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Abstract

Kuratowski observed that, starting from a subsetM of a topological
space and applying the closure operator and the interior operator ar-
bitrarily often, one can generate at most seven different sets. We show
that there are forty nine different types of sets w.r.t. the inclusion rela-
tions between the seven generated sets. All these types really occur in
Cantor space, even for subsets defined by finite automata. For a given
type, it is NL-complete to decide whether a set M, accepted by a given
finite automaton, is of this type.

In the topological space of real numbers only 39 of the 49 types
really occur.

Keywords: topology, closure, interior, Cantor space, finite automata,
NL-complete

The present paper addresses an issue relating elementary topology with
automata theory. It considers, in a topological space X, the inclusion struc-
tures, here called types, that can hold among the (up to) seven distinct sets a
subsetM generates under closure C and interior I. In [MMW07] it is shown
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that there are 49 different such types. Using a formal derivation system the
authors of [MMW07] constructed several 10-element topologies presenting
all 49 types. Here we show that these 49 types can be constructed by au-
tomata theoretic means. To this end we use the regular ω-languages and
the setting of Cantor space.

We first derive in the general case the properties of these 49 inclusion
structures, and we consider the required topological properties for sets M
having a certain type. In the subsequent Section 2 we show that for every
of the 49 types there is a regular ω-language (subset of the Cantor space)
representing this type. The connection to finite automata and decision prob-
lems is the topic of the next section. Here it is shown that, for a given finite
automaton, the problem whether its acceptedω-language is of a certain type
is NL-complete. The final section gives an example that not every space has
subsets of all 49 types—the real line admits only 39 types.

1 Topological Spaces in General

1.1 Introduction

A topological space is a pair
(
X,O

)
where X is a non-empty set and O ⊆ 2X

is a family of subsets of X which is closed under arbitrary union and under
finite intersection. The family O is usually called the family of open subsets
of the space X. Their complements are referred to as closed sets of the
space X.

Kuratowski observed that topological spaces can be likewise defined us-
ing closure or interior operators. A topological interior operator I is a map-
ping I : 2X → 2X satisfying the following relations. It assigns to a subset
M ⊆ X the largest open set contained in M.

IX = X

I IM = IM ⊆ M , and
I(M1 ∩M2) = IM1 ∩ IM2

(1)

Using the complementary (duality) relation between open and closed sets
one defines the closure of (smallest closed set containing) M as follows.

CM =def Xr I(XrM) (2)

Then the following holds.

C∅ = ∅
CCM = CM ⊇ M

C(M1 ∪M2) = CM1 ∪ CM2

(3)
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Since I(M1∪M2)∩ I(XrM2) = I(M1rM2) ⊆ IM1 we obtain the following
(see [Kur66, RS63]).

I(M1 ∪M2) ⊆ IM1 ∪ CM2 ⊆ C IM1 ∪ ICM2 (4)

In the paper [Kur22] (see also [Kur66, Ch. I, § 4]) Kuratowski proved that
starting from a subset M of X and applying C and I arbitrarily often, one
obtains only the (not necessarily different) seven sets M, CM, IM, C IM,
ICM, C ICM, and IC IM. This can be easily verified using the following
theorem.

Theorem 1 ([Kur22]) C IC IM = C IM and IC ICM = ICM, for every M ⊆
X.

Because of the monotonicity and the idempotence of the operators C and I
as well as the property IM ⊆ M ⊆ CM we obtain the inclusion structure
between these seven sets shown in Fig. 1. We will refer to this structure
in the sequel as the Kuratowski lattice of the set M. More precisely, given
a topological space X and a set M ⊆ X the Kuratowski lattice of the set
M is the vector

(
M, CM, C ICM, C IM, ICM, IC IM, IM

)
, and we say that

two Kuratowski lattices (A1,A2, . . . ,A7) and (B1,B2, . . . ,B7) are isomorphic
provided Ai ⊆ Aj ⇔ Bi ⊆ Bj for all i, j ∈ {1, 2, 3, 4, 5, 6, 7}.

The general shape of a Kuratowski lattice is depicted in Figure 1. It
describes all inclusion relations between the seven sets which are necessarily
fulfilled, that is, derivable from Eqs. (1) and (3) (see also [Kur66, Chapter
1, §4, V.]).
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Figure 1: Kuratowski lattice
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1.2 The Types

Depending on the particular properties of the set M there might hold addi-
tional inclusions. These simplify the shape of the Kuratowski lattice. In this
paper we are going to investigate how many, depending on the nature of
the set M, non-isomorphic Kuratowski lattices might exist.

To this end we start with a list of the 14 possible additional elementary
relations. The first group (A) to (E) consists of inclusion relations – upper
and lower bounds – between the set M and their six derived sets, and the
second group (F) to (H) solely of inclusions between the derived sets.

lower bounds upper bounds
(A0) CM =M (A1) IM =M

(B0) C ICM ⊆M (B1) IC IM ⊇M
(C0) C IM ⊆M (C1) ICM ⊇M
(D0) ICM ⊆M (D1) C IM ⊇M

ICM = IM C IM = CM
(E0) IC IM ⊆M (E1) C ICM ⊇M

IC IM = IM C ICM = CM
relations between derived sets

(F0) IC IM ⊇ C IM (F1) C ICM ⊆ ICM
IC IM = C IM C ICM = ICM

(G) ICM ⊆ C IM
IC IM = ICM C ICM = C IM

(H) C IM ⊆ ICM

Table 1: Possible inclusions between M and its derived sets.
By Proposition 2 conditions in the same box are equivalent.

The papers [Cha62, Lev61] contain some of these equivalences and,
moreover, conditions on sets M to fulfil several identities like ICM = IM
etc.
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Proposition 2

1. ICM ⊆M⇔ ICM = IM, and C IM ⊇M⇔ C IM = CM,

2. IC IM ⊆M⇔ IC IM = IM, and C ICM ⊇M⇔ C ICM = CM,

3. IC IM ⊇ C IM IC IM = C IM, and C ICM ⊇ ICM⇔ C ICM = ICM,

4. ICM ⊆ C IM⇔ C ICM = C IM⇔ IC IM = ICM

We give a short proof of the first part of Item 1, the other equivalences
are proved in a similar manner.
Proof. If ICM ⊆ M then I ICM = ICM ⊆ IM according to Eq. (1). The
other implication follows from M ⊆ CM also via Eq. (1) o

However, the 14 elementary inclusions of Table 1 are not independent.
First we give a diagram of some general implications which hold true.

