GGG

CDMTCS
Research
Report
Series

Efficient Clique Embedding
with Faulty Hardware
Components

Michael J. Dinneen

School of Computer Science,
University of Auckland, Auckland, New Zealand

Richard Hua

School of Computer Science,
University of Auckland, Auckland, New Zealand

CDMTCS-567
November 2022

Centre for Discrete Mathematics and
Theoretical Computer Science

Efficient Clique Embedding with Faulty Hardware
Components

Michael J. Dinneen and Richard Hua
School of Computer Science, The University of Auckland, Auckland, New Zealand.

e-mail: mjd@cs.auckland.ac.nz, rwan074@aucklanduni.ac.nz

Abstract

In this paper, we investigate graph embeddings of large cliques into the existing
D-Wave quantum architectures (Chimera, Pegasus) when physical qubits or couplers
have faults. The motivation for pre-computing large clique embeddings allows for
easier embeddings (without extensive classical computation) of arbitrary logical qubit
interaction graphs (e.g. QUBO graphs) when performing quantum annealing on the
restricted topologies of the existing D-Wave quantum architectures. To investigate
the performance and scalability of existing hardware topology (Pegasus graph), we
propose a method for simulating large hardware graphs with random faulty compo-
nents and compare the performance of different embedding techniques on these graphs.

Keywords: Adiabatic Quantum Computing; Fault Tolerant and Robust Hard-
ware; Quadratic Unconstrained Binary Optimization; Minor Embedding;

1 Introduction

Adiabatic Quantum Computing (AQC) is a relatively new model of quantum computation.
Originally proposed in 2001 [18], AQC is based on the process of evolving a ground state
of a Hamiltonian representing a problem to a minimum-energy solution state [18, 19]. It
has been shown to be equivalent, computability-wise, to the more traditional quantum gate
model [2]. Other introductory details about the application of AQC may be found in [5, 29].
Even though AQC can only simulate quantum circuit algorithms with polynomial overhead,
it has attracted a lot of attention in recent years. The advantage of AQC is that a particular
type of physical device that can be used for AQC known as quantum annealers are relatively
easier to build.

D-Wave computers are produced by the Canadian company D-Wave Systems Inc. that
use quantum annealing as a computation method. Their products include D-Wave One
(2011) operating on a 128-qubit chipset; D-Wave Two (2013) with 512 qubits; D-Wave
2X [13] had more than 1000 qubits; D-Wave 2000Q) [12] had 2048 qubits. The latest and
most advanced model is D-Wave Advantage [25] which 5760 has qubits. D-Wave qubits are

loops of superconducting wire, coupled by magnetic wiring, the machine itself is supercooled
close to absolute zero to get quantum effects [5, 24]. The current family of D-Wave comput-
ers can solve problems formulated in either Ising form or Quadratic Unconstrained Binary
Optimization (QUBO) form, defined later.

Problem solving with quantum annealers has been shown to be challenging [1, 6, 7, 20,
23]. Although many NP-complete problems are reducible to QUBO [1, 22, 23], it has been
an extremely difficult task to demonstrate any kind of practical speedup or advantage when
compared with classical algorithms [1]. Many of the research that claim such advantage
(see [15] for example) do not consider the entire process of problem solving with quantum
annealers.

To solve a computational problem with D-Wave quantum annealers, the problem has to be
converted to a QUBO instance (or the equivalent Ising instance). Then, the QUBO instance
has to be ‘embedded’ on the host configuration of the quantum annealer. This embedding
process is far from trivial and has become one of the major obstacle that is preventing
quantum annealing solution from being useful in practice. After a valid embedding is found,
the quantum annealer can be queried (multiple times) to obtain the solution.

This unique process of problem solving has made the analysis of the time complexities
of quantum annealing solutions a difficult task. The first question that comes to mind
is whether the embedding process should be considered when measuring the computation
efficiency of the quantum solution. On one hand, the embeddings are typically computed by
classical heuristic algorithms and one may argue that such computation has nothing to do
with quantum computing in general. On the other hand, if we completely ignore such these
issues, then researchers such as [15] have shown that quantum annealers can outperform
classical algorithms to an unbelievable degree. However, such speedups are often artificial in
nature and have no practical applications. In the case of [15], the test cases were carefully
designed to be able to fit on the host configuration directly (without the need of finding an
embedding which is not a realistic situation in practice).

