}, \ldots, \alpha_{14} \wedge \beta_{14}\right)$.
2. Moreover, if $\mathrm{M}_{0}, \mathrm{M}_{1}$ are both in one of the classes $\mathbf{F}, \mathbf{G}, \mathbf{F} \vee \mathbf{G}, \mathbf{F} \wedge \mathbf{G}, \mathbf{F}_{\sigma}$ or \mathcal{G} then $\mathrm{a} \cdot \mathrm{M}_{0} \cup \mathrm{~b} \cdot \mathrm{M}_{1}$ belongs also to the same class.
3. If $a \cdot M_{0} \cup b \cdot M_{1} \in \mathcal{G}$ then $M_{0} \in \mathcal{G}$.

Proof. The first assertion is an immediate consequence of $\mathrm{C}\left(\mathrm{aM} \mathrm{M}_{0} \cup \mathrm{bM} M_{1}\right)=$ $a C M_{0} \cup b C M_{1}, I\left(a M_{0} \cup b M_{1}\right)=a M_{0} \cup b I M_{1}$, and $a M_{0} \cup b M_{1} \subseteq a P_{0} \cup b P_{1}$ if and only if $M_{0} \subseteq P_{0}$ and $M_{1} \subseteq P_{1}$.

The second assertion is obvious for classes closed under union. So, it suffices to prove it for the class $\mathbf{F} \wedge \mathbf{G}$. Let $M_{i}=Q_{i} \cap P_{i}, i=0,1$, where Q_{0}, Q_{1} are closed and P_{0}, P_{1} are open. Then
$a \cdot M_{0} \cup b \cdot M_{1}=a \cdot\left(Q_{0} \cap P_{0}\right) \cup b \cdot\left(Q_{1} \cap P_{1}\right)$
$=\left(a \cdot Q_{0} \cup b \cdot Q_{1}\right) \cap\left(a \cdot P_{0} \cup b \cdot P_{1}\right) \cap\left(a \cdot Q_{0} \cup b \cdot P_{1}\right) \cap\left(b \cdot Q_{1} \cup a \cdot P_{0}\right)$. Since the sets $w \cdot X^{\omega}, w \in X^{*}$, are closed and open in the Cantor space, $a \cdot Q_{0} \cup b \cdot P_{1}=\left(a \cdot Q_{0} \cup b \cdot X^{\omega}\right) \cap\left(a \cdot X^{\omega} \cup b \cdot P_{1}\right) \in \mathbf{F} \wedge \mathbf{G}$, and similarly for $b \cdot Q_{1} \cup a \cdot P_{0}$. Consequently, the set $a \cdot M_{0} \cup b \cdot M_{1}$ is a finite intersection of closed and open sets.

The third assertion follows with Theorem 10.1. Here $a \cdot M_{0} \cup b \cdot M_{1} \in \mathcal{G}$ implies $a \cdot M_{0}=\left(a \cdot M_{0} \cup b \cdot M_{1}\right) \cap a \cdot X^{\omega} \in \mathcal{G}$. Since $a \cdot M \in \mathcal{G}$ if and only if $M \in \mathcal{G}$, the result follows.

For types $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{14}\right)$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{14}\right)$ let
$\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{14}\right) \wedge\left(\beta_{1}, \beta_{2}, \ldots, \beta_{14}\right)=_{\text {def }}\left(\alpha_{1} \wedge \beta_{1}, \alpha_{2} \wedge \beta_{2}, \ldots, \alpha_{14} \wedge \beta_{14}\right)$.
We observe:
Proposition 15 Let $x \in\{\mathrm{a}, \mathrm{b}\}$, and put $\overline{\mathrm{a}}=_{\text {def }} \mathrm{b}$ and $\overline{\mathrm{b}}==_{\text {def }} \mathrm{a}$. Then

1. $(1)=(6) \wedge(21)$	9. $(9)=(10 a) \wedge(10 b)$	19. $(19 x)=(20) \wedge(29 x)$
2. $(2 x)=(3 x) \wedge(4)$	10. $(10 x)=(11) \wedge(16 \bar{x})$	21. $(21)=(25) \wedge(27)$
3. $(3 x)=(5 x) \wedge(8 x)$	11. $(11)=(17 a) \wedge(17 b)$	22. $(22 x)=(25) \wedge(29 x)$
4. $(4)=(5 a) \wedge(5 b)$	12. $(12 x)=(17 x) \wedge(27)$	23. $(23 x)=(26 x) \wedge(28 x)$
5. $(5 x)=(17 b) \wedge(26 x)$	13. $(13 x)=(14 x) \wedge(16 x)$	24. $(24 x)=(26 x) \wedge(29 x)$
6. $(6)=(11) \wedge(27)$	14. $(14 x)=(17 x) \wedge(29 x)$	25. $(25)=(26 a) \wedge(26 b)$
7. $(7 x)=(8 x) \wedge(9)$	15. $(15 x)=(17 x) \wedge(29 \bar{x})$	27. $(27)=(29 a) \wedge(29 b)$
8. $(8 x)=(11) \wedge(29 x)$	18. $(18)=(20) \wedge(27)$	

The types (16a), (16b), (17a), (17b), (20), (26a), (26b), (28a), (28b), (29a), (29b), and (30) are missing on the left hand sides of the equations in Proposition 15. We will refer to them as basic types.

Every other type is the \wedge-combination of two types having a higher number. So, if we can show that the basic types exist in the Cantor space then all 49 types exist in the Cantor space. Because of Proposition 6 it is sufficient to prove that the types (16a), (17a), (20), (26a), (28a), (29a), and (30) do exist in the Cantor space.

Remark. In most of the cases in Proposition 15 other combinations of compound types are possible. We have chosen the present ones for reasons which will become apparent in Sections 2.3 and 3.2.

Lemma 16 Let $X=\{0,1\}$.

1. The set $\mathrm{M}_{16}={ }_{\operatorname{def}} 0^{*} 11\{0,1\}^{\omega} \cup 0^{*} 10\{0,1\}^{*} 0^{\omega}$ is of type $16 a$.
2. The set $\mathrm{M}_{17}={ }_{\operatorname{def}} 0^{\omega} \cup 0^{*} 11\{0,1\}^{\omega} \cup 0^{*} 10\{0,1\}^{*} 0^{\omega}$ is of type $17 a$.
3. The set $M_{20}={ }_{\text {def }}\{0,1\}^{*} 0^{\omega}$ is of type 20 .
4. The set $\mathrm{M}_{26}={ }_{\operatorname{def}} 0^{\omega} \cup 0^{*} 11\{0,1\}^{\omega}$ is of type $26 a$.
5. The set $\mathrm{M}_{28}={ }_{\text {def }} 0^{*} 10^{\omega}$ is of type $28 a$.
6. The set $\mathrm{M}_{29}={ }_{\text {def }} 0^{\omega}$ is of type $29 a$.
7. The set $\mathrm{M}_{30}={ }_{\text {def }} \emptyset$ is of type 30 .

Proof. For M_{16}, M_{17} and M_{20} we have $\operatorname{pref}\left(M_{i}\right)=\{0,1\}^{*}$. Consequently, $C M_{i}=\operatorname{ICM}_{i}=\operatorname{CICM}_{i}=\{0,1\}^{\omega}$ for $i=16,17$ or 20.

