
CDMTCS

Research

Report

Series

What Perceptron Neural

Networks Are (Not) Good

For?

Cristian S. Calude
1
, Shahrokh

Heidari
1
, Joseph Sifakis

2

1School of Computer Science, University of
Auckland, New Zealand
2Verimag Laboratory, University Grenoble
Alpes, France

CDMTCS-556
July 2021; revision August 2022

Centre for Discrete Mathematics and
Theoretical Computer Science

What Perceptron Neural Networks Are (Not) Good For?

Cristian S. Calude
1
, Shahrokh Heidari

1
, Joseph Sifakis

2

1
School of Computer Science, University of Auckland, New Zealand

2
Verimag Laboratory, University Grenoble Alpes, France

August 2, 2022

Abstract

Perceptron Neural Networks (PNNs) are essential components of intelligent sys-

tems because they produce efficient solutions to problems of overwhelming complex-

ity for conventional computing methods.

Many papers show that PNNs can approximate a wide variety of functions, but

comparatively, very few discuss their limitations and the scope of this paper. To

this aim, we define two classes of Boolean functions – sensitive and robust –, and

prove that an exponentially large set of sensitive functions are exponentially difficult

to compute by multi-layer PNNs (hence incomputable by single-layer PNNs). A

comparatively large set of functions in the second one, but not all, are computable

by single-layer PNNs.

Finally, we used polynomial threshold PNNs to compute all Boolean functions

with quantum annealing and present in detail a QUBO computation on the D-Wave

Advantage.

These results confirm that the successes of PNNs, or lack of them, are in part

determined by properties of the learned data sets and suggest that sensitive functions

may not be (efficiently) computed by PNNs.

1 Introduction

Neural Networks (NNs), a computing paradigm that radically differs from conventional
computing, can learn how to solve a problem through training with big data represent-
ing an I/O relation: they produce empirical data-based knowledge different from model-
based knowledge generated from the execution of fully crafted and understood algorithms.
Model-based approaches allow explainability and are amenable to rigorous analysis, while
data-based techniques are hard to interpret and understand. NNs work amazingly well
in various areas, like automatic speech recognition, image recognition, natural language
processing, drug discovery and toxicology, automatic game playing, etc. They also have
an increasing number of applications in software and systems engineering. Despite their
empirical successes, very little is understood about how machine learning (ML) models
accomplish their tasks. Explainable-AI is an active research topic focusing on the gen-
eration of models explicating the behaviour of AI-enabled systems [20]. The distinction
between data-based and model-based knowledge is essential in systems engineering, where
NNs are integrated into critical systems whose failures can harm their environment. For
instance, using end-to-end ML-enabled solutions in autonomous systems, such as self-
driving cars, has been the object of hot debates as it is practically impossible to estimate
their trustworthiness [7, 22]. The trend moves toward intelligent systems that adequately
combine data-based and model-based components and take the best from each approach
by determining trade-offs between performance and trustworthiness. This trend is also
boosted by the striking similarity between these two computing paradigms and the two

types of human thinking [12]: fast non-conscious thinking relies on a data-based empir-
ical learning process. In contrast, conscious slow thinking is the result of explainable
procedural reasoning. The human mind combines admirably the two types of thinking to
produce knowledge and solve problems. Hence, it is natural to investigate how the two
complementary computing paradigms can be combined in the best possible manner to
address the machine intelligence challenge.

It is well understood that data-based empirical learning should be robust to data
variations, and guaranteeing this property is a non-trivial problem. Intuitively, robustness
can be conceived as a metric property of the learned data sets such that the meanings of
very “close” representations do not significantly differ. While there is some understanding
of robustness, there is a lack of comprehension of its invariances and determinants.

If we recognise that NNs work well in some cases but not in all, then natural questions
arise: What NNs are suitable for? When should we use them and when not? How
significant are the cases when NNs do not work? Are they practically irrelevant or
just esoteric matters interesting only from a theoretical point of view? Is it possible
to distinguish between problems where the application of NNs is obvious and problems
where model-based solutions are more adequate? How can we combine these two types
of solutions?

Our work is motivated by the observation that NNs seem more adequate for classifying
robust massive information: minor input modifications will not drastically affect the
classification result. This typically happens for NNs dealing with sensory information
and implementing perception functions like medical image analysis or face recognition.
However, there are applications where using NNs hardly makes sense. For example, is it
possible to train an NN to check a given property (even a syntactic one) by analysing
the source code of programs? The answer is probably no because software correctness is
very sensitive to small changes in the source code. Moreover, the relationship between
software syntax and its meaning defined by the operational semantics of the programming
language can be profound and intricate. Similar issues can arise when we may try to use
NNs as monitors for detecting failures of software systems. How much confidence can
we have in their verdicts obtained after a sufficiently long training with testing data sets
that distinguish between accepted and non-accepted test sequences? Our confidence in
such NN oracles would decrease as their sensitivity to input change increases.

Another question that naturally arises is how the coding of information may impact
the complexity of the learning process. Considering the previous example again, the same
program can admit a large variety of semantically equivalent representations at different
abstraction levels, e.g. source code, object code or even in the form of a transition
system if the program is a finite state. How the adopted type of representation affects
the complexity of the learning process? Conversely, consider data sets with properties
that are easy to learn. Can transformations of their representation by “weird” scrambling
functions affect robustness and thus increase the learning complexity? For instance, if the
convexity of data sets is essential for learning a given property, what is the complexity of
representations obtained using codes that jeopardise their convexity?

In this paper, we study some computational limits of Boolean functions with Percep-
tron Neural Nets (PNNs). Depending on the number of layers, PNNs can be single-layer
or multi-layer. To compare the computational power of various PNNs, we define two
classes of Boolean functions – sensitive and robust –, and prove that an exponentially
large set of functions in the first class are exponentially difficult to compute by multi-layer
PNNs (hence incomputable by single-layer PNNs). A comparatively large set of functions
in the second one, but not all, are computable by single-layer PNNs.

The paper starts with a minimal amount of notation, defines two notions of sensitive
and one of the robust Boolean functions and introduces three infinite classes of Boolean
functions, PARITYn, R

1
n, R

2
n, used as benchmarks. We move on to limitations of single-

2

layer and multi-layer PNNs in computing the strongly sensitive functions PARITYn,
which are the most difficult to compute. In contrast, we prove that the robust functions
like R

1
n, R

2
n are computable by single-layer PNNs. Then we give more general results,

including the fact that the set of sensitive functions which are computed by multi-layer
PNNs with a single hidden layer and an exponential number of hidden units is exponen-
tially larger than the set of functions computable by single-layer PNNs.