Proposition 3 Let α ∈ {0, 1}. Then the following general implication structure
holds true.

G
Dα

↗

Aα → Bα
↗
↘

↘
↗ Eα

Cα

(5)

Fα → H (6)

Next, we present some further implications which are needed in the sequel.

Proposition 4 Let α ∈ {0, 1}.

Dα ←→ Eα ∧G (7)

Bα ←→ Cα ∧G (8)

G −→ (Bα ↔ Cα)∧ (Dα ↔ Eα) (9)

Fα −→ (Cα ↔ Eα) (10)

C0 ∧ C1 −→ H (11)

Cα ∧D1−α −→ Aα (12)

G∧H −→ F0 ∧ F1 (13)

Proof. For Eqs. (7) and (8) the direction from left to right is in Eq. (5).
The other directions and Eq. (9) follow from the identities in Item (G) of
Table 1.
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In a similar way the identities in the Items (Fα) imply the equivalences
of (Cα) and (Eα).

To prove Eq. (12), for α = 0 we have C IM ⊆ M and M ⊆ C IM. Thus
M = C IM which implies that M is closed. The case α = 1 is similar.

Eq. (13) is obvious. o

All in all, there are 214 possible combinations of the 14 conditions. In the
rest of this section we show that, using the implications from Proposition 3
and 4, only 49 combinations can satisfy these conditions. Thus, we obtain
at most 49 different Kuratowski lattices.

We split our proof into four groups according to whether the conditions
G and H hold or do not hold. In what follows, for Γ ∈ {A0.A1,B0, . . . ,G,H}
we write Γ = 1(0) if Γ holds (does not hold, respectively) for the set M
under consideration.

1.2.1 The Case ¬G∧ ¬H

This is the only case where C IM and ICM are incomparable.
According to Eqs. (5) and (6) we have Aα = Bα = Dα = Fα = 0 and

Cα → Eα for α ∈ {0, 1}, and (C0 = 0 ∨ C1 = 0) from Eq. (11) . This yields
the following eight combinations listed in Table 2.1

type M fulfils
of M A0 A1 B0 B1 C0 C1 D0 D1 E0 E1 F0 F1 G H

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2a 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2b 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3a 0 0 0 0 1 0 0 0 1 0 0 0 0 0
3b 0 0 0 0 0 1 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0 1 1 0 0 0 0
5a 0 0 0 0 1 0 0 0 1 1 0 0 0 0
5b 0 0 0 0 0 1 0 0 1 1 0 0 0 0

Table 2: The case ¬G∧ ¬H

1.2.2 The Case ¬G∧H

Here we have C IM ⊂ ICM.
As in the previous case, Eq. (5) implies Aα = Bα = Dα = 0 and Cα →

Eα for α ∈ {0, 1}. If Fα = 1 we have additionally Cα = Eα by Eq. (10).

1For better orientation the ones in this and the following three tables are set in boldface.
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This gives nine combinations in the case (F0, F1) = (0, 0), six combina-
tions in each of the cases (F0, F1) ∈ {(0, 1), (1, 0)}, and four combinations in
the case (F0, F1) = (1, 1) as shown in Table 3.

type M fulfils
of M A0 A1 B0 B1 C0 C1 D0 D1 E0 E1 F0 F1 G H

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7a 0 0 0 0 0 0 0 0 1 0 0 0 0 1
7b 0 0 0 0 0 0 0 0 0 1 0 0 0 1
8a 0 0 0 0 1 0 0 0 1 0 0 0 0 1
8b 0 0 0 0 0 1 0 0 0 1 0 0 0 1
9 0 0 0 0 0 0 0 0 1 1 0 0 0 1
10a 0 0 0 0 1 0 0 0 1 1 0 0 0 1
10b 0 0 0 0 0 1 0 0 1 1 0 0 0 1
11 0 0 0 0 1 1 0 0 1 1 0 0 0 1
12a 0 0 0 0 0 0 0 0 0 0 0 1 0 1
13a 0 0 0 0 0 0 0 0 1 0 0 1 0 1
14a 0 0 0 0 1 0 0 0 1 0 0 1 0 1
15a 0 0 0 0 0 1 0 0 0 1 0 1 0 1
16a 0 0 0 0 0 1 0 0 1 1 0 1 0 1
17a 0 0 0 0 1 1 0 0 1 1 0 1 0 1
12b 0 0 0 0 0 0 0 0 0 0 1 0 0 1
13b 0 0 0 0 0 0 0 0 0 1 1 0 0 1
14b 0 0 0 0 0 1 0 0 0 1 1 0 0 1
15b 0 0 0 0 1 0 0 0 1 0 1 0 0 1
16b 0 0 0 0 1 0 0 0 1 1 1 0 0 1
17b 0 0 0 0 1 1 0 0 1 1 1 0 0 1
18 0 0 0 0 0 0 0 0 0 0 1 1 0 1
19a 0 0 0 0 1 0 0 0 1 0 1 1 0 1
19b 0 0 0 0 0 1 0 0 0 1 1 1 0 1
20 0 0 0 0 1 1 0 0 1 1 1 1 0 1

Table 3: The case ¬G∧H

1.2.3 The Case G∧ ¬H

Here we have ICM ⊂ C IM.
In view of Eqs. (5), (6), (11), (9), and (12) we get Aα → Bα → Dα,

F0 = F1 = 0, (B0 = 0∨B1 = 0), Bα = Cα, Dα = Eα, and Cα∧D1−α → Aα.
This results in the ten possible combinations shown in Table 4.
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type M fulfils
of M A0 A1 B0 B1 C0 C1 D0 D1 E0 E1 F0 F1 G H

21 0 0 0 0 0 0 0 0 0 0 0 0 1 0
22a 0 0 0 0 0 0 1 0 1 0 0 0 1 0
22b 0 0 0 0 0 0 0 1 0 1 0 0 1 0
23a 0 0 1 0 1 0 1 0 1 0 0 0 1 0
23b 0 0 0 1 0 1 0 1 0 1 0 0 1 0
24a 1 0 1 0 1 0 1 0 1 0 0 0 1 0
24b 0 1 0 1 0 1 0 1 0 1 0 0 1 0
25 0 0 0 0 0 0 1 1 1 1 0 0 1 0
26a 1 0 1 0 1 0 1 1 1 1 0 0 1 0
26b 0 1 0 1 0 1 1 1 1 1 0 0 1 0

Table 4: The case G∧ ¬H

1.2.4 The Case G∧H

Here we have C IM = ICM.