1. Here $\mathrm{IM}_{16}=0^{*} 11\{0,1\}^{\omega}$ whence CIM ${ }_{16}=0^{\omega} \cup 0^{*} 11\{0,1\}^{\omega}$ and ICIM ${ }_{16}=\mathrm{IM}_{16}$. It is now obvious that $\mathrm{CIM}_{16} \subset \mathrm{ICM}_{16}, \mathrm{M}_{16} \subset$ ICM $_{16}$ and not CIM ${ }_{16} \subseteq M_{16}$.
Thus conditions $\left(C_{1}\right),\left(E_{0}\right),\left(E_{1}\right),\left(F_{1}\right)$ and (H) hold true whereas $\left(C_{0}\right)$ and (G) are false. The rest follows from Eqs. (5) and (10).
2. Here we have $\operatorname{IM} M_{17}=\operatorname{ICIM} M_{17}=0^{*} 11\{0,1\}^{\omega}$. The rest follows from $\mathrm{ICM}_{17} \supset \mathrm{M}_{17} \supset \mathrm{CIM}_{17}=0^{\omega} \cup 0^{*} 11\{0,1\}^{\omega}$.
Similarly, conditions $\left(C_{0}\right),\left(C_{1}\right),\left(E_{0}\right),\left(E_{1}\right),\left(F_{1}\right)$ and (H) hold true whereas (F_{0}) and (G) are false. The rest follows from Eq. (5).
3. We have $\mathrm{IM}_{20}=\emptyset$. Then $\mathrm{IM}_{20}=$ CIM $_{20}=\operatorname{ICIM} 20=\emptyset \subset \mathrm{M}_{20} \subset$ ICM ${ }_{20}$.
Thus conditions $\left(C_{\alpha}\right),\left(E_{\alpha}\right),\left(F_{\alpha}\right), \alpha \in\{0,1\}$, and (H) hold true whereas (G) is false. The rest follows from Eq. (5).
4. $M_{26}=$ CIM $_{16}$ whence $M_{26}=$ CIM $_{26}$. Since M_{26} is not open, the assertion follows with Corollary 8.1.

The remaining three sets M_{28}, M_{29} and M_{30} are nowhere dense, so the assertion follows with Proposition 9.
Remark. Analogous considerations show that the countable ω-languages $M_{16}^{\prime}={ }_{\operatorname{def}} 0^{\omega} \cup 0^{*} 10\{0,1\}^{*} 0^{\omega}$ and $M_{17}^{\prime}={ }_{\text {def }} 0^{*} 10\{0,1\}^{*} 0^{\omega}$ are of types (16b) and (17b), respectively.

As a consequence of Propositions 14, 15 and Lemma 16 we obtain
Theorem 17 All forty-nine types do exist in the Cantor space.

2.3 Topological complexity

Here we show that, in the Cantor space, the results in Corollary 13 are optimal.

Lemma 18 1. $M_{30} \in \mathbf{F} \cap \mathbf{G}$
2. $M_{26}, M_{29} \in F$
3. $\mathbf{M}_{28} \in(\mathbf{F} \wedge \mathbf{G})$
4. $\mathrm{M}_{16}, \mathrm{M}_{17}, \mathrm{M}_{20} \in \mathbf{F}_{\sigma}$

Proof. The first two items are obvious. $M_{28}=\left(0^{\omega} \cup 0^{*} 10^{\omega}\right) \cap 0^{*} 1\{0,1\}^{\omega}$ shows that M_{28} is the intersection of a closed and an open set. The last assertion follows from $0^{*} 11\{0,1\}^{\omega}=\bigcup_{i=0}^{\infty} 0^{i} 11\{0,1\}^{\omega}$ and the fact that $0^{*} 10\{0,1\}^{*} 0^{\omega}$ is a countable set.
Combining with the results of the preceding section we obtain the following.
Theorem 19 Let \mathcal{M}_{τ} be the family $\left\{M \mid M \subseteq X^{\omega} \wedge M\right.$ is of type $\left.\tau\right\}$.

1. For each $\tau \in\{1, \ldots, 20\}$, there exists a regular ω-language $M \in \mathbf{F}_{\sigma} \cap \mathcal{M}_{\tau}$, but $\mathcal{M}_{\tau} \cap \mathcal{G}=\emptyset$.
2. For each $\tau \in\{21,22 a, 22 b, 25,27\}$, there exists a regular ω-language $M \in(\mathbf{F} \wedge \mathbf{G}) \cap(\mathbf{F} \vee \mathbf{G})$ of type τ, but there does not exist an open set or a closed set of type τ.
3. For $\tau \in\{23 a, 28 a\}$, there exists a regular ω-language in $(\mathbf{F} \wedge \mathbf{G})$ of type τ, but $\mathcal{M}_{\tau} \cap(\mathbf{F} \vee \mathbf{G})=\emptyset$.
4. For $\tau \in\{23 b, 28 b\}$, there exists a regular ω-language in $(\mathbf{F} \vee \mathbf{G})$ of type τ, but $\mathcal{M}_{\tau} \cap(\mathbf{F} \wedge \mathbf{G})=\emptyset$.

Proof. The lower bounds follow from Corollary 13. It remains to show that there are regular ω-language in the respective classes.

All basic types contain regular ω-languages in $\mathbf{F}_{\boldsymbol{\sigma}}$. Using Propositions 14 and 15 one can successively show that all types contain regular ω-languages in \mathbf{F}_{σ}.

The sets M_{26} and M_{29} are in $(\mathbf{F} \wedge \mathbf{G}) \cap(\mathbf{F} \vee \mathbf{G})$, in fact, they are closed.
Thus Proposition 5, Proposition 14.2 and Proposition 15.27, 15.25, 15.22 and 15.21 show that $\mathcal{M}_{\tau}, \tau \in\{27,25,22 a, 22 b, 21\}$, contain sets in $(\mathbf{F} \wedge \mathbf{G}) \cap$ $(\mathbf{F} \vee \mathbf{G})$.

The proof for $\mathcal{M}_{23 a}$ and $\mathcal{M}_{28 a}$ is obtained similarly making use of the fact that $M_{26}, M_{28} \in \mathbf{F} \wedge \mathbf{G}$. The remaining assertion is dual to the previous one.

2.4 Regular ω-languages and finite automata

An ω-language $M \subseteq X^{\omega}$ is regular provided there are a finite (deterministic) automaton $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ and a table $\mathcal{T} \subseteq\left\{S^{\prime} \mid S^{\prime} \subseteq S\right\}$ such that for $\xi \in X^{\omega}$, the relation $\xi \in M$ holds if and only if $\operatorname{Inf}(\mathcal{A} ; \xi) \in \mathcal{T}$ where $\operatorname{Inf}(\mathcal{A} ; \xi)$ is the set of all states $s \in S$ through which the automaton \mathcal{A} runs infinitely often when reading the input ξ. Observe that $Z=\operatorname{Inf}(\mathcal{A} ; \xi)$ holds for a subset $Z \subseteq S$ if and only if

1. there is a word $u \in X^{*}$ such that $\delta\left(s_{0}, u\right) \in Z$, and
2. for every $s \in Z$ there is a non-empty word $v \in X^{*}$ such that $\delta(s, v)=s$ and $Z=\left\{\delta\left(s, v^{\prime}\right) \mid v^{\prime} \sqsubseteq v\right\}$.