Finally, we use polynomial threshold PNNs to compute all Boolean functions with
quantum annealing and present in detail a QUBO computation of PARITY4 on the
D-Wave Advantage. We end with a few conclusions and two open questions.

2 Classes of Boolean functions

The set of binary strings of length n is denoted by {0, 1}n. Bits will be denoted by x, y

and bit-strings by x,y: depending on the context we will write x = (x1, x2, . . . , xn) or
x = x1x2 . . . xn. The Boolean operations will be denoted by ¯ (negation), ∨ (disjunction)
and omitted · (conjunction). The set of reals is denoted by R; a vector of n real-valued
components is denoted by w.

In this paper we study Boolean functions of n > 1 variables f : {0, 1}n → {0, 1},
shortly, functions. The true/false points of a function f are denoted by T (f) = {x ∈
{0, 1}n | f(x) = 1} and F (f) = {x ∈ {0, 1}n | f(x) = 0}, respectively.

Every function f : {0, 1}2 → {0, 1} can be naturally extended to n > 2 vari-
ables in the following way: f2 = f and fn : {0, 1}n → {0, 1}, fn(x1, x2, . . . , xn) =
f2(fn−1(x1, . . . , xn−1), xn). In this way we get the functions of n variables ORn, XORn

but not XNORn. We denote by R
1
n, R

2
n : {0, 1}n → {0, 1} defined by R

1
n(x) = ORn(x)

and R
2
n(x) = x1 and by PARITYn : {0, 1}n → {0, 1} the function

PARITYn(x) =

!
1, if the number of 0’s in x is odd,
0, otherwise.

(1)

Lemma 1. For every n > 1, PARITYn = XORn for even n and PARITYn = XORn

for odd n.

Proof. It is seen that PARITY2 = XOR and PARITYn+1(x1, x2, . . . , xn+1) =
XOR(PARITYn(x1, x2, . . . , xn), xn+1).

In what follows a function f will be represented in Full Disjunctive Normal Form
(DNF) [6, p. 123]. The number of true points of f will be denoted by #T (f); #F (f) =
2n −#T (f). By d we denote the Hamming distance between strings of length n: d(x,y)
is the number of positions i such that xi ∕= yi.

Example 1. Consider the function f with T (f) = {111, 100, 001}, i.e. f(111) =
f(100) = f(001) = 1. Then, d(111, 100) = d(111, 001) = 2; in fact, d(x,y) = 2 for
all distinct x,y ∈ T (f).

Example 2. For the Boolean functions PARITY3, R
1
3, and R

2
3 we have

T (PARITY3) = {000, 011, 101, 110}, T (R1
3) = {001, 010, 011, 100, 101, 110, 111},

T (R2
3) = {100, 101, 110, 111}. A simple computation shows that PARITY3, d(x,y) = 2

for all distinct x,y ∈ T (PARITY3); R1
3 and R

2
3 do not have this property.

3

3 Computing with single-layer PNNs

A binary classifier is a function which decides whether or not an input belongs to a specific
set. A linear threshold computing unit or single-layer PNN [19, p. 7] computes a function
Pθ,w : Rn → {0, 1}, depending on two parameters, a threshold θ ∈ R and a vector of n
weights w = (w1, w2, . . . , wn) ∈ Rn, defined as follows:

Pθ,w(x) =

"
1, if

#n
i=1wixi ≥ θ,

0, otherwise . (2)

The functions of the form (2) are also called threshold.

Example 3. For every n > 1, the functions R
1
n, R2

n are threshold functions.

Proof. We have: R
1
n = P 1

2
,(1,1,...,1) and R

2
n = P 1

2
,(n,−1,...,−1). Indeed, with reference to (2)

for R
1
n we set w = (w1, w2, . . . , wn) = (1, 1, . . . , 1) and θ = 1

2
,

Pθ,w(x) =

"
1, if

#n
i=1 xi ≥

1
2
,

0, otherwise , = R
1
n(x),

and for R
2
n we set w = (w1, w2, . . . , wn) = (n,−1,−1, . . . ,−1) and θ = 1

2
,

Pθ,w(x) =

"
1, if nx1 −

#n
i=2 xi ≥

1
2
,

0, otherwise , = R
2
n(x).

Table 1 shows that R
1
3, R2

3 are threshold functions.

x1 x2 x3 x1 + x2 + x3 P 1
2
,(1,1,1)(x) R

1
3 3x1 − x2 − x3 P 1

2
,(3,−1,−1)(x) R

2
3

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 -1 0 0

0 1 0 1 1 1 -1 0 0

0 1 1 2 1 1 -2 0 0

1 0 0 1 1 1 3 1 1

1 0 1 2 1 1 2 1 1

1 1 0 2 1 1 2 1 1

1 1 1 3 1 1 1 1 1

Table 1: Truth tables for the threshold functions R
1
3, R2

3

Theorem 1. [1, Theorem 3.7] A function f of n > 1 variables is a threshold function
if and only if for every positive integer k, for every sequence x1,x2, . . . ,xk ∈ T (f)) and
every sequence y1,y2, . . . ,yk ∈ F (f) we have

#k
i=1 xi ∕=

#k
i=1 yi.

Example 4. It is known that XOR and XNOR are not threshold functions [16]. More
generally, the functions PARITYn cannot be computed by single-layer PNNs.

Proof. Consider the following four vectors in {0, 1}n: x1 = 0n−201, x2 = 0n−210,
y1 = 0n−200, y2 = 0n−211. For every n we have PARITYn(x1) = PARITYn(x2),
PARITYn(y1) = PARITYn(y2), PARITYn(x1) ∕= PARITYn(y1) and x1 + x2 =
y1 + y2, so the conclusion follows from Theorem 1.

4

4 Sensitive vs. robust functions

In the previous section, we have proved that R
1
n and R

2
n are computable by single-layer

PNNs, but PARITYn is not. What is the reason for these results? What makes some
functions, but not all, computable by PNNs or even computable by some single-layer
PNNs?

As pointed out in [14], this phenomenon is not surprising; we need to ask the question
differently. First, how can PNNs approximate functions well in practice when the set
of possible functions is exponentially larger than the set of practically possible PNNs?
Indeed, there are 22

n different functions of n variables, so a PNN implementing a generic
function in this class requires at least 2n bits to describe, that is, more bits than there
are atoms in our universe if n > 260 (not a large number of variables for practical
applications). A similar analysis points to an exponential difference between the number
of different functions of a fixed number of variables (double exponential) and the number
of polynomial threshold PNNs.