Because of Eq. (13) we have F0 = F1 = 1. Now, from Eqs. (10) and
(9) we conclude Bα = Cα = Dα = Eα. By Eqs. (5) and (12) we get
Aα → Bα and (B0 ∧ B1) → (A0 ∧ A1). Table 5 shows the resulting six
possible combinations.

type M fulfils
of M A0 A1 B0 B1 C0 C1 D0 D1 E0 E1 F0 F1 G H

27 0 0 0 0 0 0 0 0 0 0 1 1 1 1
28a 0 0 1 0 1 0 1 0 1 0 1 1 1 1
28b 0 0 0 1 0 1 0 1 0 1 1 1 1 1
29a 1 0 1 0 1 0 1 0 1 0 1 1 1 1
29b 0 1 0 1 0 1 0 1 0 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5: The case G∧H

So far it is not yet clear that each of the 49 types can really occur in a
topological space. In the following we will see that they can occur in the
Cantor space. Before we proceed to this goal we discuss the topological
complexity which is necessary for a subset M ⊆ X to generate a Kuratowski
lattice of a certain type.
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1.3 Duality

First we refer again to the duality of the operators C and I. From Eq. (2)
we known that for the operations C and I the duality principle X r CM =

I
(
X r M

)
holds. This duality principle carries over to the conditions of

Table 1.

Proposition 5

Duality Let Γ ∈ {A,B,C,D,E, F}.
Condition Γ0 holds for M if and only if condition Γ1 holds for XrM.

Self-Duality Let Γ ∈ {G,H}.
Condition Γ holds for M if and only if condition Γ holds for XrM.

Proof. The first part follows from the duality relation C(XrM) = Xr IM
(see Eq. (2).

For the second, applying the duality relation Eq. (2) twice we obtain
IC(X rM) = I(X r IM) = X r C IM and C I(X rM) = C(X r CM) =

Xr ICM. Then, in case Γ = G, the hypothesis ICM ⊆ C IM (C IM ⊆ ICM,
respectively) yields the assertion. o

Due to the duality between conditions shown in Proposition 5 there is a
duality between types in the Tables 2, 3, 4 and 5.

Proposition 6 1. Let τ ∈ {1, 4, 6, 9, 11, 18, 20, 21, 25, 27, 30}.
The set M is of type τ if and only XrM is of type τ.

2. Let τ ∈ {1, 2, . . . , 30}r {1, 4, 6, 9, 11, 18, 20, 21, 25, 27, 30}.
The set M is of type τa if and only XrM is of type τb.

1.4 Topological structure

In this section we investigate the necessary topological structure for sets
M ⊆ X to be of a certain type τ. Let for a topological space X be F=def {M |

M ⊆ X ∧M is closed} and G = {M | M ⊆ X ∧M is open} the families of
closed an open subsets, respectively. Moreover, define F∨G=def {F ∪ E | F ∈
F ∧ E ∈ G} and F∧G=def {F ∩ E | F ∈ F ∧ E ∈ G}, and let, as usual, Fσ be the
set of countable unions of closed sets.

First we consider the topologically simple types.

Lemma 7 1. M is of type 30 if and only if M is open and closed.

2. M is of type 24a, 26a or 29a if and only if M is closed, but not open.

3. M is of type 24b, 26b or 29b if and only if M is open, but not closed.
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Proof. Since M is closed if and only if M fulfils (A0) and M is open if and
only if M fulfil-ls (A1), the proof follows from inspecting the Tables 2 to 5.

o

Theorem 7.2 and 7.3 can be made more precise.

Corollary 8 1. M is of type 26a if and only if M = C IM and M is not
open.2

2. M is of type 29a if and only if IM = C IM andM is closed but not open.

3. M is of type 26b if and only if M = ICM and M is not closed.3

4. M is of type 29b if and only if CM = ICM andM is open but not closed.

Proof. 1. A look at Tables 2, 3, 4, and 5 shows that M is of type 26a if
and only if it satisfies (C0) and (D1) but not (A1). But (C0) and (D1) is
equivalent to M = C IM, and (A1) is equivalent to M being open.

2. A look at Tables 2, 3, 4, and 5 shows that M is of type 29a if and
only if it satisfies (A0),(E0), and (F0) but not (A1). But (E0) and (F0) is
equivalent to IM = C IM, (A0) is equivalent to M being closed, and (A1) is
equivalent to M being open.

The assertions 3 and 4 follow by duality. o

For the structure of the sets of the remaining 42 types the following
notion is helpful. We call a set M ⊆ X nowhere dense provided ICM = ∅,
that is, if the closure CM does not contain a non-empty open set. Clearly,
this condition is equivalent to C ICM = ∅.

As an immediate consequence we obtain the following relation to the
types 28a, 29a and 30.

Proposition 9 Let M ⊆ X be nowhere dense. Then

1. M is of type 28a, 29a, or 30.

2. M is of type 30 if and only if M = ∅.

3. M is of type 29a if and only if M 6= ∅ and M is closed, and

4. M is of type 28a if and only if M is not closed.

The papers [Cha62, Lev61] show that equality up to nowhere dense sets (cf.
Theorem 10.2) is related to several of the identities in Table 1.

Moreover, it holds the following (cf. with [Cha62, Theorem 4] and
[Kur66, Chapter 1.V]).

2Sets satisfying M = C IM are also known as closed domains.
3Sets satisfying M = ICM are also known as open domains.
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Theorem 10 Let X be a topological space.

1. The family G=def {M | M ⊆ X ∧ ICM ⊆ C IM} is a Boolean algebra
which contains all open (and closed) and all nowhere dense subsets of X.

2. M ∈ G if and only if there is an open set P ∈ X such that M r P and
P rM are nowhere dense.

For the sake of completeness we give a proof.
Proof. (1) Obviously, the family G contains all open and all nowhere dense
subsets of X. By Proposition 5.2 the family G is closed under complementa-
tion.

In order to show closure under union we observe that due to the mono-
tonicity and idempotence of the operators C and I and Eq. (4) IC(M1 ∪
M2) ⊆ ICM1 ∪ C ICM2.

Then Proposition 2 (G) and the hypothesis ICM1 ⊆ C IM1 yield the as-
sertion IC(M1 ∪M2) ⊆ C IM1 ∪ C IM2 ⊆ C I(M1 ∪M2).