Such sets were referred to as essential sets in [Wag79], or loops in [SW08], [Sta97, Section 5.1]. The set of all loops of an automaton \mathcal{A} will be referred to as $\operatorname{LOOP}_{\mathcal{A}}=\left\{\operatorname{Inf}(\mathcal{A} ; \xi) \mid \xi \in X^{\omega}\right\}$.

Thus, to ease our notation, unless stated otherwise in the sequel we will assume all automata to be initially connected, that is, $S=\left\{\delta\left(s_{0}, w\right) \mid w \in\right.$ $\left.X^{*}\right\}$.

The ω-language $\mathrm{L}(\mathcal{A}, \mathcal{T})=\{\xi \mid \operatorname{Inf}(\mathcal{A} ; \xi) \in \mathcal{T}\}$ is the (disjoint) union of all sets $M_{Z}=\{\xi \mid \operatorname{Inf}(\mathcal{A} ; \xi)=Z\}$ where $Z \in \mathcal{T}$. Observe that M_{Z} and $M_{Z^{\prime}}$ are disjoint for $Z \neq Z^{\prime}$. Thus the following holds.

Lemma 20 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be a deterministic automaton and $\mathcal{T}, \mathcal{T}^{\prime} \subseteq 2^{S}$ be tables, and let op be a Boolean set operation. Then $\mathrm{L}(\mathcal{A}, \mathcal{T})$ op $\mathrm{L}\left(\mathcal{A}, \mathcal{T}^{\prime}\right)=$ $\mathrm{L}\left(\mathcal{A}, \mathcal{T}\right.$ op $\left.\mathcal{T}^{\prime}\right)$. Moreover, for $\mathcal{T}, \mathcal{T}^{\prime} \in 2^{\mathrm{S}}$ we have $\mathrm{L}(\mathcal{A}, \mathcal{T}) \subseteq \mathrm{L}\left(\mathcal{A}, \mathcal{T}^{\prime}\right)$ if and only if $\mathcal{T} \cap \operatorname{LOOP}_{\mathcal{A}} \subseteq \mathcal{T}^{\prime} \cap \operatorname{LOOP}_{\mathcal{A}}$.

In the sequel, we restrict \mathcal{T} to $\mathcal{T} \cap \mathrm{LOOP}_{\mathcal{A}}$. For $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \mathrm{LOOP}_{\mathcal{A}}$ we write $Z_{1} \mapsto Z_{2}$ if there exists an $s \in Z_{1}$ and a $w \in X^{*}$ such that $\delta(s, w) \in Z_{2}$.

The relation \mapsto is reflexive and transitive over $\operatorname{LOOP}_{\mathcal{A}}$, thus a preorder. The maximal elements are just the terminal loops $\mathcal{L}_{\text {term }}=\left\{Z \mid Z \in \operatorname{LOOP}_{\mathcal{A}} \wedge\right.$ $\left.\forall Z^{\prime}\left(\left(Z \mapsto Z^{\prime}\right) \rightarrow\left(Z^{\prime} \mapsto Z\right)\right)\right\}$ which will be of some importance for the following considerations. Moreover we define the sets of successor loops $\mathcal{S}(Z)=\left\{Z^{\prime} \mid Z^{\prime} \in \operatorname{LOOP}_{\mathcal{A}} \wedge Z \mapsto Z^{\prime}\right\}$.

For a given automaton $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ and a table $\mathcal{T} \subseteq 2^{S}$ we introduce further the set of positive (negative) successors $\mathcal{S}_{+}(Z)\left(\mathcal{S}_{-}(Z)\right)$ and the set of alternating loops \mathcal{S}_{o}.

$$
\begin{align*}
& \mathcal{S}_{+}(Z)=\operatorname{def} \quad \mathcal{S}(Z) \cap \mathcal{T} \\
& \mathcal{S}_{-}(Z)={ }_{\operatorname{def}} \tag{14}\\
& \mathcal{S}(Z) \backslash \mathcal{T} \\
& \mathcal{S}_{\mathrm{o}}={ }_{\operatorname{def}} \quad\left\{Z \mid \exists Z^{\prime}\left(Z \mapsto Z^{\prime} \mapsto Z \wedge\left(Z \in \mathcal{T} \leftrightarrow Z^{\prime} \notin \mathcal{T}\right)\right)\right\}
\end{align*}
$$

Moreover, for $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ and a table $\mathcal{T} \subseteq 2^{S}$ we need the following terminal variants.

$$
\begin{array}{rlrl}
\mathcal{S}_{+}^{\prime}(Z) & ={ }_{\text {def }} & \mathcal{S}_{+}(Z) \cap & \mathcal{L}_{\text {term }} \backslash \mathcal{S}_{\mathrm{o}}, \\
\mathcal{S}_{-}^{\prime}(Z)={ }_{\text {def }} & \mathcal{S}_{-}(Z) \cap & \mathcal{L}_{\text {term }} \backslash \mathcal{S}_{\mathrm{o}}, \text { and } \tag{15}\\
\mathcal{S}_{\mathrm{o}}^{\prime}(Z) & ={ }_{\operatorname{def}} & \mathcal{S}(Z) \cap & \mathcal{L}_{\text {term }} \cap \mathcal{S}_{\mathrm{o}} .
\end{array}
$$

We have the following easily verified properties.

$$
\begin{equation*}
\mathcal{S}(Z) \cap \mathcal{L}_{\text {term }}=\mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{-}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \tag{16}
\end{equation*}
$$

Lemma 21 1. If $Z^{\prime} \in \mathcal{S}(Z)$ then $\mathcal{S}\left(Z^{\prime}\right) \subseteq \mathcal{S}(Z)$.
2. If $\mathcal{S}(Z) \subseteq \mathcal{T}$ or $\mathcal{S}(Z) \cap \mathcal{T}=\emptyset$ then $\mathcal{S}(Z) \cap \mathcal{S}_{\mathrm{o}}=\emptyset$.
3. $\mathcal{S}(Z) \cap \mathcal{L}_{\text {term }} \neq \emptyset$ for all $Z \in \operatorname{LOOP}_{\mathcal{A}}$, and $\mathcal{S}(Z) \subseteq \mathcal{L}_{\text {term }}$ for $Z \in \mathcal{L}_{\text {term }}$.

Lemma 22 Let $Z \in \mathcal{L}_{\text {term. }}$. Then

1. $Z \in \mathcal{T} \backslash S_{\circ}$ if and only if $S_{-}(Z)=\emptyset$, and
2. $\mathcal{S}(Z) \subseteq \mathcal{S}_{\mathrm{o}}$ or $\mathcal{S}(Z) \cap \mathcal{S}_{\mathrm{o}}=\emptyset$.