To provide answers to the questions above, let us first note the difference between the
functions PARITYn, on one side, and the functions R

1
n and R

2
n, on the other side. For

PARITYn, a single bit in the input x can flop the value of PARITYn(x) from 0 to 1 or
vice-versa. In contrast, R1

n and R
2
n are more robust for variations of their inputs. Indeed,

for R1
n, if two inputs x,y contain each an 1, say xi = 1 and yj = 1, then R

1
n(x) = R

1
n(y),

and only R
1
n(0, . . . , 0) = 0; for R2

n we have R
2
n(x1, x2, . . . , xn) = R

2
n(x1, y2, . . . , yn), for all

x1, x2, . . . , xn, y2, . . . , yn ∈ {0, 1}.
This suggests that the two properties, robustness and sensitivity, could determine,

respectively, PNN’s computability or incomputability. To test this hypothesis, we will
propose definitions for these properties. Informally, a function is sensitive if a “small
variation" in the input will determine a jump in the values of the function from 0 to 1 or
vice-versa; a function which is not sensitive is robust. Quantifying the “small variation"
will refine the definition.

A sensitivity measure has been studied as the complexity of Boolean functions [11]
and is the subject of the Sensitivity Theorem [8].

Definition 1. [11, p. 57] Let f be a function of n > 1 variables. The sensitivity of f

at x ∈ {0, 1}n is the number s(f,x) of y ∈ {0, 1}n that differ from x in exactly one bit
and satisfy f(x) ∕= f(y). The sensitivity s(f) of f is the maximum of s(f,x) taken on
all x ∈ {0, 1}n. We say that f is fully sensitive if s(f) = n, i.e. s(f) is maximum.

Comment 1. Note that there exist fully sensitive Boolean functions f that are constant
(robust) on as many inputs as we wish up to 2n − n − 1. Indeed, every function f such
that f(0n) = 1, f(10n−1) = f(010n−2) = · · · = f(0n−11) = 0 is fully sensitive because
s(f, 0n) = n; however, we can assign f(x) = 0 to as many of the unused 2n−n−1 inputs x,
which shows that full sensitivity is “local". The minimal full sensitivity is achieved when
f(0n) = 1 and f(x) = 0, for x ∕= 0n. The same argument works for every x ∈ {0, 1}n and
0, 1 instead of 0n and 1.

The properties of “sensitivity” necessary in this paper require some “uniformity" for
all points concerning their “neighbourhoods," not just one “isolated" sensitive point, as
in the case of full sensitivity. We define two (stronger) forms of sensitivity satisfying this
requirement in the following.

Definition 2. A function f of n > 1 variables is

(a) sensitive if it is not constant 0 and for all x,y ∈ {0, 1}n with d(x,y) = 1 and
f(x) = 1, we have f(y) = 0.

(b) strongly sensitive if for all x,y ∈ {0, 1}n with d(x,y) = 1, we have f(x) = f(y).

5

Proposition 1. Strong sensitivity implies sensitivity which implies full sensitivity. The
converse implications are false.

Proof. It is clear that strong sensitivity implies sensitivity, but the converse implication
is false. Indeed, the function f(00) = 1, f(x) = 0, for x ∕= 00 is sensitive as d(00, 01) =
d(00, 10) = 1, f(00) = 1 ∕= f(01) = f(10), but not strongly sensitive as f(01) = f(11) =
0, d(01, 11) = 1. Sensitivity implies full sensitivity because by hypothesis there exists x
such that f(x) = 1, so for every y ∕= x with d(x,y) = 1 we have f(y) = 0 showing
that f is fully sensitive. Finally, R1

2 is fully sensitive but not sensitive because R
1
2(01) =

R
1
2(11) = 1, d(01, 11) = 1.

Next we show that Example 1 is in fact more general:

Proposition 2. Assume that f is a function with n > 1 variables. Then the following
two conditions are equivalent:

(a) The function f is sensitive.

(b) For every distinct x,y ∈ T (f), d(x,y) ≥ 2.

Proof. For the direct implication we assume by absurdity the existence of x,y ∈ {0, 1}n
with d(x,y) = 1 and f(x) = f(y) = 1. Then, by (a) f(x) = f(y), a contradiction.
Conversely, if we assume by absurdity that there exist x ∕= y,x,y ∈ T (f) such that
d(x,y) = 1, then by (b), d(x,y) ≥ 2, a contradiction.

Corollary 1. No (strongly) sensitive function is computed by a single-layer PNN.

Proof. Consider a sensitive function f of n > 1 variables. Let us take x′
,x′′ ∈ T (f),

hence by Proposition 2, d(x′
,x′′) ≥ 2. Then, there exist 1 ≤ i < j ≤ n, u,v, z such that

x′ = uxivxjz, x′′ = ux̄ivx̄jz. We now choose y′ = ux̄ivxjz, y′′ = uxivx̄jz. We note
that d(x′

,y′) = d(x′′
,y′′) = 1 and x′ + x′′ = y′ + y′′, x′

,x′′ ∈ T (f), y′
,y′′ ∈ F (f). The

conclusion follows from Theorem 1.

Multi-layer PNNs have more computational power than single-layer PNNs. A multi-
layer PNN consists of an input layer, intermediate (hidden) layers and an output layer [13],
see Figure 1. A multi-layer PNN P : Rn1 → RnL is defined by L−1 mappings acting on a
sequence of spaces (Rn1 ,Rn2 , . . . ,RnL) [17], P 1 : Rn1 → Rn2 , P

2 : Rn2 → Rn3 , . . . , P
L−1 :

RnL−1 → RnL , where each P
i (1 ≤ i < L) consists of j PNNs defined by:

P
i,j

θij ,w
i
j
(ai−1) =

"
1, if

#ni
k=1w

i
jka

i
k ≥ θij ,

0, otherwise ,

such that a) a0 = x ∈ Rn1 , a1 ∈ Rn2 ,. . . , aL−1 ∈ RnL , b) wi ∈ R(ni+1×ni) denotes the
weight matrix connecting i

th layer to (i + 1)th layer; wi
j is the j

th row of matrix wi, c)
θi ∈ R(ni+1×1) is the threshold vector and θij is the j

th row of this vector, d) ni is the
number of units in the ith layer (1 ≤ i < L) and nL is the number of units in the output
layer. The mappings above feed the input patterns into the hidden layers to categorise
different classes in the output layer. When we have just one unit in the output layer, the
multi-layer PNN is called a binary classifier.

Example 5. A three-layer PNN with one hidden layer is presented in Figure 2.

Theorem 2. [Universality Theorem 7.1 [1, p. 74-83]] Every function of n > 1 variables
can be computed by a multi-layer PNN with a single hidden layer.