(2) Assume, M r P and P rM be nowhere dense for some open set P.
Then, in view of IC(Mr P) = ∅, Eq. (4) shows ICM ⊆ I(CP ∪C(Mr P)) ⊆
C ICP ∪ IC(Mr P) = C ICP.

As P is open and PrM is nowhere dense, we have, again using Eq. (4),
C ICP ⊆ C IC I(M ∪ (P rM)) ⊆ C IC(C IM ∪ IC(P rM)) = C IM.

Conversely, let M ∈ G. Since IM ∈ G, we have M r IM ∈ G and,
consequently, IC(M r IM) ⊆ C I(M r IM) = ∅, as I(M r IM) = ∅. Thus
Mr IM and IMrM = ∅ are nowhere dense. o

The last part of the preceding proof shows the following.

Corollary 11 M ∈ G if and only if M r IM is nowhere dense, and if M ∈ G

then M contains a non-empty open subset or M is nowhere dense.

Now we show that unions of open and closed sets cannot be of type 23a and
28a unless they are closed. By the duality principle this is equivalent to the
fact the intersections of open and closed sets cannot be of type 23b and 28b
unless they are open.

Theorem 12 Let X be a topological space, M1 ⊆ X open and M2 ⊆ X closed.

1. If M =M1 ∪M2 and C IM ⊆M then M is closed.

2. If M =M1 ∩M2 and ICM ⊇M then M is open.

Proof. We prove only the first assertion, the second follows by the duality
principle.
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Consider CM = C(M1 ∪M2) = CM1 ∪ CM2. Then CM2 = M2 and,
since M1 is open, we have M1 ⊆ IM. So CM ⊆ C IM ∪M2 =M is closed.

o

None of the sets M of types 1, . . . , 20 satisfies ICM ⊆ C IM. Thus from
Lemma 7 and Theorems 10, and 12 we obtain the following corollary.

Corollary 13 1. A set of type 1, . . . , 20 cannot be in the class G.

2. A set of type 21, 22a, 22b, 25 or 27 cannot be in F ∪ G.

3. A set of type 23a or 28a cannot be in F∨G.

4. A set of type 23b or 28b cannot be in F∧G

In Section 2.3 we will see that these lower bounds cannot be improved.

2 The Cantor Space

2.1 Languages of infinite words

The Cantor space may be introduced conveniently using the notation known
from Formal Language Theory. Let X be an alphabet of cardinality |X| = r >
2. Then X∗ is the set of finite words on X, including the empty word e, and
Xω is the set of infinite strings (ω-words) over X. Subsets of X∗ will be
referred to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This
concatenation product extends in an obvious way to subsets W ⊆ X∗ and
M ⊆ X∗ ∪ Xω. For a language W let W∗ =def

⋃∞
i=0W

i, and Wω =def

{w1 · · ·wi · · · | wi ∈Wr {e}} be the set of infinite strings formed by concate-
nating non-empty words in W. If W = {w},w 6= e, we will sometimes write
w∗ and wω instead of {w}∗ and {w}ω, respectively. Furthermore, pref(M)

is the set of all finite prefixes of strings inM ⊆ X∗∪Xω. We shall abbreviate
w ∈ pref({η}) (η ∈ X∗ ∪ Xω) by w v η.

As usual, we consider Xω as a topological space (Cantor space). The
closure of a subset M ⊆ Xω, CM, is described as CM =def {ξ | pref({ξ}) ⊆
pref(M)}. The open sets in Cantor space are the ω-languages of the form
W · Xω. Accordingly, IM =

⋃
{w · Xω | w · Xω ⊆ M} is the interior of

M ⊆ Xω.
For the purposes of our paper it is convenient to represent certain subsets

of the Cantor Space as regularω-languages, that is,ω-languages defined by
finite automata. To this end we mention that a languageW ⊆ X∗ is regular if
it can be obtained from finite subsets of X∗ by a finite number of applications
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of the operations ∪, ·, and ∗; and s subset M ⊆ Xω is a regular ω-language
if it is of the form M =

⋃n
i=1Wi · Vωi where Wi,Vi ⊆ X∗ are regular

languages. The relation between regular ω-languages and finite automata
will be explains in Section 2.4.

We assume the reader to be familiar with the basic facts of the theory
of regular languages and finite automata. For more details on ω-languages
and regular ω-languages see the book [PP04] or the survey papers [Sta97,
Tho90].

2.2 All Types Exist in Cantor Space

In this section we will show that in Cantor space there are really 49 different
types of sets.

The following proposition is very helpful because it enables us to con-
struct (sets of) new types from other (given) types.

For a setM ⊆ Xω and a Γ ∈ {A0,A1,B0, . . . ,G,H} we writeM(Γ) = 1(0)
if M fulfils Γ (does not fulfil Γ , respectively). Furthermore, we say that M is
of type τ = (M(A0),M(A1),M(B0), . . . , ,M(G),M(H)).

Proposition 14 Let M0,M1 ⊆ Xω and a,b ∈ X such that a 6= b.

1. If M0 is of type (α1,α2, . . . ,α14) and M1 is of type (β1,β2, . . . ,β14)

then aM0 ∪ bM1 is of type (α1 ∧ β1,α2 ∧ β2, . . . ,α14 ∧ β14).

2. Moreover, if M0,M1 are both in one of the classes F, G, F∨G, F∧G, Fσ
or G then aM0 ∪ bM1 belongs also to the same class.

3. If M0 /∈ G then aM0 ∪ bM1 /∈ G.

Proof. The first assertion is an immediate consequence of C(aM0 ∪ bM1) =

aCM0∪bCM1, I(aM0∪bM1) = a IM0∪b IM1, and aM0∪bM1 ⊆ aP0∪bP1

if and only if M0 ⊆ P0 and M1 ⊆ P1.
The second assertion is obvious for classes closed under union. So it

suffices to prove it for the class F∧G. Let Mi = Qi ∩ Pi, i = 0, 1, where
Q0,Q1 are closed and P0,P1 are open. Now the assertion follows from the
identity aM0 ∪ bM1 = a · (Q0 ∩ P0)∪ b · (Q1 ∩ P1) = (a ·Q0 ∪ b ·Q1)∩ (a ·
P0 ∪ b · P1).