Proof. (1) Consider $Z^{\prime} \in \mathcal{S}(Z)$. Then, since $Z \in \mathcal{L}_{\text {term }}$, we have $Z \mapsto Z^{\prime} \mapsto$ Z. Consequently, $Z \in \mathcal{T} \backslash S_{0}$ implies $Z^{\prime} \in \mathcal{T}$.

Conversely, if $\mathcal{S}_{-}(Z)=\emptyset$ then $Z \in \mathcal{T}$ and $Z \notin \mathcal{S}_{0}$.
(2) This follows from $\mathcal{S}(Z)=\left\{Z^{\prime} \mid Z^{\prime} \in \operatorname{LOOP}_{\mathcal{A}} \wedge Z \mapsto Z^{\prime} \wedge Z^{\prime} \mapsto Z\right\}$ when $Z \in \mathcal{L}_{\text {term }}$ and the transitivity of the relation \mapsto.
Observe that for $Z \notin \mathcal{L}_{\text {term }}$ one might have $\mathcal{S}_{-}(Z) \neq \emptyset$ while $Z \in \mathcal{T} \backslash \mathcal{S}_{0}$, and neither $\mathcal{S}(Z) \subseteq \mathcal{S}_{\mathrm{o}}$ nor $\mathcal{S}(Z) \cap \mathcal{S}_{\mathrm{o}}=\emptyset$.

Lemma 23 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton, $\mathcal{T} \subseteq 2^{S}$ a table, $Z \in$ $\operatorname{LOOP}_{\mathcal{A}}$ and $\delta\left(s_{0}, w\right) \in Z$, for $w \in X^{*}$. Then $S_{-}(Z)=\emptyset$ if and only if $w \cdot X^{\omega} \subseteq$ $\mathrm{L}(\mathcal{A}, \mathcal{T})$.

Proof. Let $\xi \in w \cdot X^{\omega}$. Since $\delta\left(s_{0}, w\right) \in Z$, we have $Z \mapsto \operatorname{Inf}(\mathcal{A} ; \xi)$. Thus $\mathcal{S}_{-}(Z)=\emptyset$ implies $\operatorname{Inf}(\mathcal{A} ; \xi) \in \mathcal{T}$.

Conversely, let $w \cdot X^{\omega} \subseteq \mathrm{L}(\mathcal{A}, \mathcal{T})$ and $Z^{\prime} \in \mathcal{S}(Z)$. Then there is a word $v \in X^{*}$ such that $\delta\left(s_{0}, w v\right) \in Z^{\prime}$. Since $Z^{\prime} \in \operatorname{LOOP}_{\mathcal{A}}$ there is a word $u \neq$ e such that $\operatorname{Inf}\left(\mathcal{A}, w v u^{\omega}\right)=Z^{\prime}$. Because of $w \cdot X^{\omega} \subseteq \mathrm{L}(\mathcal{A}, \mathcal{T})$ we have $\operatorname{Inf}\left(\mathcal{A}, w \nu u^{\omega}\right)=Z^{\prime} \in \mathcal{T}$, and, consequently, $\mathcal{S}_{-}(Z)=\emptyset$.

Lemma 24 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton, $\mathcal{T} \subseteq 2^{S}$ a table and $\mathrm{Z} \in$ $\operatorname{LOOP}_{\mathcal{A}}$. Then $\mathcal{S}_{+}^{\prime}(Z) \neq \emptyset$ if and only if there is a $Z^{\prime} \in \mathcal{S}(Z)$ such that $\mathcal{S}_{-}\left(Z^{\prime}\right)=$ \emptyset.

Proof. If $\mathcal{S}_{+}^{\prime}(Z) \neq \emptyset$ there is a $Z^{\prime} \in \mathcal{L}_{\text {term }}$ such that $Z^{\prime} \in \mathcal{T} \backslash \mathcal{S}_{\circ}$. According to Lemma 22, $\mathcal{S}_{-}\left(Z^{\prime}\right)=\emptyset$.

Conversely, let $Z^{\prime \prime} \in \mathcal{S}(Z)$ with $\mathcal{S}_{-}\left(Z^{\prime \prime}\right)=\emptyset$. Then there is a $Z^{\prime} \in \mathcal{S}\left(Z^{\prime \prime}\right) \cap$ $\mathcal{L}_{\text {term }}$. Since $\mathcal{S}\left(Z^{\prime}\right) \subseteq \mathcal{S}\left(Z^{\prime \prime}\right) \subseteq \mathcal{S}(Z)$, we have also $\mathcal{S}_{-}\left(Z^{\prime}\right)=\emptyset$. Then $\mathcal{S}\left(Z^{\prime}\right) \subseteq$ \mathcal{T}, and Lemma 21.2 and Eq. (15) yield $\mathcal{S}\left(Z^{\prime}\right) \subseteq \mathcal{S}_{+}^{\prime}(Z)$.

For the following considerations we use the Alexandrov topology [Ale37] ${ }^{4}$ derived from the preorder $\left(\operatorname{LOOP}_{\mathcal{A}}, \mapsto\right)$. This topology can be defined by the closure

$$
\mathrm{CT}=\operatorname{def}\left\{\mathrm{Z} \mid \mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \wedge \exists \mathrm{Z}^{\prime}\left(\mathrm{Z}^{\prime} \in \mathcal{T} \wedge \mathbf{Z} \mapsto \mathrm{Z}^{\prime}\right)\right\}
$$

Then $\mathrm{CT}=\left\{\mathbf{Z} \mid \mathcal{S}_{+}(\mathbf{Z}) \neq \emptyset\right\}$ and, accordingly, $\mathrm{IT}=\left\{Z \mid \mathcal{S}_{-}(\mathbf{Z})=\emptyset\right\}$ is the interior of \mathcal{T}. Following Eq. (2) we have

Proposition 25 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton and $\mathcal{T} \subseteq 2^{S}$ be a table. Then $\mathrm{CT}=\mathrm{LOOP}_{\mathcal{A}} \backslash \mathrm{I}\left(\mathrm{LOOP}_{\mathcal{A}} \backslash \mathcal{T}\right)$.

Moreover, it holds the following.

Lemma 26 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton and $\mathcal{T} \subseteq 2^{S}$ be a table.
Then 1. CIT $=\left\{Z \mid S_{+}^{\prime}(Z) \neq \emptyset\right\}$
2. $\operatorname{ICT}=\left\{Z \mid \mathcal{S}_{-}^{\prime}(Z)=\emptyset\right\}$
3. $\mathrm{CICT}=\left\{Z \mid \mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset\right\}$
4. $\operatorname{ICIT}=\left\{Z \mid \mathcal{S}_{-}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{O}}^{\prime}(Z)=\emptyset\right\}$