6

Figure 1: Multi-layer PNN with an input layer, L− 2 hidden layers and an output layer

Figure 2: A simple example of a multi-layer PNN with a hidden layer

Theorem 3. Every sensitive function of n > 1 variables is computed by a multi-layer
PNN with a single hidden layer and #(T (f)) hidden units.

Proof. Recall that a DNF formula consists of a disjunction of conjunctions:
$

1≤i≤k

%
x
i
1 ∧ x

i
2 · · · ∧ x

i
n

&
, and x

i
j = xj if xij = 1; otherwise x

i
j = x̄j ,

where f(xi1, x
i
2, . . . , x

i
n) = 1 for 1 ≤ i ≤ k. Fix k = #(T (f)). Based on the DNF

7

formula, f can be computed by a multi-layer PNN with a single hidden layer where each
(xi1 ∧ x

i
2 · · · ∧ x

i
n) is mapped to a unit in the hidden layer for computation [24, p. 3].

Therefore, by Theorem 2, a multi-layer PNN with a single hidden layer can compute any
function with k hidden units.

By sensitivity and Proposition 2, for all x,y ∈ T (f) we have d(x,y) ≥ 2, so the points
in T (f) cannot be combined to reduce the DNF formula [18, p. 162], hence the number
of hidden units cannot be reduced. As each true point is a unit in the hidden layer, the
hidden layer cannot have less than k units [24].

Corollary 2. Every function PARITYn with n > 1 is computed by a multi-layer PNN
with a single hidden layer and exactly 2n−1 hidden units.

Comment 2. In [14] a similar result was proved for a more complicated function: n

variables cannot be multiplied using fewer than 2n perceptrons in a multi-layer PNN
with a single hidden layer.

Example 6. Figure 3 shows a multi-layer PNN with a single hidden layer and exactly
22−1 = 2 hidden units that computes PARITY2.

Figure 3: A multi-layer PNN with a single hidden layer computing PARITY2

To justify the claim, we consider the weight matrices w1, w2 defined as

w1 =

'
−1 1
1 −1

(
, and, w2 = (1, 1),

and θ1 =

'
1
1

(
and θ2 = 1

2 . Threfore, we have three perceptrons: P
1,1

, P
1,2, and P

2,1

defined as:

P
1,1(a0) =

"
1, if −a01 + a02 ≥ 1,
0, otherwise ,

P
1,2(a0) =

"
1, if a01 − a02 ≥ 1,
0, otherwise ,

P
2,1(a1) =

"
1, if a11 + a12 ≥ 1

2 ,

0, otherwise ,

where a
0 = (x1, x2) and a

1 =
%
P

1,1(a0), P 1,2(a0)
&
. Table 2 shows how PARITY2 can be

computed with the multi-layer PNN in Figure 3:

8

x1 = a01 x2 = a02 −a01 + a02 P
1,1(a0) = a11 a01 − a02 P

1,2(a0) = a12 a11 + a12 P
2,1(a1)

0 0 0 0 0 0 0 0

0 1 1 1 -1 0 1 1

1 0 -1 0 1 1 1 1

1 1 0 0 0 0 0 0

Table 2: Truth table for the multi-layer PNN in Figure 3

Theorem 4. For every n > 2 there exist 22
n−2 − 2 sensitive, not strongly sensitive

functions which are computed by multi-layer PNNs with a single hidden layer and an
exponential number of hidden units.

Proof. Take a strongly sensitive function f (for which #T (f) = 2n−1) and remove from
T (f) a subset of P containing 2n−2 points. Then for every non-empty subset S ⊂ P

consider the function fS whose set of true points is T (fS) = (T (f) \ P) ∪ S. Every
function fS is sensitive by Proposition 2, not strongly sensitive by Corollary 2, and as
#(T (fS)) > 2n−2, by Theorem 3, every multi-layer PNN with a single hidden layer that
computes it has an exponential number of hidden units. Furthermore, the number of all
functions fS is at least 22

n−2 − 2.

Corollary 3. The set of sensitive functions of n > 2 variables which are computed by
multi-layer PNNs with a single hidden layer and an exponential number of hidden units,
is exponentially larger than the set of threshold functions.

Proof. The set of threshold functions of n > 1 variables has less than 2n
2 functions, [1,

Theorem 4.3], while by Theorem 4, the set of functions which are computed by multi-layer
PNNs with a single hidden layer and an exponential number of hidden units has at least
22

n−2 − 2 functions.

Which functions are strongly sensitive? We first prove some invariants of strongly
sensitive functions. The following result follows directly from the definition of strong
sensitivity.

Lemma 2. If f is a strongly sensitive function of n > 1 variables, then the func-
tions f̄ , fπ (where π is a permutation of the set {1, 2, . . . , n}) defined by f̄(x) =
f(x), fπ(x1x2 . . . , xn) = f(xπ(1)xπ(2) . . . xπ(n)) are also strongly sensitive.

Proposition 3. Let f be a function of n > 1 variables. The following statements are
equivalent:

(a) f is strongly sensitive.

(b) The function gf (x, xn+1) = XNOR(f(x), xn+1) is strongly sensitive.

(c) The function hf (x, xn+1) = XOR(f(x), xn+1) is strongly sensitive.

Proof. Assume first that (a) is true and take xxn+1,yyn+1 ∈ {0, 1}n+1 such that
d(xxn+1,yyn+1) = 1. Permuting the variables and using Lemma 2 we can assume that
xn+1 = yn+1 and d(x,y) = 1. From the sensitivity of f it follows that f(x) = f(y),
hence we have:

gf (x, xn+1) = f(x) xn+1 ∨ f(x) xn+1 = f(y) xn+1 ∨ f(y) xn+1 = gf (y, xn+1),

9

so gf is strongly sensitive.
Next assume that (b) is true and take x,y ∈ {0, 1}n such that d(x,y) = 1. By

(b) gf (x, xn+1) = gf (y, xn+1) because d(xxn+1,yxn+1) = 1. Indeed, if by absurdity
f(x) ∕= f(y), then gf (x, xn+1) = f(x) xn+1 ∨ f(x) xn+1 = f(y) xn+1 ∨ f(y) xn+1 =

gf (y, xn+1) ∕= gf (y, xn+1), a contradiction.
Finally, by Lemma 2, gf is strongly sensitive if and only if hf = gf is strongly sensitive,

that is, (b) is equivalent to (c).

The following equalities are easy to verify:

Lemma 3. The following relations are true for all x, y, z ∈ {0, 1}:

1. XOR(x,XOR(y, z)) = XOR(x,XOR(y, z)),

2. XOR(x,XOR(y, z)) = XOR(x,XOR(y, z)).

Theorem 5. The functions PARITYn and PARITYn, n > 1 are the only strongly sen-
sitive functions.