The third one follows from aM0 = (aM0 ∪ bM1) ∩ a · Xω, and aM ∈ G

if and only if M ∈ G. o

For types (α1,α2, . . . ,α14) and (β1,β2, . . . ,β14) let
(α1,α2, . . . ,α14)∧ (β1,β2, . . . ,β14) =def (α1 ∧β1,α2 ∧β2, . . . ,α14 ∧β14).
We observe:
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Proposition 15 Let x ∈ {a,b}, and put a =def b and b =def a. Then

1. (1) =(6) ∧ (21) 9. (9) =(10a)∧ (10b) 19. (19x)=(20) ∧ (29x)
2. (2x)=(3x) ∧ (4) 10. (10x)=(11) ∧ (16x) 21. (21) =(25) ∧ (27)
3. (3x)=(5x) ∧ (8x) 11. (11) =(17a)∧ (17b) 22. (22x)=(25) ∧ (29x)
4. (4) =(5a) ∧ (5b) 12. (12x)=(17x)∧ (27) 23. (23x)=(26x)∧ (28x)
5. (5x)=(17b)∧ (26x) 13. (13x)=(14x)∧ (16x) 24. (24x)=(26x)∧ (29x)
6. (6) =(11) ∧ (27) 14. (14x)=(17x)∧ (29x) 25. (25) =(26a)∧ (26b)
7. (7x)=(8x) ∧ (9) 15. (15x)=(17x)∧ (29x) 27. (27) =(29a)∧ (29b)
8. (8x)=(11) ∧ (29x) 18. (18) =(20) ∧ (27)

The types (16a), (16b), (17a), (17b), (20), (26a), (26b), (28a), (28b),
(29a), (29b), and (30) are missing on the left hand sides of the equations
in Proposition 15. We will refer to them as basic types.

Every other type is the ∧-combination of basic types or types having
a higher number. So, if we can show that the basic types exist in Cantor
space then all 49 types exist in Cantor space. Because of Proposition 6 it is
sufficient to prove that the types (16a), (17a), (20), (26a), (28a), (29a),
and (30) do exist in Cantor space.

Remark. In most of the cases in Proposition 15 other combinations of
compound types are possible. We have chosen the present ones for reasons
which will become apparent in Sections 2.3 and 3.2.

Lemma 16 Let X = {0, 1}.

1. The set M16=def 0∗11{0, 1}ω ∪ 0∗10{0, 1}∗0ω is of type 16a.

2. The set M17=def 0ω ∪ 0∗11{0, 1}ω ∪ 0∗10{0, 1}∗0ω is of type 17a.

3. The set M20=def {0, 1}∗0ω is of type 20.

4. The set M26=def 0ω ∪ 0∗11{0, 1}ω is of type 26a.

5. The set M28=def 0∗10ω is of type 28a.

6. The set M29=def 0ω is of type 29a.

7. The set M30=def ∅ is of type 30.

Proof. For M16,M17 and M20 we have pref(Mi) = {0, 1}∗. Consequently,
CMi = ICMi = C ICMi = {0, 1}ω for i = 16, 17 or 20.

1. Here IM16 = 0∗11{0, 1}ω whence C IM16 = 0ω ∪ 0∗11{0, 1}ω and
IC IM16 = IM16. It is now obvious that IM16 ⊂ C IM16 ⊂ ICM16,
IM16 ⊂M16 ⊂ ICM16 and neither M16 ⊆ C IM16 nor C IM16 ⊆M16.

Thus conditions (C1), (E0), (E1), (F1) and (H) hold true whereas (C0)

and (G) are false. The rest follows from Eqs. (5) and (10).
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2. Here we have also IM17 = IC IM17 = 0∗11{0, 1}ω. The rest follows
from ICM17 ⊃ M17 ⊃ C IM17 = 0ω ∪ 0∗11{0, 1}ω ⊃ IM17 as in
Item 1.

3. We have IM20 = ∅. Then IM20 = C IM20 = IC IM20 = ∅ ⊂ M20 ⊂
ICM20.

Thus conditions (Cα), (Eα), (Fα),α ∈ {0, 1}, and (H) hold true whereas
(G) is false. The rest follows from Eq. (5).

4. M26 = C IM16 whence M26 = C IM26. Since M26 is closed but not
open, the assertion follows with Corollary 8.

The remaining three sets M28,M29 and M30 are nowhere dense, so the
assertion follows with Proposition 9. o

Remark. Analogous considerations show that the countable ω-languages
M ′16=def 0ω ∪ 0∗10{0, 1}∗0ω and M ′17=def 0∗10{0, 1}∗0ω are of types (16b)
or (17b), respectively.

As a consequence of Propositions 14, 15 and Lemma 16 we obtain

Theorem 17 All forty-nine types do exist in Cantor space.

2.3 Topological complexity

Here we show that, in the Cantor space, the results in Corollary 13 are
optimal.

Lemma 18 1. M30 ∈ F ∩ G

2. M26,M29 ∈ F

3. M28 ∈ (F∧G)

4. M16,M17,M20 ∈ Fσ

Proof. The first two items are obvious. M28 = (0ω ∪ 0∗10ω) ∩ 0∗1{0, 1}ω

shows that M28 is the intersection of a closed with an open set.. The last
assertion follows from 0∗11{0, 1}ω =

⋃∞
i=0 0i11{0, 1}ω and the fact that

0∗10{0, 1}∗0ω is a countable set. o

Combining with the results of the preceding section we obtain the following.

Theorem 19 Let Mτ be the family {M |M ⊆ Xω ∧M is of type τ}.

1. For each τ ∈ {1, . . . , 20}, there exists a regularω-languageM ∈ Fσ∩Mτ,
but Mτ ∩ G = ∅.
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2. For each τ ∈ {21, 22a, 22b, 25, 27}, there exists a regular ω-language
M ∈ (F∧G) ∩ (F∨G) of type τ, but there does not exist an open set or a
closed set of type τ.

3. For τ ∈ {23a, 28a}, there exists a regular ω-language in (F∧G) of type
τ, but Mτ ∩ (F∨G) = ∅.

4. For τ ∈ {23b, 28b}, there exists a regular ω-language in (F∨G) of type
τ, but Mτ ∩ (F∧G) = ∅.

Proof. The lower bounds follow from Corollary 13. It remains to show that
there are regular ω-language in the respective classes.

All basic types contain regularω-languages in Fσ. Using Proposition 14.2
and Proposition 15 one can successively show that all types contain regular
ω-languages in Fσ.