Proof. 1. $Z \in C I \mathcal{T}$ if there is a $Z^{\prime} \in \mathcal{S}(Z)$ such that $Z^{\prime} \in I \mathcal{T}$, that is, $\mathcal{S}_{-}\left(Z^{\prime}\right)=\emptyset$. In view of Lemma 24 this is equivalent to $\mathcal{S}_{+}^{\prime}(Z) \neq \emptyset$.
2. Using Proposition 25 twice, we obtain $\operatorname{ICT}=\operatorname{LOOP}_{\mathcal{A}} \backslash \mathrm{CI}\left(\mathrm{LOOP}_{\mathcal{A}} \backslash\right.$ $\mathcal{T})$. By 1. and Eq. (15) we have $Z \in \operatorname{CI}\left(\operatorname{LOOP}_{\mathcal{A}} \backslash \mathcal{T}\right)$ if and only if $\mathcal{S}(Z) \cap$ $\mathcal{L}_{\text {term }} \cap\left(\operatorname{LOOP}_{\mathcal{A}} \backslash \mathcal{T}\right) \backslash \mathcal{S}_{\mathrm{o}}=\left(\left(\mathcal{S}(Z) \cap \mathcal{L}_{\text {term }}\right) \backslash \mathcal{T}\right) \backslash \mathcal{S}_{\mathrm{o}} \neq \emptyset$. This is equivalent to $\mathcal{S}_{-}^{\prime}(\mathrm{Z}) \neq \emptyset$.
3. We have $Z \in C I C \mathcal{T}$ if and only if there is a $Z^{\prime} \in \mathcal{S}(Z)$ such that $\mathcal{S}_{-}^{\prime}\left(Z^{\prime}\right)=\emptyset$. In view of Lemma 21 and Eq. (16) the latter is equivalent to $\mathcal{S}_{+}^{\prime}\left(Z^{\prime}\right) \cup \mathcal{S}_{\mathrm{o}}^{\prime}\left(Z^{\prime}\right) \neq \emptyset$ which in turn implies $\mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset$.

If, conversely, $Z^{\prime} \in \mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset$ then $Z^{\prime} \in \mathcal{L}_{\text {term }}$ and $Z^{\prime} \in \mathcal{S}_{\mathrm{o}}$ or $Z^{\prime} \in \mathcal{T} \backslash \mathcal{S}_{\mathrm{o}}$. If $Z^{\prime} \in \mathcal{S}_{\mathrm{o}}$ then Lemma 22.2 and Eq. (15) show $\mathcal{S}_{-}^{\prime}\left(Z^{\prime}\right) \subseteq$ $\mathcal{S}_{-}\left(Z^{\prime}\right)=\emptyset$. If $Z^{\prime} \in \mathcal{T} \backslash \mathcal{S}_{0}$ then Lemma 22.1 yields $\mathcal{S}_{-}\left(Z^{\prime}\right)=\emptyset$.
4. This is completely analogous to 3 .

[^4]We obtain a relation between the topologies of the Cantor space and the Alexandrov topology of $\left(\mathrm{LOOP}_{\mathcal{A}}, \mapsto\right)$.

Theorem 27 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton and $\mathfrak{T} \subseteq 2^{S}$ a table.

1. $\mathrm{L}(\mathcal{A}, \mathrm{IT})=\operatorname{IL}(\mathcal{A}, \mathcal{T})$
2. $\mathrm{L}(\mathcal{A}, \mathrm{CT})=\operatorname{CL}(\mathcal{A}, \mathcal{T})$
3. $\mathrm{L}(\mathcal{A}, \operatorname{ICT})=\operatorname{ICL}(\mathcal{A}, \mathcal{T})$
4. $\mathrm{L}(\mathcal{A}, \mathrm{CIT})=\operatorname{CIL}(\mathcal{A}, \mathcal{T})$
5. $\mathrm{L}(\mathcal{A}, \operatorname{ICIT})=\operatorname{ICIL}(\mathcal{A}, \mathcal{T})$
6. $\mathrm{L}(\mathcal{A}, \mathrm{CICJ})=\operatorname{CICL}(\mathcal{A}, \mathcal{T})$

Proof. Let $\mathcal{A}=\left(X, S, \delta, s_{0}\right)$ and $\mathcal{T} \subseteq 2^{S}$.

1. If $\xi \in \mathrm{L}(\mathcal{A}, \mathrm{IT})$ then $\mathcal{S}_{-}(\operatorname{Inf}(\mathcal{A}, \xi))=\emptyset$ and there is a $w \in \operatorname{pref}(\xi)$ such that $\delta\left(s_{0}, w\right) \in \operatorname{Inf}(\mathcal{A}, \xi)$. Now Lemma 23 shows $w \cdot \mathrm{X}^{\omega} \subseteq \mathrm{L}(\mathcal{A}, \mathcal{T})$. Thus $\xi \in \operatorname{IL}(\mathcal{A}, \mathcal{T})$.

Conversely, let $\xi \in \operatorname{IL}(\mathcal{A}, \mathcal{T})$. Then there is a $w \in \operatorname{pref}(\xi)$ such that $\delta\left(s_{0}, w\right) \in \operatorname{Inf}(\mathcal{A}, \xi)$ and $w \cdot X^{\omega} \subseteq \mathrm{L}(\mathcal{A}, \mathcal{T})$. Again, Lemma 23 shows $\mathcal{S}_{-}(\operatorname{Inf}(\mathcal{A}, \xi))=$ \emptyset, that is, $\xi \in \mathrm{L}(\mathcal{A}, \mathrm{IT})$. 2. Follows from the identities $\mathrm{L}\left(\mathcal{A}, \mathrm{LOOP}_{\mathcal{A}} \backslash \mathcal{T}\right)=$ $\mathrm{X}^{\omega} \backslash \mathrm{L}(\mathcal{A}, \mathcal{T})$ and $\mathrm{CT}=\mathrm{LOOP}_{\mathcal{A}} \backslash \mathrm{I}\left(\mathrm{LOOP}_{\mathcal{A}} \backslash \mathcal{T}\right)$.
$3 .-6$. are immediate consequences of 1 . and 2.
Using Lemma 20 we can re-formulate the conditions $\left(A_{0}\right) \ldots(H)$.
Corollary 28 Let $\mathcal{A}=\left(X ; S ; s_{0} ; \delta\right)$ be an automaton, $\mathcal{T} \subseteq 2^{S}$ a table, and $\mathrm{M}=\mathrm{L}(\mathcal{A}, \mathcal{T})$. Then