Proof. Clearly, PARITYn is strongly sensitive; by Lemma 2, PARITYn is also strongly
sensitive.

If fn is a strongly sensitive function of n > 2 variables, then fn(x1, . . . , xn−1, xn) =
XOR(fn−1, xn), where fn−1(x1, . . . , xn−1) = fn(x1, . . . , xn−1, 0). By Proposition 3, fn−1

is also strongly sensitive. In this way we get the sequence of strongly sensitive functions
fn−1, fn−2, . . . , f2 satisfying the relations

fi(x1, . . . , xi−1, xi) = XOR(fi−1, xi). (3)

Out of all 16 functions of 2 variables only two, PARITY2, PARITY2, are strongly
sensitive. Going backwards via (3) and using Proposition 3 we infer that every strongly
sensitive function of n > 2 variables can be obtained by n− 1 compositions of XOR and
XOR. From Lemma 3 we deduce that in the set of 2n−1 functions obtained from all
compositions of XOR and XOR there are only two distinct functions, PARITYn and
PARITYn.

Comment 3. Every strongly sensitive function f of n > 1 variables has #(F (f)) = 2n−1.

From Corollary 1 we deduce that every threshold function is not sensitive, that is,
“there exist x,y ∈ {0, 1}n such that d(x,y) = 1 we have f(x) = f(y)”; this property
seems to be a weak form of robustness. The condition “for every x,y ∈ {0, 1}n such that
d(x,y) = 1 we have f(x) = f(y)” is too strong, as it is satisfied only by the constant
functions. A better definition is:

Definition 3. The function f is robust if for every x ∈ {0, 1}n there exists y ∈ {0, 1}n
such that d(x,y) = 1 and f(x) = f(y).

Example 7. Every function f with T (f) = {x,y} and d(x,y) = 1 is robust and threshold.

Proposition 4. The functions R
1
n and R

2
n are robust and threshold.

Proof. If x ∈ {0, 1}n with R
1
n(x) = 1 we can find an y ∈ {0, 1}n such that d(x,y) = 1

and R
1
n(y) = 1. If x contains only one 1, then y can be obtained by from x by replacing

a single bit 0 with 1; otherwise y can be obtained from x by replacing a single bit 1
with 0. If R1

n(x) = 0, then x = 0n, so we take y = 10n−1: d(x,y) = 1 and R
1
n(y) = 1.

If x ∈ {0, 1}n with R
2
n(x) = x1 = 1, then every y ∈ {0, 1}n such that y1 = 1 and

d(x,y) = 1 satisfies R
2
n(y) = 1; the case R

2
n(x) = 0 is similar. By Example 3, R1

n and
R

2
n are threshold functions.

10

A function is monotone in case for every x ≤ y (that is, for every 1 ≤ i ≤ n, xi ≤ yi)
we have f(x) ≤ f(y).

Example 8. Monotone non-constant functions are robust, but not all of them are com-
putable by single-layer PNNs.

Proof. The set of threshold functions of n > 1 variables has less than 2n
2 functions, [1,

Theorem 4.3], which is a smaller subset of the set of monotone functions whose cardinality
is the Dedekind number Dn ≥ 2(

n
⌊n/2⌋), [25], hence the result.

5 Quantum annealing computation of polynomial threshold

single-layer PNNs

A polynomial threshold unit is a generalisation of a PNN in which the linear threshold
is replaced by a polynomial threshold, see [2, p. 5]. In detail, for a positive integer n we
define the set [n] = {1, 2, . . . , n} and the multi-set [n]m containing all possible selections
with repetitions of at most m objects from [n].

Example 9. For n = 3 and m = 2 we have [3]2 = {∅, {1}, {2}, {3}, {1, 1}, {2, 2}, {3, 3},
{1, 2}, {1, 3}, {2, 3}}.

Consider a multi-set S ∈ [n]2 and an input vector x = (x1, x2, . . . , xn) ∈ Rn. By xS we
denote the product of xi for i ∈ S. For instance, we have x∅ = 1, x{2,3} = x{3,2} = x2x3,
x{1,1} = x

2
1.

A polynomial threshold single-layer PNN is defined by a vector parameter wS , with
S ∈ [n]m. The function P

m
wS

: Rn → {0, 1} computed by a polynomial threshold single-
layer PNN with parameter wS is

P
m
wS

(x) =

"
1, if

#
T∈S wTxT ≥ 0,

0, otherwise . (4)

The degree of the polynomial is the degree of the PNN.

Example 10. For n = 3, m = 2 and x = (x1, x2, x3) ∈ Rn the weighted sum of inputs
for the polynomial threshold single-layer PNN has the form:

w∅ + w1x1 + w2x2 + w3x3 + w1,1x
2
1 + w2,2x

2
2 + w3,3x

2
3 + w1,2x1x2 + w1,3x1x3 + w2,3x2x3.

If the input vector x = (x1, x2, . . . , xn) ∈ {0, 1}n, then x
r
i = xi for all r > 1 and

i = 1, 2, . . . , n. For example, in this case [3]2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

Example 11. For n,m = 2 and x = (x1, x2) ∈ {0, 1}2 we have [n]2 = {∅, {1}, {2}, {1, 1},
{2, 2}, {1, 2}} = {∅, {1}, {2}, {1, 2}}. The weighted sum of inputs z, is z = w∅+w{1}x1+

w{2}x2 + w{1,2}x1x2. If we take S = [2]2, w∅ = −1
2
,w{1} = w{2} = 1 and w{1,2} =

−2, z = x1 + x2 − 2x1x2 − 1
2
, then the polynomial threshold single-layer PNN computes

XOR, see Table 3. If we take S = [2]2, w∅ = 1
2 , w{1} = w{2} = −1 and w{1,2} = 2,

then S = [2]2, z = −x1 − x2 +2x1x2 +
1
2
, then the polynomial threshold single-layer PNN

computes XNOR.

Theorem 6. [Universality Theorem [27, p. 53]] Every function of n variables is com-
putable by a degree n polynomial threshold single-layer PNN.

Corollary 4. Every function PARITYn is computable by a degree n polynomial threshold
single-layer PNN.

11

x1 x2 z P
2
wS

(x1, x2) x1 ⊕ x2

0 0 −1
2 0 0

0 1 1
2 1 1

1 0 1
2 1 1

1 1 −1
2 0 0

Table 3: Polynomial threshold single-layer PNN for XOR of two variables

A Quantum Unconstrained Binary Optimisation (QUBO) problem is an NP-hard
mathematical problem consisting in the minimisation of a quadratic objective function

q(x) = xT
Qx,

where x ∈ {0, 1}n and Q = (Qi,j) is an n× n matrix:

x
∗ = min

x∈{0,1}n

)

n≥i≥j≥1

xiQi,jxj . (5)

The matrix Q can be chosen to be upper-diagonal so I can write

q(x) =
)

i

Qi,ixi +
)

i<j

Qi,jxixj .