We have proposed a novel framework that aims to address the embedding cost in [1]. The
basic principle was to identify families of problems where the same embedding can be re-
used for different instances of the problem so that the embedding cost can be ‘spread” among
the instances and hence improve the time efficiency of the AQC algorithm. We have also
presented a proof-of-concept example problem to illustrated the effectiveness of the quassical
(quantum-classical hybrid) computing framework. With the MWIS problem, we can only
use the same embedding if the problem structure remains the same (i.e. only the vertex
weights can change) which somewhat limits its uses. For example, in the communication
application mentioned in [1], the quassical computing approach is only applicable if all the
nodes in the network remain in the same interference range which is not often the case in
practice (e.g. a WiFi network where all the devices stay stationary does not seem a probable
situation). In this report, we will study a problem that is very much in the spirit of quassical
computing that takes a different approach. Recall that a clique is a complete graph K,
with n vertices where every pair of vertices in the graph is connected by an edge. With
any given hardware graph G, if we can compute the embedding of K, onto G, then this
embedding can be (partly) re-used for all guest graphs with order less than or equal to

n since we can just delete unnecessary vertices and edges from the clique until we have
the guest graph. Given a specific hardware, its chipset structure should remain mostly
the same throughout its life-cycle (e.g. some qubits may occasionally become unavailable
for maintenance), so computing the largest embeddable clique on the hardware would be
a very beneficial approach. However, this task is not easy in practice due to existence
of faulty hardware components represented by missing vertices and edges in the hardware
graph. Computing the largest (or at least near-optimal) embeddable cliques on the Chimera
and Pegasus graph can be done very efficiently in polynomial-time if the physical graph
has no missing components [4, 11]. The paper [4] has also proposed algorithms for finding
clique embeddings if the host graph is incomplete. However, the solution qualities of these
algorithms seem to be lacking in practice. As we will seen in Section 4, even a relatively
small number of faulty hardware components can drastically reduce the order of the largest
embeddable clique that these algorithms can find. Furthermore, there does not seem to be
much research that focuses on the performance of these clique embedding techniques in a
more realistic setting where faulty hardware components are taken into consideration. In
this report, we will first review some of these techniques in Section 3. And then, we propose
an experimental framework in which the performance of these clique embedding algorithms
can be compared and present some experiment results we obtained on simulated Pegasus
hardware in Section 4.

2 Preliminaries

In this section we will look at some key concepts and ideas that is necessary for what follows.
We have already some of them in Section 1 and we will define them in a slightly more formal
fashion here.

Quadratic Unconstrained Binary Optimization, or QUBO for short, is an NP-hard [31]
mathematical optimization problem of minimizing a quadratic objective function F': Zj —
R. The objective function is defined by an upper-triangular n X n matrix) and is of the
form F(x) = x’ Qx, where x = (xg, 21, ..., 2, 1) is a n-vector of binary (Boolean) variables.
Formally, QUBO problems are of the form:

xt = minz 2;Qi jyxj, where x; € Zo. (1)
Y
In other words, the goal is to find a binary value assignment of variables x = (zg, 1, ..., ;1)

such that the value of F'(x) is minimum. We typically use z* to denote the minimum value
of F(x) and x* = (zf,2},--- ,2}_;) to denote a value assignment of the n variables that
yield z*.

In the quantum annealing model of the QUBO problem, each z; corresponds to a qubit
while) defines the problem Hamiltonian H,. Specifically, the non-zero off-diagonal terms
Q.j), © < j, correspond to couplings between qubits x; and x;, while the diagonal terms
Qi are related to the local field applied to each qubit. For a given QUBO problem @),
these couplings may be conveniently represented as a graph G = (V, E) representing the
interaction between qubits, where V;, = {1,...,n} is the set of qubits and F; = {{i,j} |

3

Quj) # 0, i < j} are the edges representing the qubit interactions inside the quantum
processing unit (QPU). We will refer to such a graph for a given QUBO problem as the
logical graph, and the set of qubits the QUBO problem is represented over the logical qubits.

A quantum annealer has a core processor called its quantum processing unit (QPU). A
QPU contains a certain number of physical qubits used for computation. The physical qubits
are coupled together so that they could interact with each other during the computation. In
practice, couplings between arbitrary qubits are currently infeasible since it is very difficult
to control interactions between qubits that are not physically near to one another. As a
result it is often not possible to directly implement an instance of the QUBO problem on the
QPU since this would require an arbitrary number of couplings between arbitrary physical
qubits. The couplings in a QPU are specified by a graph Gp = (Vp, Ep), where Vp is the set
of qubits on the device, and an edge {i,j} € Ep signifies that qubits ¢ and j are physically
coupled. The graph Gp is called the physical graph, and the qubits Vp are the physical
qubits [8, 21].

The exact specifications of the physical graph for D-Wave devices have been modified
and improved over the years. The older models, such as D-Wave 2X and D-Wave 2000Q),
use the Chimera graph and the newer! D-Wave Advantage model uses the Pegasus graph
(see [10] for details on all the chipset topologies).