$\left(A_{0}\right)$	$C M=M$		$\forall \mathrm{Z}\left(\mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \in \mathcal{T} \vee \mathcal{S}_{+}(\mathrm{Z})=\emptyset\right)\right.$)
$\left(A_{1}\right)$	$\mathrm{I} M=\mathrm{M}$	\Longleftrightarrow	$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(Z \notin \mathcal{T} \vee \mathcal{S}_{-}(\mathrm{Z})=\emptyset\right.\right.$) $)$
$\left(\mathrm{B}_{0}\right)$	CICM $\subseteq M$	\Longleftrightarrow	$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(Z \in \mathcal{T} \vee \mathcal{S}_{+}^{\prime}(Z)=\mathcal{S}_{\mathbf{o}}^{\prime}(Z)=\emptyset\right)\right)$
$\left(\mathrm{B}_{1}\right)$	ICIM $\supseteq \mathrm{M}$		$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \neq \mathcal{T} \vee \mathcal{S}_{-}^{\prime}(\mathrm{Z})=\mathcal{S}_{\mathbf{o}}^{\prime}(\mathrm{Z})=\emptyset\right)\right.$
$\left(C_{0}\right)$	$\mathrm{CIM} \subseteq M$		$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(Z \in \mathcal{T} \vee \mathcal{S}_{+}^{\prime}(Z)=\emptyset\right)\right.$)
$\left(\mathrm{C}_{1}\right)$	ICM $\supseteq M$		$\forall Z\left(Z \in \operatorname{LOOP}_{\mathcal{A}} \rightarrow\left(Z \notin \mathcal{T} \vee \mathcal{S}_{-}^{\prime}(Z)=\emptyset\right)\right)$
$\left(\mathrm{D}_{0}\right)$	$I C M \subseteq M$	\Longleftrightarrow	$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \in \mathcal{T} \vee \mathcal{S}_{-}^{\prime}(\mathrm{Z}) \neq \emptyset\right)\right)$
$\left(\mathrm{D}_{1}\right)$	$\mathrm{CIM} \supseteq \mathrm{M}$	\Longleftrightarrow	$\forall \mathrm{Z}\left(\mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \notin \mathcal{T} \vee \mathcal{S}_{+}^{\prime}(\mathrm{Z}) \neq \emptyset\right)\right)$
$\left(\mathrm{E}_{0}\right)$	$\mathrm{ICIM} \subseteq M$	\Longleftrightarrow	$\forall \mathrm{Z}\left(\mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \in \mathcal{T} \vee \mathcal{S}_{-}^{\prime}(\mathrm{Z}) \neq \emptyset \vee \mathcal{S}_{\mathbf{o}}^{\prime}(\mathrm{Z}) \neq \emptyset\right)\right)$
$\left(\mathrm{E}_{1}\right)$	CICM $\supseteq \mathrm{M}$	\Longleftrightarrow	$\forall \mathrm{Z}\left(\mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathrm{Z} \notin \mathcal{T} \vee \mathcal{S}_{+}^{\prime}(\mathrm{Z}) \neq \emptyset \vee \mathcal{S}_{\mathrm{o}}^{\prime}(\mathrm{Z}) \neq \emptyset\right)\right)$
$\left(\mathrm{F}_{0}\right)$	ICIM $\supseteq \mathrm{CIM}$	\Longleftrightarrow	$\forall Z\left(Z \in \operatorname{LOOP}_{\mathcal{A}} \rightarrow S_{+}^{\prime}(Z)=\emptyset \vee \mathcal{S}_{-}^{\prime}(Z)=S_{0}^{\prime}(Z)=\emptyset\right)$
$\left(F_{1}\right)$	CICM $\subseteq 1 C M$	\Longleftrightarrow	$\forall Z\left(Z \in \operatorname{LOOP}_{\mathcal{A}} \rightarrow S_{-}^{\prime}(Z)=\emptyset \vee S_{+}^{\prime}(Z)=S_{0}^{\prime}(Z)=\emptyset\right)$
(G)	$\mathrm{ICM} \subseteq \mathrm{CIM}$	\Longleftrightarrow	$\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow S_{+}^{\prime}(Z) \neq \emptyset \vee S_{-}^{\prime}(Z) \neq \emptyset\right)$
(H)	$\mathrm{CIM} \subseteq \mathrm{ICM}$	\Longleftrightarrow	$\forall \mathrm{Z}\left(\mathrm{Z} \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow \mathcal{S}_{+}^{\prime}(\mathrm{Z})=\emptyset \vee \mathcal{S}_{-}^{\prime}(Z)=\emptyset\right)$

Proof. Items $\left(A_{0}\right)$ to $\left(E_{1}\right)$ are proved along the following lines. E.g. for $\left(E_{1}\right)$, Lemma 26 and Theorem 27 yield CICM $=\mathrm{L}\left(\mathcal{A},\left\{Z \mid S_{+}^{\prime}(Z) \cup S_{\mathbf{o}}^{\prime}(Z) \neq \emptyset\right\}\right)$ for $\mathrm{M}=\mathrm{L}(\mathcal{A}, \mathcal{T})$.

Then Lemma 20 shows that $\mathrm{L}(\mathcal{A}, \mathrm{C} \operatorname{ICT}) \supseteq \mathrm{L}(\mathcal{A}, \mathcal{T})$ is equivalent to $\forall \mathrm{Z}(\mathrm{Z} \in$ $\operatorname{LOOP}_{\mathcal{A}} \rightarrow\left(Z \in \mathcal{T} \rightarrow\left(\mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset\right)\right)$. Now, the condition $Z \in \mathcal{T} \rightarrow$ $\left(\mathcal{S}_{+}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset\right)$ is equivalent to $Z \notin \mathcal{T} \vee \mathcal{S}_{+}^{\prime}(Z) \neq \emptyset \vee \mathcal{S}_{\mathrm{o}}^{\prime}(Z) \neq \emptyset$.

In the case of Item $\left(\mathrm{F}_{0}\right)$ we obtain in a similar way that $\mathrm{L}(\mathcal{A}$, IC IT $) \supseteq$ $\mathrm{L}(\mathcal{A}, \mathrm{CIT})$ is equivalent to $\forall Z\left(Z \in \mathrm{LOOP}_{\mathcal{A}} \rightarrow\left(\mathcal{S}_{+}^{\prime}(Z) \neq \emptyset \rightarrow \mathcal{S}_{-}^{\prime}(Z) \cup\right.\right.$ $\left.\mathcal{S}_{\mathrm{o}}^{\prime}(Z)=\emptyset\right)$). Again, the condition $\mathcal{S}_{+}^{\prime}(Z) \neq \emptyset \rightarrow \mathcal{S}_{-}^{\prime}(Z) \cup \mathcal{S}_{\mathrm{o}}^{\prime}(Z)=\emptyset$ is equivalent to $\mathcal{S}_{+}^{\prime}(Z)=\emptyset \vee \mathcal{S}_{-}^{\prime}(Z)=\mathcal{S}_{\mathrm{o}}^{\prime}(Z)=\emptyset$.

The remaining items are dealt with in a similar manner.
Now we look at the complexity of deciding types.
Theorem 29 For every type τ, the problem of whether the language, accepted by a given Muller automaton, is of type τ is NL-complete.

Proof. It is easy to see (cf. [SW08]) that, for a given automaton $\mathcal{A}=$ $\left(X ; S ; \delta ; s_{0}\right)$, a table $\mathcal{T} \subseteq 2^{S}$ and a set $Z \subseteq S$, the problems of whether $Z \in \mathcal{T}$, $Z \notin \mathcal{T}, \mathcal{S}_{+}(Z)=\emptyset, \mathcal{S}_{-}(Z)=\emptyset, \mathcal{S}_{+}^{\prime}(Z)=\emptyset, \mathcal{S}_{-}^{\prime}(Z)=\emptyset$, and $\mathcal{S}_{\mathbf{o}}^{\prime}(Z)=\emptyset$ are in NL (having in mind that NL is closed under complement). By Corollary 28, deciding whether a given automaton fulfils any condition A_{0}, A_{1}, \ldots, H is in NL. Consequently, for any type $\tau \in\{1, \ldots, 30\}$, deciding whether a given automaton accepts a language of type τ, is in NL.