The diagonal terms Qi,i are the linear coefficients and the non-zero off-diagonal terms
Qi,j , i < j are the quadratic coefficients. The quantum annealing computer D-Wave
solves natively QUBO problems [15, 5].

To compute a polynomial threshold single-layer PNN using quantum annealing com-
putation we need to turn the polynomial in (4) into an equivalent quadratic one. To this
aim we use the Reduction by Substitution Method [10, p. 1237] implemented by the
make_quadratic function in [30]. As an example, suppose that x1x2x3 ∈ {0, 1}3. The
product of x1x2 is replaced by a new variable x4, x1x2x3 = x3x4, where x4 = x1x2; to
enforce the last equality a penalty function is added to x3x4. Accordingly,

x1x2x3 = min
x4

{x3x4 +MP (x1, x2;x4)},

where M is the penalty and

P (x1, x2;x4) = x1x2 − 2(x1 + x2)x3 + 3x4.

Similarly, a polynomial term involving more than three variables can be reduced to a
sum of quadratic polynomials by sequentially decreasing the degree of the terms by one.

Corollary 5. A quantum annealing program (on D-Wave) can compute every function
with any number of variables.

Proof. By Theorem 6 and the Reduction by Substitution Method, a QUBO objective
function can be obtained, which is computable on D-Wave.

Corollary 6. A quantum annealing program computes every function PARITYn (on
D-Wave).

12

Example 12. For n = 4 we have

P
4
wS

(x1, x2, x3, x4) = −x0 − x1 − x2 − x3

+ 2x0x1 + 2x0x2 + 2x0x3 + 2x1x2 + 2x1x3 + 2x2x3

− 4x0x1x2 − 4x0x1x3 − 4x0x2x3 − 4x1x2x3

+ 8x0x1x2x3.

To convert the five non-quadratic terms to quadratic ones in P
4
wS

we use the D-Wave
make_quadratic function [30]. To this aim we define two ancillary variables x4 = x0x1

and x5 = x2x3. Next, we reformulate P
4
wS

based on x4 and x5:

p2(x) = −x0 − x1 − x2 − x3

+ 2x4 + 2x0x2 + 2x0x3 + 2x1x2 + 2x1x3 + 2x5

− 4x2x4 − 4x3x4 − 4x0x5 − 4x1x5

+ 8x4x5 +M(P1 + P2),

where, P1 and P2 are the penalty functions and M is the penalty weight [29]:

P1(x0, x1;x4) = x0x1−2x0x4−2x1x4+3x4, P2(x2, x3;x5) = x2x3−2x2x5−2x3x5+3x5.

Accordingly, for M = 5, we have

p2(x) = −x0 − x1 − x2 − x3 + 2x4 + 2x5

+ 2x0x2 + 2x0x3 + 2x1x2 + 2x1x3

− 4x2x4 − 4x3x4 − 4x0x5 − 4x1x5

+ 8x4x5

+ 5x0x1 − 10x0x4 − 10x1x4 + 15x4

+ 5x2x3 − 10x2x5 − 10x3x5 + 15x5

Last we simplify the above equation and get

p2(x) = −x0 − x1 − x2 − x3 + 17x4 + 17x5

+ 5x0x1 + 2x0x2 + 2x0x3 + 2x1x2 + 2x1x3 + 5x2x3

− 10x0x4 − 10x1x4 − 4x2x4 − 4x3x4

− 4x0x5 − 4x1x5 − 10x2x5 − 10x3x5

+ 8x4x5.

The Appendix contains the computation details. The visualisation of Q on D-Wave
Advantage using D-Wave Inspector is presented in Figure 4 and Figure 5: as expected,
there is no broken chain. It is easy to check the correctness of the QUBO formulation
p2(x), i.e. for all x ∈ {0, 1}6, PARITY4(x) = 1 if and only if x is a solution of the
QUBO problem p2(x).

6 Conclusions

There are lots of papers showing that PNNs can approximate a wide variety of functions,
but comparatively very few discuss their limitations, see for example [14, 3].

13

This paper contributes to the investigation of a not yet fully explored problem of
computational limitations of PNNs and, more generally, NNs. Solutions to this problem
are fundamental as PNNs are broadly used in intelligent systems despite the lack of a
theory for understanding and providing guarantees for their behaviour.

The issue of sensitivity vs. robustness has been extensively studied for various classes
of NNs, e.g. [28, 21, 26]. These works use different metrics to estimate the impact of varia-
tions in either architecture, including connectivity and weights, or dataset characteristics,
on overall neural network performance. Their goal is to distinguish design decisions that
are important from inconsequential in the intended class of NNs.

This paper adopts a different angle of attack by studying theoretical aspects of a
poorly studied problem for NNs: their expressiveness of sensitivity and robustness, i.e. the
study of classes of Boolean functions that PNNs can compute and their complexities
measured in terms of neurons and parameters needed to compute a given function.

Our results shed light on the well-known problem “How can neural networks approxi-
mate functions well in practice when the set of possible functions is exponentially larger
than the set of possible networks in practice?" [14]. They suggest that functions with
almost no isolated points are easier to compute, which is consistent with the successful
application of NNs to massive and robust information classification.

Our starting point was the observation that PNNs are good enough for classifying
massive data that exhibit some “robustness”. To test this conjecture, we defined two
classes of Boolean functions – sensitive and robust – and proved that an exponentially
large set of functions in the first class are exponentially difficult to compute by multi-layer
PNNs (hence incomputable by single-layer PNNs). A comparatively large set of functions
in the second one, but not all, are computable by single-layer PNNs. The difference in
PNNs computability between sensitive and robust functions is sharp. Sensitive functions
are difficult to compute or incomputable by PNNs, a property which could depend on
data coding. Our results suggest that the successes of PNNs, or lack of them, are in
part determined by the properties of the learned data sets; in particular, data robustness
seems essential for computing with PNNs.

Considering PNNs for computing Boolean functions facilitates an elegant mathemat-
ical treatment that can be much more twisted for other classes of neural nets computing
more general functions. Nevertheless, we conjecture that the distinctions regarding the
sensitivity/robustness of the functions to be computed are transferable to other classes
of NNs, of which PNNs are the primary building blocks. We mention similar results for
Recurrent Neural Networks (RNNs) in favour of this conjecture. Indeed, as every Turing
machine can be simulated by an RNN [9], the abstract (Blum) complexity theory [4]
applies to RNNs. As a consequence, there exists a topologically large class of arbitrarily
sparse {0, 1}-valued computable functions such that any finite variant of the constructed
function is arbitrarily complex [23, 4].