The sets M26 and M29 are in (F∧G) ∩ (F∨G), in fact, they are closed.
Thus Proposition 5, Proposition 14.2 and Proposition 15.27, 15.25, 15.22
and 15.21 show that Mτ, τ ∈ {27, 25, 22a, 22b, 21}, contain sets in (F∧G)∩
(F∨G).

The proof for M23a and M28a is obtained similarly utilising the fact that
M26,M28 ∈ F∧G. The remaining assertion is dual to the previous one. o

2.4 Regular ω-languages and finite automata

An ω-language M ⊆ Xω is regular provided there are a finite (determinis-
tic) automaton A = (X;S; s0; δ) and a table T ⊆ {S ′ | S ′ ⊆ S} such that for
ξ ∈ Xω it holds ξ ∈ M if and only if Inf(A; ξ) ∈ T where Inf(A; ξ) is the
set of all states s ∈ S through which the automaton A runs infinitely often
when reading the input ξ. Observe that Z = Inf(A; ξ) holds for a subset
Z ⊆ S if and only if

1. there is a word u ∈ X∗ such that δ(s0;u) ∈ Z, and

2. for every s ∈ Z there is a non-empty words v ∈ X∗ such that δ(s, v) = s
and Z = {δ(s, v ′) | v ′ v v}.

Such sets were referred to as essential sets [Wag79] or loops [SW08],[Sta97,
Section 5.1]. The set of all loops of an automaton A will be referred to as
LOOPA = {Inf(A; ξ) | ξ ∈ Xω}.

Thus, to ease our notation, unless stated otherwise in the sequel we will
assume all automata to be initially connected, that is, S = {δ(s0;w) | w ∈
X∗}.
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The ω-language L(A,T) = {ξ | Inf(A; ξ) ∈ T} is the (disjoint) union of
all sets MZ = {ξ | Inf(A; ξ) = Z} where Z ∈ T. Observe that MZ and MZ ′

are disjoint for Z 6= Z ′. Thus it holds the following.

Lemma 20 Let A = (X;S; s0; δ) be a deterministic automaton and T,T ′ ⊆ 2S

be tables, and let op be a Boolean set operation. Then L(A,T) op L(A,T ′) =
L(A,T opT ′). Moreover, for T,T ′ ∈ 2S we have L(A,T) ⊆ L(A,T ′) if and
only if T ∩ LOOPA ⊆ T ′ ∩ LOOPA.

For Z1,Z2 ⊆ S we write Z1 7→ Z2 if there exists an s ∈ Z1 and a w ∈ X∗

such that δ(s,w) ∈ Z2. For s ∈ S, we write also s 7→ Z2 instead of {s} 7→ Z2.
For simplicity we restrict T to T ∩ LOOPA.

The relation 7→ is reflexive and transitive over LOOPA, thus a preorder.
Their maximal elements are just the terminal loops Lterm = {Z | Z ∈ LOOPA∧

∀Z ′((Z 7→ Z ′) → (Z ′ 7→ Z))} which will be of some importance for the
following considerations. Moreover we define the sets of successor loops
S(Z) = {Z ′ | Z ′ ∈ LOOPA ∧ Z 7→ Z ′}. We have the following easily verified
properties.

Lemma 21 S(Z) ∩ Lterm 6= ∅ for all Z 6= ∅, and if Z ′ ∈ S(Z) then S(Z) ⊇
S(Z ′).

For a given automaton A = (X;S; s0; δ) and a table T ⊆ 2S we introduce
further the set of positive (negative) successors S+(Z) (S−(Z)) and the set of
alternating loops So.

S+(Z) =def S(Z) ∩ T,
S−(Z) =def S(Z)r T,

So =def {Z | ∃Z ′(Z 7→ Z ′ 7→ Z∧ (Z ∈ T ↔ Z ′ /∈ T))}

(14)

Moreover, for A = (X;S; s0; δ) and a table T ⊆ 2S we need the following
terminal variants.

S ′+(Z) =def (S(Z) ∩ Lterm ∩ T)r So ,
S ′−(Z) =def ((S(Z) ∩ Lterm)r T)r So , and
S ′o(Z) =def S(Z) ∩ Lterm ∩ So .

(15)

Then the following lemma holds.

Lemma 22 Let Z ∈ Lterm. Then Z ∈ T r S◦ if and only if S−(Z) = ∅.

Proof. Consider Z ′ ∈ S(Z). Then, since Z ∈ Lterm, we have Z 7→ Z ′ 7→ Z.
Consequently, Z /∈ So implies Z ′ ∈ T.

Conversely, if S−(Z) = ∅ then Z ∈ T and Z /∈ So. o

Observe that for Z /∈ Lterm one might have S−(Z) 6= ∅ while Z ∈ T r S◦.
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Lemma 23 Let A = (X;S; s0; δ) be an automaton, T ⊆ 2S a table and Z ∈
LOOPA and δ(s0,w) ∈ Z, forw ∈ X∗. Then S−(Z) = ∅ if and only if w ·Xω ⊆
L(A,T).

Proof. Let ξ ∈ w · Xω. Since δ(s0,w) ∈ Z, we have S(Z) 7→ Inf(A; ξ). Thus
S−(Z) = ∅ implies Inf(A; ξ) ∈ T.

Conversely, let w · Xω ⊆ L(A,T) and Z ′ ∈ S(Z). Then there are words
v,u ∈ X∗,u 6= e, such that δ(s0;wv) = δ(s0;wvu) ∈ Z ′ and {δ(s0;wvu ′) |

u ′ v u} = Z ′. Thus Inf(A;wvuω) = Z ′ which implies Z ′ ∈ T. o

Lemma 24 Let A = (X;S; s0; δ) be an automaton, T ⊆ 2S a table and Z ∈
LOOPA. Then S ′+(Z) 6= ∅ if and only if there is a Z ′ ∈ S(Z) such that S−(Z ′) =
∅.

Proof. If S ′+(Z) 6= ∅ there is a Z ′ ∈ Lterm such that Z ′ ∈ T and Z ′ /∈ S◦.
According to Lemma 22, S−(Z ′) = ∅.

If, conversely, there is a Z ′ ∈ S(Z) with S−(Z
′) = ∅ then there is also a

Z ′′ ∈ S(Z ′) ∩ Lterm with S−(Z
′′) = ∅. Again, Lemma 22 shows S(Z ′′) ⊆ T.

o

Defining CT =def {Z | Z ∈ LOOPA ∧ S+(Z) 6= ∅} and IT =def {Z | Z ∈
LOOPA ∧ S−(Z) = ∅} we have

Proposition 25 Let A = (X;S; s0; δ) be an automaton and T ⊆ 2S be a table.
Then CT = LOOPA r I(LOOPA r T) .