For the completeness results we give reductions from the NL-complete graph accessibility problem GAP or from $\overline{\text { GAP }}$ which is NL-complete, too, since NL is closed under complement. Let $\tau \neq 30$ be a type. Choose an automaton $\mathcal{A}=\left(X ; S ; \delta ; s_{0}\right)$ and a table $\mathcal{T} \subseteq 2^{S}$ such that $\mathrm{L}(\mathcal{A}, \mathcal{T})$ is of type τ. Now consider an instance G of GAP consisting of an acyclic graph (V, E) such that $\mathrm{V} \cap \mathrm{S}=\emptyset$, a start node s and a target node t. W.l.o.g. assume that s is the only node with in-degree 0 , that t is of out-degree 0 , and every node has an out-degree 0 or $|X|$. Since the out-degree of $v \in V$ is 0 or $|X|$, we can represent E as $\mathrm{E}=\{(v, \lambda(v, a)) \mid v \in \mathrm{~V} \wedge$ out-degree of $v=|X| \wedge a \in X\}$ for a suitable function $\lambda:\{v \mid v \in \mathrm{~V} \wedge$ out-degree of $v=|\mathrm{X}|\} \rightarrow \mathrm{V}$.

We construct a new automaton $\mathcal{A}_{\mathrm{G}}=\left(\mathrm{X} ; \mathrm{S} \cup \mathrm{V} ; \delta^{\prime} ; \mathrm{s}\right)$ such that δ^{\prime} starts working on V as given by the edges of E, and switches from the target node $\mathrm{t} \in \mathrm{V}$ to the inintial state s_{0} of \mathcal{A}, that is, for $\mathrm{r} \in \mathrm{S} \cup \mathrm{V}$ and $\mathrm{a} \in \mathrm{X}$ let

$$
\delta^{\prime}(r, a)=\operatorname{def} \begin{cases}\delta(r, a), & \text { if } r \in S \tag{17}\\ s_{0} & \text { if } r=t \\ \lambda(r, a), & \text { if } r \in V \text { and out-degree of } r=|X|, \text { and } \\ r & , \text { otherwise. }\end{cases}
$$

Obviously, $W=\left\{w: w \in X^{*} \wedge \delta^{\prime}(s, w)=s_{0}\right\}$ is a finite non-empty language if and only if $\mathrm{G} \in \mathrm{GAP}$. Otherwise, $\mathrm{W}=\emptyset$. Thus $\mathrm{L}\left(\mathcal{A}_{\mathrm{G}}\right)=\mathrm{W} \cdot \mathrm{L}(\mathcal{A}) \neq \emptyset$ if $\mathrm{G} \in \mathrm{GAP}$, otherwise $\mathrm{L}\left(\mathcal{A}_{\mathrm{G}}\right)=\emptyset$.

Since $\operatorname{CL}\left(\mathcal{A}_{\mathrm{G}}\right)=W \cdot \operatorname{CL}(\mathcal{A})$ and $\operatorname{IL}\left(\mathcal{A}_{\mathrm{G}}\right)=W \cdot \operatorname{IL}(\mathcal{A})$, if $W \neq \emptyset$ the set $\mathrm{L}\left(\mathcal{A}_{\mathrm{G}}\right)$ is of the same type τ as $\mathrm{L}(\mathcal{A})$.

Hence, if $\mathrm{G} \in \mathrm{GAP}$ then $\mathrm{L}\left(\mathcal{A}_{\mathrm{G}}\right)$ is of type $\tau \neq 30$, otherwise it is of type 30 . This is a log-space reduction from GAP to the problem of whether a given automaton accepts a language of type τ and, at the same time, a log-space reduction from $\overline{\mathrm{GAP}}$ to the problem of whether a given automaton accepts a language of type 30 .
Finally we consider nowhere dense sets, i.e. sets M such that CICM $=\emptyset$. From Lemma 26 we obtain

Lemma $30 \mathrm{~L}(\mathcal{A})$ is nowhere dense if and only if $\forall Z\left(\mathcal{S}_{+}^{\prime}(Z)=\mathcal{S}_{\mathbf{o}}^{\prime}(Z)=\emptyset\right)$.
Theorem 31 The problem of whether the language, accepted by a given Muller automaton, is nowhere dense is NL-complete.

Proof. As is the proof of Theorem 29.

3 The Topological Space of Reals

The aim of this section is to investigate which types of Kuratowski lattices exist in the space \mathbb{R} of reals. This space contains only trivial sets being simultaneously open and closed. Thus it is to expect that not all of the 49 types of Kuratowski lattices exist in \mathbb{R}. First we consider the class of connected topological spaces to which \mathbb{R} belongs.

3.1 Connected spaces

As we have seen for the fulfilment of several of the types we have to require that the space X contains non-trivial sets being simultaneously open and closed. Connected spaces are those which contain, except for the trivial ones, \emptyset and X itself, no other sets being simultaneously open and closed. In this section we show that indeed in connected spaces ten of the above forty-nine types are impossible.

Theorem 32 In a connected space there are no sets of type $12 a, 12 b, 13 a$, $13 b, 14 a, 14 b, 18,19 a, 19 b$, or 27.

Proof. Since there are no nontrivial sets being simultaneously open and closed, $I M \subset I C M=C I C M \subset C M$ is not possible for a set M from a connected space. This means $\neg \mathrm{D}_{0} \wedge \mathrm{~F}_{0} \wedge \neg \mathrm{E}_{1}$ which is fulfilled by the types 12a, 13a, 14a, 18, 19a and 27. It follows that neither these types nor their duals appear in a connected space.

3.2 All 39 types exist in the space of reals

Since the topological space of reals is connected, by Theorem 32 there are no sets of types 12a, 12b, 13a, 13b, 14a, 14b, 18, 19a, 19b, or 27 . Here we show arguing in a line similar to Section 2.2 that all of the remaining 39 types exist in the space of reals.

Proposition 33 Let $M \subseteq \mathbb{R}, a \in \mathbb{R}$, and let $\tau \in\{1, \ldots, 30\}$ be any type. If M is of type τ then $M+\mathrm{a}$ is also of type τ.

Proof. This follows from $C(M+a)=C M+a$ and $I(M+a)=I M+a$.
Lemma 34 In the topological space of real numbers, if there exist a bounded set of type ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{14}$) and a bounded set of type ($\beta_{1}, \beta_{2}, \ldots, \beta_{14}$) then there exists a bounded set of type ($\alpha_{1} \wedge \beta_{1}, \alpha_{2} \wedge \beta_{2}, \ldots, \alpha_{14} \wedge \beta_{14}$).

Proof. Let $M_{1} \subseteq \mathbb{R}$ be a bounded set of type $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{14}\right)$, and let $M_{2} \subseteq$ \mathbb{R} be a bounded set of type ($\beta_{1}, \beta_{2}, \ldots, \beta_{14}$). Since M_{1} and M_{2} are bounded and because of Proposition 33 we can assume that there exists a $c \in \mathbb{R}$ such that $\sup M_{1}<c<\inf M_{2}$. Hence $\mathrm{I}\left(M_{1} \cup M_{2}\right)=I M_{1} \cup I M_{2}$ and $C\left(M_{1} \cup M_{2}\right)=C M_{1} \cup C M_{2}$. Consequently, $M_{1} \cup M_{2}$ fulfils a condition from $\left\{A_{0}, A_{1}, B_{0}, B_{1}, C_{0}, C_{1}, D_{0}, D_{1}, E_{0}, E_{1}, F_{0}, F_{1}, G, H\right\}$ if and only if M_{1} and M_{2} fulfil this condition.