This study raises a host of problems about the NNs computability of classes of func-
tions, in particular the following two. a) Study degrees of sensitivity/robustness of
Boolean functions by parameterising these properties. For instance, one can define δ-
sensitivity of a Boolean function f of n variables where δ is the ratio k

2n , k is the number
of “isolated points" x of f , i.e., f(x) ∕= f(x′) for all x′ such that d(x, x′) = 1. Note that
1-sensitivity is strong sensitivity while 0-sensitivity is robustness because robust func-
tions have no isolated points. The property of sensitivity we defined corresponds to the
cases where δ is different from 0 and 1. It is essential to study how the complexity of
PNNs changes when the parameter δ varies in the interval [0, 1]. b) Combine classical
and quantum computing with PNN computing to improve the presented results using
polynomial threshold single-layer PNNs to compute all Boolean functions with quantum
annealing (for example, by reducing the degrees of the polynomials).

Finally, do the theoretical results discussed in the paper have any practical value?

14

Here is one suggestion: study the δ-sensitivity of (not necessarily Boolean) functions
before trying to compute them with NNs.

Acknowledgment

We thank V. Mitrana and the anonymous referees for the comments which improved the
paper, J. M. Gottlieb and T. Mittal for insight into D-Wave Advantage and A. Adamatzky
for continuous support.

References

[1] M. Anthony. Discrete Mathematics of Neural Networks: Selected Topics. SIAM,
Philadelphia, PA, 2001.

[2] M. Anthony. Boolean functions and artificial neural networks. CDAM re-
search report series (LSE-CDAM-2003-01), http://www.cdam.lse.ac.uk/Reports/
Files/cdam-2003-01.pdf, 2003.

[3] S. Ben-David, P. Hrubeš, S. Moran, A. Shpilka, and A. Yehudayoff. Learnability can
be undecidable. Nature Machine Intelligence, 1(1):44–48, 2019.

[4] C. Calude. Theories of Computational Complexity. North-Holland, Amsterdam,
1988.

[5] C. S. Calude, E. Calude, and M. J. Dinneen. Adiabatic quantum computing chal-
lenges. ACM SIGACT News, 46(1):40–61, March 2015.

[6] Y. Crama and P. L. Hammer. Boolean Functions Theory, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge, England, UK, 2011.

[7] D. Harel, A. Marron, and J. Sifakis. Autonomics: In search of a foundation for next-
generation autonomous systems. Proceedings of the National Academy of Sciences,
117(30):17491–17498, 2020.

[8] H. Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
Annals of Mathematics, 190:949–955, 2019.

[9] H. Hyötyniemi. Turing machines are recurrent neural networks. In T. H. Jarmo Alan-
der and M. Jakobsson, editors, Proceedings of STeP’96, pages 13–24. Publications of
the Finnish Artificial Intelligence Society, 1996.

[10] H. Ishikawa. Transformation of general binary MRF minimization to the first-order
case. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1234–
1249, 2010.

[11] S. Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012.

[12] D. Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, New York,
2011.

[13] N. L. W. Keijsers. Neural Networks. In K. Kompoliti and L. V. Metman, editors,
Encyclopedia of Movement Disorders, pages 257–261. Academic Press, Oxford, Jan.
2010.

[14] H. W. Lin, M. Tegmark, and D. Rolnick. Why does deep and cheap learning work
so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

15

http://www.cdam.lse.ac.uk/Reports/Files/cdam-2003-01.pdf

[15] C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing. Theory and
Practice. Morgan & Claypool Publishers, 2014.

[16] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, 1969.

[17] Z. Peng. Multilayer Perceptron Algebra, Jan. 2017, http://arxiv.org/abs/1701.
04968.

[18] N. Pippenger. The shortest disjunctive normal form of a random boolean function.
Random Structures & Algorithms, 22(2):161–186, 2003.

[19] R. Rojas. Neural Networks. Springer, Berlin, 1996.

[20] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke. Explainable machine learning
for scientific insights and discoveries. IEEE Access, 8:42200–42216, 2020.

[21] H. Shu and H. Zhu. Sensitivity analysis of deep neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):4943–4950, Jul. 2019.

[22] J. Sifakis. Can we trust autonomous systems? boundaries and risks. In Y. Chen,
C. Cheng, and J. Esparza, editors, Automated Technology for Verification and Anal-
ysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31,
2019, Proceedings, volume 11781 of Lecture Notes in Computer Science, pages 65–78.
Springer, 2019.

[23] C. H. Smith. A note on arbitrarily complex recursive functions. Notre Dame J.
Formal Log., 29(2):198–207, 1988.

[24] B. Steinbach and R. Kohut. Neural networks – a model of Boolean functions. In
Boolean Problems, Proceedings of the 5th International Workshop on Boolean Prob-
lems, pages 223–240, 2002.

[25] T. Stephen and T. Yusun. Counting inequivalent monotone boolean functions. Dis-
crete Applied Mathematics, 167:15–24, 2014.

[26] A. van Duynhoven and S. Dragićević. Exploring the sensitivity of recurrent neural
network models for forecasting land cover change. Land, 10(3), 2021.

[27] C. Wang and A. Williams. The threshold order of a Boolean function. Discrete
Applied Mathematics, 31(1):51–69, 1991.

[28] Y. Zhang and B. Wallace. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. In Seong-Bae Park and
Thepchai Supnithi, editor, Proceedings of the IJCNLP 2017, Tapei, Taiwan, Novem-
ber 27 - December 1, 2017, System Demonstrations,, pages 253–263. Association for
Computational Linguistics, 2017.

[29] D-Wave. Problem-Solving Handbook. https://docs.dwavesys.com/docs/latest/
handbook_reformulating.html?highlight=higher%20degree#polynomial-reduction-
by-substitution, 2021.

[30] D-Wave Systems, Dimod. https://docs.ocean.dwavesys.com/en/stable/docs_
dimod/reference/generated/dimod.higherorder.utils.make_quadratic.html, 2021.