Since the logical graph G for a QUBO problem instance () will not, in general, be a
subgraph of the physical graph Gp, the problem instance on G, must be mapped to an
equivalent one on G p. This process involves two steps: first, G; must be minor embedded
in G'p, and secondly, the weights of the QUBO problem (i.e. the non-zero entries in Q) must
be adjusted so those valid solutions on G p are mapped to valid solutions on G. The second
stage can be done in polynomial time and so let us focus on the first stage here.

Let G; = (Wi, E1) and Gy = (Va, Es). A minor embedding of Gy onto G5 is a function
f: Vi — 2"2 such that:

1. For all v € Vi, the set of vertices v maps to under f are disjoint.
2. For all v € Vi, there is a subset of edges E’ € E, such that G’ = (f(v), E’) is connected.

3. If {u,v} € Ej, then there exist u/,v" € V, such that «' € f(u), v € f(v) and {u/,v'} is
an edge in Fs.

The embedding stage amounts to finding a minor embedding f : V; — 27 of G =
(Vi, Ep) onto Gp = (Vp, Ep) [8]. Typically, this involves mapping each logical qubit to a
set (sometimes called ‘chains’ or ‘blocks’) of physical qubits.

The problem of finding a minor embedding is itself computationally difficult [8]. Of

course, if one has sufficiently many physical qubits to embed K, then any n-qubit logical
graph can trivially be embedded into the physical graph.

' As of Jun 2022, D-Wave has announced a new prototype with a new topology called the Zephyr archi-
tecture.

2.1 The Chimera graph

The Chimera architecture is used by D-Wave 2X and D-Wave 2000Q. We will provide a
more formal definition of the Chimera graph in this subsection. A Chimera graph, denoted
by X1, consists of M by N blocks of K ; complete bipartite graphs. Each vertex v in
a Chimera graph is connected to four vertices in the same K ; unit and at most two other
vertices in adjacent units. Since all D-Wave models that use the Chimera topology have
n x n blocks of K44, we will sometimes use x, to denote x;, 4 for notational convenience.

The D-Wave Ocean SDK [30] provides an indexing function of the vertices of any x s v .
Each vertex v of x n, is indexed by a 4-tuple of integers (4, j,u, k) where 0 < i < M,
0<j<N,0<u<2and0<k< L. The integers ¢ and j specify the location of the K7, 1,
unit that v belongs to. The integer u denotes the which partition of the K7, ;, the vertex v is
in and k indexes the vertices in the partition. What is particularly nice about this indexing is
that it can be converted to a linear index by the formula I((7, j, u, k)) = 142nLi+2Lj+ Lu+k.
For notational convenience, we will use these two types of indexing interchangeably.

Given two vertices a = (i, j,u, k) and b = (i, j',«', k'). There is an edge {a, b} € E if one
of the following conditions is met:

1.i=4and j =5 and u # .
2.i=id+land j=7 andu=u"=0and k =F'.
J.i=dandj=j+landu=v=1and k =F.

The connections between the adjacent ‘blocks’ are shown in Figure 1. Specifically, each
qubit is coupled with 4 other qubits in the same K44 block and 2 qubits in adjacent blocks
(except for qubits in blocks on the edge of the grid, which are coupled to a single other
block). The vertices in Figure 1 follow the indexing scheme.

2.2 The Pegasus architecture

In 2020, D-Wave has released its latest model of quantum annealers. Using a new chipset
architecture called the Pegasus graph, the D-Wave Advantage is significantly denser than all
the previous model and hence should provide a big advantage in solving larger and denser
problems. In this subsection, we will give a formal description of the Pegasus graph. We
will follow the definition of the Pegasus graph given in [11]. A Pegasus graph is specified by
a single positive integer M. Denoted by ¢y, the graph has 24 M (M — 1) vertices. Note that
¢ has 8(M — 1) vertices used exclusively for error-correcting purposes and cannot be used
for problem solving and so it effectively has 8(3M — 1)(M — 1) working vertices.

Once again, we will follow the indexing of vertices implemented in the D-Wave Ocean
SDK [11, 30]. In this indexing scheme, each vertex in ¢, is indexed by a 4-tuple of integers
(u,w,k,z) where 0 <u<1,0<w< M, 0<k<11and 0 <z < M — 2. The linear index
formula is {((u,w, k, 2)) = z + (M — 1)(k + 12(w + Mwu)). The edges are slightly harder to
define since the Pegasus graph is a lot denser than the Chimera graph. We will follow the
method used in [11].

5 13
0 1 2 3 8 9 10 11
6 14
7 15
20 28
21 29
16 17 18 19 24 25 26 27
22 30
23 31

Figure 1: Chimera graph x» consisting of four K44 blocks. In general, the graph x; consists
of a k x k grid of such blocks, with connections between adjacent blocks as shown.