Theorem 35 In the topological space of real numbers, for every type $\tau \notin$ $\{12 a, 12 b, 13 a, 13 b, 14 a, 14 b, 18,19 a, 19 b, 27\}$ there is a set of type τ.
Theorem 36 In the topological space of real numbers, for every type $\tau \notin$ $\{12 a, 12 b, 13 a, 13 b, 14 a, 14 b, 18,19 a, 19 b, 27\}$ there is a set of type τ.

Proof. First we observe that there exist sets of types $6,10 b, 11,16 b, 17 b$, 20, 21, 26a, 26b, 28a, 29a, and 30 by looking at Table 6.

The sets M in the table, besides the one for type 20 , are bounded. Thus, by Lemma 34 and Proposition 15 we obtain that also sets of types $1,2 a$, $3 a, 4,5 a, 5 b, 7 a, 8 a, 9,10 a, 15 b, 22 a, 23 a, 24 a$, and 25 exist. Using Proposition 6 we conclude that sets of the remaining types $2 b, 3 b, 5 b, 7 b$, $8 b, 15 a, 16 a, 17 a, 22 b, 23 b, 24 b, 28 b$, and $29 b$ exist.

Acknowledgement

Thanks are due to the two reviewers for their comments and critical remarks. This helped us to improve the presentation considerably. Particular thanks are due to the reviewer who draw our attention to the Alexandrov topology.

type	M	CM	ICM	CICM	IM	CIM	IC IM
6	$\left((0,4)^{\circ} \cup(1,3) \cup\{5\}\right) \backslash\{2\}$	$[0,4] \cup\{5\}$	$(0,4)$	$[0,4]$	$(1,2) \cup(2,3)$	$[1,3]$	$(1,3)$
$10 b$	$(0,1)^{\circ} \cup(1,2) \cup(2,3)^{\circ}$	$[0,3]$	$(0,3)$	$[0,3]$	$(1,2)$	$[1,2]$	$(1,2)$
11	$(0,1)^{\circ} \cup[1,2] \cup(2,3)^{\circ}$	$[0,3]$	$(0,3)$	$[0,3]$	$(1,2)$	$[1,2]$	$(1,2)$
16 b	$[0,1]^{\mathrm{o}}$	$[0,1]$	$(0,1)$	$[0,1]$	\emptyset	\emptyset	\emptyset
17 b	$(0,1)^{\circ}$	$[0,1]$	$(0,1)$	$[0,1]$	\emptyset	\emptyset	\emptyset
20	\mathbb{Q}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\emptyset	\emptyset	\emptyset
21	$(0,1) \cup(1,2) \cup\{3\}$	$[0,2] \cup\{3\}$	$(0,2)$	$[0,2]$	$(0,1) \cup(1,2)$	$[0,2]$	$(0,2)$
26 a	$[0,1]$	$[0,1]$	$(0,1)$	$[0,1]$	$(0,1)$	$[0,1]$	$(0,1)$
26 b	$(0,1)$	$[0,1]$	$(0,1)$	$[0,1]$	$(0,1)$	$[0,1]$	$(0,1)$
28 a	$\left\{\left.\frac{1}{n} \right\rvert\, \mathrm{n} \in \mathbb{N}\right\}$	$\left\{\left.\frac{1}{n} \right\rvert\, \mathrm{n} \in \mathbb{N}\right\} \cup\{0\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
29 a	$\{0\}$	$\{0\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
30	\emptyset						

Table 6: Basic types in \mathbb{R} (where $M^{0}={ }_{\operatorname{def}} M \cap \mathbb{Q}$)

References

[Ale37] Paul Alexandroff. Diskrete Räume. Rec. Math. Moscou, n. Ser., 2:501-519, 1937.
[Cha62] Thomas Ashland Chapman. A further note on closure and interior operators. Amer. Math. Mon., 69:524-529, 1962.
[Kur22] Casimir Kuratowski. Sur l'opération A de l'analysis situs. Fundam. Math., 3:182-199, 1922.
[Kur66] Kazimierz Kuratowski. Topology, volume I. Academic Press, New York, 1966.
[Lev61] Norman Levine. On the commutativity of the closure and interior operators in topological spaces. Amer. Math. Mon., 68:474477, 1961.
[MMW07] Aisling E. McCluskey, David W. McIntyre, and William S. Watson. The propositional theory of closure. Exp. Math., 16(4):501512, 2007.
[PP04] Dominique Perrin and Jean-Éric Pin. Infinite words. Automata, Semigroups, Logic and Games. Amsterdam: Elsevier/Academic Press, 2004.
[RS63] Helena Rasiowa and Roman Sikorski. The Mathematics of Metamathematics, volume 41 of Monogr. Mat. Państwowe Wydawnictwo Naukowe, Warszawa, 1963.
[RS97] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, Vol. 3. Springer-Verlag, Berlin, 1997.
[Shi92] Katsuhiro Shiohama. An introduction to the geometry of Alexandrov spaces, volume 8 of Lect. Notes Ser., Seoul. Seoul National University, Seoul, 1992.
[Sta97] Ludwig Staiger. ω-languages. In Rozenberg and Salomaa [RS97], pages 339-387.
[SW08] Victor L. Selivanov and Klaus W. Wagner. Complexity of topological properties of regular ω-languages. Fundam. Inform., 83(1-2):197-217, 2008.
[SW10] Ludwig Staiger and Klaus W. Wagner. There are 49 Kuratowski lattices. In Fernando Ferreira, Hélia Guerra, Elvira Mayordomo, and João Rasga, editors, Programs, Proofs, Processes, pages 357368, Ponta Delgada, 2010. University of the Azores.
[Tho90] Wolfgang Thomas. Automata on infinite objects. In van Leeuwen [vL90], pages 133-191.
[vL90] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, Vol. B. Elsevier, Amsterdam, 1990.
[Wag79] Klaus Wagner. On ω-regular sets. Inform. and Control, 43(2):123-177, 1979.

[^0]: Centre for Discrete Mathematics and Theoretical Computer Science

[^1]: *The results of the paper were presented at the conference CiE 2010, Ponta Delgada, Acores, Portugal, [SW10].
 †email: staiger@informatik.uni-halle.de
 *email: klaus.wagner@uni-wuerzburg.de

[^2]: ${ }^{1}$ For better orientation the digits 1 in this and the following three tables are set in boldface.

[^3]: ${ }^{2}$ In topology, sets satisfying $M=\mathrm{C}$ IM are also known as regular closed.
 ${ }^{3}$ In topology, sets satisfying $M=$ ICM are also known as regular open.

[^4]: ${ }^{4}$ These spaces are different from Alexandrov spaces (cf. [Shi92]), named after Aleksandr Danilovich Aleksandrov.