Proof. Let Z ∈ LOOPA.
Z ∈ CAT if and only if S(Z)∩T 6= ∅, and Z ∈ IA(LOOPArT) if and only

if S(Z)∩ (LOOPArT) = ∅, that is S(Z)∩T = ∅. Thus Z ∈ CAT is equivalent
to Z /∈ IA(LOOPA r T). o

Moreover, it holds the following.

Lemma 26 Let A = (X;S; s0; δ) be an automaton and T ⊆ 2S be a table.
Then 1. C IT = {Z | S ′+(Z) 6= ∅}

2. ICT = {Z | S ′−(Z) = ∅}
3. C ICT = {Z | S ′+(Z) ∪ S ′o(Z) 6= ∅}
4. IC IT = {Z | S ′−(Z) ∪ S ′o(Z) = ∅}

Proof. 1. Z ∈ C IT if there is a Z ′ ∈ S(Z) such that Z ′ ∈ IT, that is,
S−(Z

′) = ∅. In view of Lemma 24 this is equivalent to S ′+(Z) 6= ∅.
2. Using Proposition 25 twice, we obtain ICT = LOOPA r C I(LOOPA r

T). By 1. and Eq. (15) we have Z ∈ C I(LOOPA r T) if and only if S(Z) ∩
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Lterm∩ (LOOPArT)rSo = ((S(Z)∩Lterm)rT)rSo 6= ∅. This is equivalent
to S−(Z) 6= ∅.

3. We have Z ∈ C ICT if and only if there is a Z ′ ∈ S(Z) such that
S ′−(Z

′) = ∅. The latter is equivalent to S ′+(Z
′) ∪ S ′o(Z

′) 6= ∅.
4. This is completely analogous to 3. o

Theorem 27 Let A = (X;S; s0; δ) be an automaton and T ⊆ 2S a table.
1. L(A, IT) = IL(A,T)
2. L(A, CT) = CL(A,T)
3. L(A, ICT) = ICL(A,T)
4. L(A, C IT) = C IL(A,T)
5. L(A, IC IT) = IC IL(A,T)
6. L(A, C ICT) = C ICL(A,T)

Proof. Let A = (X,S, δ, s0) and T ⊆ 2S.
1. If ξ ∈ L(A, IT) then S−(Inf(A, ξ)) = ∅ and there is a w @ ξ such

that δ(s0;w) ∈ Inf(A, ξ). Now Lemma 23 shows w · Xω ⊆ L(A,T). Thus
ξ ∈ IL(A,T).

Conversely, let ξ ∈ IL(A,T). Then there is a w ∈ X∗,w @ ξ such
that δ(s0;w) ∈ Inf(A, ξ) and w · Xω ⊆ L(A,T). Again, Lemma 23 shows
S−(Inf(A, ξ)) = ∅, that is, ξ ∈ L(A, IT).

2. Follows from the identities L(A, LOOPA r T) = Xω r L(A,T) and
CT = LOOPA r I(LOOPA r T).

3.-6. are immediate consequences of 1. and 2. o

Using Lemma 20 we can re-formulate the conditions (A0) . . . (H).

Corollary 28 Let A = (X;S; s0; δ) be an automaton, T ⊆ 2S a table, and
M = L(A,T). Then
(A0) CM =M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z ∈ T ∨ S+(Z) = ∅))
(A1) IM =M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z /∈ T ∨ S−(Z) = ∅))
(B0)C ICM ⊆M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z ∈ T ∨ S ′+(Z) = S ′o(Z) = ∅))
(B1) IC IM ⊇M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z /∈ T ∨ S ′−(Z) = S ′o(Z) = ∅))
(C0)C IM ⊆M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z ∈ T ∨ S ′+(Z) = ∅))
(C1) ICM ⊇M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z /∈ T ∨ S ′−(Z) = ∅))
(D0) ICM ⊆M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z ∈ T ∨ S ′−(Z) 6= ∅))
(D1)C IM ⊇M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z /∈ T ∨ S ′+(Z) 6= ∅))
(E0) IC IM ⊆M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z ∈ T ∨ S ′−(Z) 6= ∅∨ S ′o(Z) 6= ∅))
(E1) C ICM ⊇M ⇐⇒ ∀Z(Z ∈ LOOPA → (Z /∈ T ∨ S ′+(Z) 6= ∅∨ S ′o(Z) 6= ∅))
(F0) IC IM ⊇ C IM⇐⇒ ∀Z(Z ∈ LOOPA → S ′+(Z) = ∅∨ S ′−(Z) = S ′o(Z) = ∅)
(F1) C ICM ⊆ ICM⇐⇒ ∀Z(Z ∈ LOOPA → S ′−(Z) = ∅∨ S ′+(Z) = S ′o(Z) = ∅)
(G) ICM ⊆ C IM ⇐⇒ ∀Z(Z ∈ LOOPA → S ′+(Z) 6= ∅∨ S ′−(Z) 6= ∅)
(H) C IM ⊆ ICM ⇐⇒ ∀Z(Z ∈ LOOPA → S ′+(Z) = ∅∨ S ′−(Z) = ∅)
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Proof. Items (A0) to (E1) are proved along the following lines. E.g. for (E1),
Lemma 26 and Theorem 27 yield C ICM = L(A, {Z | S ′+(Z) ∪ S ′o(Z) 6= ∅})
and M = L(A,T).

Then Lemma 20 shows that L(A, C ICT) ⊇ L(A,T) is equivalent to ∀Z(Z ∈
LOOPA → (S ′+(Z) ∪ S ′o(Z) 6= ∅ → Z ∈ T)), that is, ∀Z(Z ∈ LOOPA → (Z /∈
T ∨ S ′+(Z) 6= ∅∨ S ′o(Z) 6= ∅)).

In the case of Item (F0) we obtain in a similar way that L(A, IC IT) ⊇
L(A, C IT) is equivalent to ∀Z(Z ∈ LOOPA → (S ′−(Z) ∪ S ′o(Z) = ∅ →
S ′+(Z) 6= ∅)), that is, ∀Z(Z ∈ LOOPA → (S ′−(Z) = S ′o(Z) = ∅∨ S ′+(Z) = ∅))
.

The remaining items are dealt with in a similar manner. o

Now we look at the complexity of deciding types.