16

http://arxiv.org/abs/1701.04968
https://docs.dwavesys.com/docs/latest/handbook_reformulating.html?highlight=higher%20degree#polynomial-reduction-by-substitution
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.higherorder.utils.make_quadratic.html

Appendix: QUBO for PARITY4

We have used the function make_quadratic from Dimod Library of the Ocean SDK [30]
to generate the QUBO for P

4
wS

in Example 12.

import dimod
from dwave . system import DWaveSampler
from dwave . system import DWaveSampler , EmbeddingComposite
poly = {(0 ,) : −1, (1 ,) : −1, (2 ,) : −1, (3 ,) :−1 , (0 , 1) : 2 , (0 , 2) : 2 ,

(0 , 3) : 2 , (1 , 2) : 2 , (1 , 3) : 2 , (2 , 3) : 2 , (0 , 1 , 2) : −4, (0 , 1 , 3) : −4,
(0 , 2 , 3) : −4, (1 , 2 , 3) : −4, (0 , 1 , 2 , 3) : 8}

bqm = dimod . make_quadratic (poly , 5 , dimod .BINARY)
a=l i s t (bqm. to_qubo ())
p r in t (a)

pr inted a
[{ (0 , 2) : 2 , (0 , 3) : 2 , (0 , 1) : 5 . 0 , (0 , ’ 0∗1 ’) : −10.0 , (0 , ’ 2∗3 ’) : −4,
(1 , 2) : 2 , (1 , 3) : 2 , (1 , ’ 0∗1 ’) : −10.0 , (1 , ’ 2∗3 ’) : −4, (2 , ’ 0∗1 ’) : −4,
(2 , 3) : 5 . 0 , (2 , ’ 2∗3 ’) : −10.0 , (3 , ’ 0∗1 ’) : −4, (3 , ’ 2∗3 ’) : −10.0 ,
(’ 0∗1 ’ , ’ 2∗3 ’) : 8 , (0 , 0) : −1.0 , (1 , 1) : −1.0 , (2 , 2) : −1.0 ,
(3 , 3) : −1.0 , (’ 0∗1 ’ , ’ 0∗1 ’) : 17 . 0 , (’ 2∗3 ’ , ’ 2∗3 ’) : 17 .0} , 0 . 0]

The coloured terms in the output (0 ∗ 1 and 2 ∗ 3) are the auxiliary variables x4 and x5.
Accordingly, the QUBO Q was created and used on D-Wave Advantage for minimisation.
Bellow the process, and the results are shown. The minimum energies (−1) correspond
exactly to the values of x such that PARITY4(x) = 1.

Q={(’ x0 ’ , ’ x2 ’) : 2 , (’ x0 ’ , ’ x3 ’) : 2 , (’ x0 ’ , ’ x1 ’) : 5 , (’ x0 ’ , ’ x4 ’) :−10 , (’ x0 ’ , ’ x5 ’) : −4,
(’ x1 ’ , ’ x2 ’) : 2 , (’ x1 ’ , ’ x3 ’) : 2 , (’ x1 ’ , ’ x4 ’) :−10 , (’ x1 ’ , ’ x5 ’) :−4 , (’ x2 ’ , ’ x4 ’) : −4,
(’ x2 ’ , ’ x3 ’) : 5 , (’ x2 ’ , ’ x5 ’) :−10 , (’ x3 ’ , ’ x4 ’) : −4, (’ x3 ’ , ’ x5 ’) : −10 ,(’ x4 ’ , ’ x5 ’) : 8 ,
(’ x0 ’ , ’ x0 ’) : −1, (’ x1 ’ , ’ x1 ’) : −1, (’ x2 ’ , ’ x2 ’) : −1, (’ x3 ’ , ’ x3 ’) : −1, (’ x4 ’ , ’ x4 ’) : 17 ,
(’ x5 ’ , ’ x5 ’) : 17}

sampler_auto = EmbeddingComposite (DWaveSampler (s o l v e r={ ’ topology__type__eq ’ : ’ pegasus ’ }))
sampleset = sampler_auto . sample_qubo (Q, num_reads=1000 , answer_mode=’ histogram ’ ,

chain_strength=10)

p r in t (sampleset)

pr inted sampleset
x0 x1 x2 x3 x4 x5 energy num_oc . chain_b .

0 0 0 1 0 0 0 −1.0 71 0 .0
1 0 1 1 1 0 1 −1.0 113 0 .0
2 1 0 1 1 0 1 −1.0 108 0 .0
3 1 1 1 0 1 0 −1.0 31 0 .0
4 1 0 0 0 0 0 −1.0 37 0 .0
5 1 1 0 1 1 0 −1.0 46 0 .0
6 0 1 0 0 0 0 −1.0 70 0 .0
7 0 0 0 1 0 0 −1.0 65 0 .0
8 1 1 0 0 1 0 0 .0 27 0 .0
9 0 1 1 0 0 0 0 .0 39 0 .0
10 1 1 1 1 1 1 0 .0 45 0 .0
11 1 0 1 0 0 0 0 .0 24 0 .0
12 0 0 1 1 0 1 0 .0 61 0 .0
13 0 0 0 0 0 0 0 .0 28 0 .0
14 1 0 0 1 0 0 0 .0 31 0 .0
15 0 1 0 1 0 0 0 .0 42 0 .0
16 1 1 1 1 0 1 3 .0 9 0 .0
17 0 1 1 0 1 0 3 .0 2 0 .0
18 1 0 0 1 0 1 3 .0 14 0 .0
19 0 1 0 1 0 1 3 .0 9 0 .0
20 1 0 1 0 1 0 3 .0 6 0 .0
21 1 1 0 0 0 0 3 .0 4 0 .0
22 0 1 0 1 1 0 3 .0 5 0 .0
23 1 0 0 1 1 0 3 .0 7 0 .0
24 0 1 1 0 0 1 3 .0 36 0 .0
25 1 0 1 0 0 1 3 .0 16 0 .0
26 1 1 1 1 1 0 3 .0 7 0 .0
27 0 0 1 1 0 0 3 .0 13 0 .0
41 1 0 1 0 0 1 3 .0 1 0 .166
28 1 1 0 1 0 1 5 .0 1 0 .0
29 0 1 1 1 1 0 5 .0 2 0 .0
30 1 1 1 0 0 1 5 .0 9 0 .0
31 1 0 1 1 1 0 5 .0 2 0 .0
32 0 0 0 1 0 1 6 .0 1 0 .0
33 1 0 1 1 1 1 6 .0 2 0 .0
34 1 1 0 1 1 1 6 .0 3 0 .0
35 0 1 1 1 1 1 6 .0 2 0 .0
36 0 1 0 0 1 0 6 .0 1 0 .0
37 1 1 1 0 1 1 6 .0 2 0 .0
38 1 0 1 1 0 0 6 .0 2 0 .0
39 0 0 1 0 0 1 6 .0 2 0 .0
40 0 1 1 1 0 0 6 .0 4 0 .0
[’BINARY ’ , 42 rows , 1000 samples , 6 v a r i a b l e s]

17

Figure 4: Q graph Figure 5: Graph Q in Pegasus graph

18