Theorem 29 For every type τ, the problem of whether the language, accepted
by a given Muller automaton, is of type τ is NL-complete.

Proof. It is easy to see (cf. [SW08]) that, for a given automaton A =

(X,S, δ, s0), a table T ⊆ 2S and a set Z ⊆ S, the problems of whether Z ∈ T,
Z /∈ T, S+(Z) = ∅, S−(Z) = ∅ S ′+(Z) = ∅, S ′−(Z) = ∅, and S ′o(Z) = ∅ are in
NL (having in mind that NL is closed under complement). By Corollary 28,
deciding whether a given automaton fulfils any condition A0,A1, . . . ,H is
in NL. Consequently, for any type τ ∈ {1, . . . , 30}, deciding whether a given
automaton accepts a language of type τ, is in NL.

For the completeness results we give reductions from the NL-complete
graph accessibility problem GAP or from GAP which is NL-complete, too,
since the NL is closed under complement. Let τ 6= 30 be a type. Choose an
automaton A = (X,S, δ, s0), a table T ⊆ 2S such that L(A,T) is of type τ.
Now consider an instanceG of GAP consisting of an acyclic graph (V,E) such
that V∩S = ∅, a start node s and a target node t. W.l.o.g. assume that s is the
only node with in-degree 0, that t is of out-degree 1, and every node has an
out-degree at most 2. We construct a new automaton AG = (X,S∪V, δ ′, s, S)
such that δ ′ works on V as given by the edges of E, δ ′(t,a) = so, and
δ ′(v,a) = v for all nodes v 6= t with out-degree 0. Obviously, if G ∈ GAP
then L(AG) = W · L(A) for some finite set W ⊆ X∗, otherwise L(AG) = ∅.
Since CL(AG) = W · CL(A) and IL(AG) = W · IL(A), the set L(AG) is of
type τ too. Hence, if G ∈ GAP then L(AG) is of type τ 6= 30 otherwise it is of
type 30. This is a log-space reduction from GAP to the problem of whether
a given automaton accepts a language of type τ and, at the same time, a
log-space reduction from GAP to the problem of whether a given automaton
accepts a language of type 30. o
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Finally we consider nowhere dense sets, i.e. setsM such that C ICM = ∅.
From Lemma 26 we obtain

Lemma 30 L(A) is nowhere dense if and only if ∀Z(S ′+(Z) = S ′o(Z) = ∅) .

Theorem 31 The problem of whether the language, accepted by a given Muller
automaton, is nowhere dense is NL-complete.

Proof. As is the proof of Theorem 29. o

3 The Topological Space of Reals

The aim of this section is to investigate which types of Kuratowski lattices
exist in the space R of reals. This space contains only trivial sets being
simultaneously open and closed. Thus it is to expect that not all of the
49 types of Kuratowski lattices exist in R. First we consider the class of
connected topological spaces to which R belongs.

3.1 Connected Spaces

As we have seen for the fulfilment of several of the types we have to require
that the space X contains non-trivial sets being simultaneously open and
closed. Connected spaces are those which contain, except for the trivial
ones, ∅ and X itself, no other sets being simultaneously open and closed
(clopen). In this section we show that indeed in connected spaces ten of the
above forty-nine types are impossible.

Theorem 32 In a connected space there are no sets of type 12a, 12b, 13a,
13b, 14a, 14b, 18, 19a, 19b, or 27.

Proof. Since there are no nontrivial clopen sets, none of the following is
possible for a set M from a connected space:

(a) IM ⊂ ICM = C ICM ⊂ CM.

(b) IM ⊂ IC IM = C IM ⊂ CM.

(c) IM ⊂ ICM = C IM ⊂ CM.

Case (a) means ¬D0 ∧ F0 ∧¬E1 which is fulfilled by the types 12a, 13a,
14a, 18, and 19a.

Case (b) means ¬E0 ∧ F1 ∧¬D1 which is fulfilled by the types 12b, 13b,
14b, 18, and 19b.

Case (c) means ¬D0 ∧G∧H∧ ¬D1 which is fulfilled by type 27. o
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3.2 All 39 Types Exist in the Space of Reals

Since the topological space of reals is connected, by Theorem 32 there are
no sets of types 12a, 12b, 13a, 13b, 14a, 14b, 18, 19a, 19b, or 27. Here
we show arguing in a line similar to Section 2.2 that all of the remaining
39 types exist in the space of reals.

Proposition 33 Let M ⊆ R, a ∈ R, and let τ ∈ {1, . . . , 30} be any type. If M
is of type τ then M+ a is also of type τ.

Proof. This follows from C(M+ a) = CM+ a and I(M+ a) = IM+ a. o

Lemma 34 In the topological space of real numbers, if there exist a bounded
set of type (α1,α2, . . . ,α10) and a bounded set of type (β1,β2, . . . ,β10) then
there exists a bounded set of type (α1 ∧ β1,α2 ∧ β2, . . . ,α10 ∧ β10).

Proof. Let M1 ⊆ R be a bounded set of type (α1,α2, . . . ,α10), and let
M2 ⊆ R be a bounded set of type (β1,β2, . . . ,β10). Since M1 and M2

are bounded and because of Proposition 33 we can assume that there exist
a c ∈ R such that supM1 < c < infM2. Hence I(M1 ∪M2) = IM1 ∪ IM2

and C(M1 ∪M2) = CM1 ∪ CM2. Consequently, M1 ∪M2 fulfils a condition
from {A0,A1,C0,C1,E0,E1, F0, F1,G,H} if and only if M1 and M2 fulfil this
condition. o

Theorem 35 In the topological space of real numbers, for every type τ 6∈
{12a, 12b, 13a, 13b, 14a, 14b, 18, 19a, 19b, 27} there is a set of type τ.

Proof. First we observe that there exist sets of types 6, 10b, 11, 16b, 17b,
20, 21, 26a, 26b, 28a, 29a, and 30 by looking at Table 6. Here Mo =def

M∩Q, forM ⊆ R. Observe that the sets in the table, besides the one for type
20, are bounded. Thus, by Lemma 34 and Proposition 15 we obtain that also
sets of types 1, 2a, 3a, 4, 5a, 5b, 7a, 8a, 9, 10a, 15b, 22a, 23a, 24a, and
25 exist. Using Proposition 6 we conclude that sets of the remaining types
2b, 3b, 5b, 7b, 8b, 15a, 16a, 17a, 22b, 23b, 24b, 28b, and 29b exist. o
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