For notational convenience, let us define a vector of length 12:

v v v h h h
3:(5(())735)7"' 7Sé)73(())73§)7"' ’Sé))'

We will also define a function §(a,b) such that §(a,b) = 1 if a < b and 0 otherwise. The
D-Wave Advantage uses a Pegasus graph defined by s = (2,2,10,10,6,6,6,6,2,2,10, 10).
Given two vertices a = (u,w, k, z) and b = (u/,w’, k', 2'). There is an edge {a,b} € E if one
the following conditions is met:

lL.u=v,w=w,k=k"and z =2 — 1.
2. u=u,w=w,z=2 and k = 2j, k' =25 + 1 for some integer 0 < j < 5.
3. u=0u =1, w’:z+5<j,s(tz)/zj>,k’:jand z’:w:cs(k:,s(g;%) for 0 < j < 11.

Figure 2 shows the couplers of the Pegasus graph ¢3. Note that some vertex labels
(e.g. node 68) may seem to be missing. The ¢3 topology has 16 debugging qubits that are
disconnected from the main structure and are not shown in Figure 2. See [11] for a more
detailed description of the Pegasus graph.

2.3 Minor embeddings

Recall the definition of a minor embedding. Given an instance of the QUBO problem, we
will have to ‘embed’ the problem in the QPU unit of the D-Wave quantum annealer before
we can solve it. This leads to the following problem:

6

7 (N
7 e
=0 A :
e SN \\\Y =)

m | \\
AN~

Figure 2: Pegasus graph ¢3. In general, the graph ¢, is much denser when compared with
a Chimera graph with similar order. D-Wave Advantage has a ¢4 chipset.

Minor Embedding Problem:

Instance: Two graphs H = (V, E) and G = (V', E).
Question: Compute a minor embedding function f : V' — 2V if one exits.

The mapping f which is used to map the logical qubits of the QUBO instance to sets
of connected physical qubits in the hardware graph. The variable interaction graph (G),
defined by the QUBO instance, and the hardware connectivity graph (H) are called ‘guest’
and ‘host” graphs respectively in this context.

The decision version of the Minor Embedding Problem (known as The Minor Contain-
ment Problem) is known to be NP-complete for arbitrary input graphs and computing the
actual function f is NP-hard. The heavy cost of computing embeddings is one of the main
obstacles in achieving any practical speedup with quantum annealers. To further complicate
matters, much recent research has also shown that the ‘quality’ of the embedding also affects
the performance of quantum annealers [1, 6, 16, 26, 27]. Given a vertex v in the guest graph,
say f(v) = X for some X C V. The cardinality of X is called the map size* of v. In general,
smaller and more uniform map sizes would produce better results in practice [1, 6, 16, 26,
27]. For practical reasons, D-Wave implemented a heuristic-based algorithm in the Ocean
SDK [30].

Naturally, with different QUBO instances (with different logical graphs), a different minor
embedding would have to be computed. One potential workaround of this issue is to compute

2This map size is often called ‘chain length’ by various authors and it could be somewhat misleading since
the vertices in X do not necessarily form a path. For the sake of convenience, we will use the two terms
interchangeably.

the minor embedding of a Complete Graph (clique) K, on the host graph. Since K, has
an edge between every pair of vertices, the minor embedding of K,, on the host graph can
be used for any logical graphs with order smaller or equal to n. Ideally, we would want
to compute the minor embedding of the largest embeddable clique since it provides the
most utility. But this is not a simple task in practice. In theory, since the host graph,
say ¢y for example, is fixed (or at least is fixed for any given generation of hardware),
there is a polynomial-time algorithm to decide whether any given graph K, is a minor of
o [28]. However, due to engineering imprecision and difficulties, the manufactured chip is
very unlikely to completely match with the Pegasus graphs (e.g. there are faulty qubits and
couplers represented by missing vertices and edges in the physical graph). Furthermore, the
hardware is under regular maintenance and qubits and couplers often have to be taken offline
or become unavailable for various other reasons (e.g. for calibration). And so the largest
embeddable clique is likely to vary (at least slightly) over the lifetime of the hardware. The
heuristic embedding algorithm implemented in the API does not seem very suitable for this
task since the guest graph (K,) has maximum density and it would be very computation-
heavy with the heuristic algorithm if the heuristic algorithm can find a minor embedding at
all.

3 Existing techniques for Clique embedding in
Chimera and Pegasus graphs

In this section, we will give a brief description of existing techniques used to compute clique
embeddings on Chimera graphs which can be generalized to Pegasus graphs as well. Given
a Chimera graph xa/ n,z, the algorithm in [4] can be used to compute a minor embedding
for Ky, with uniform map size in polynomial time. Although it is hard to show that Ky,
is the largest embeddable clique in s n 1, it is certainly at least very close to the optimal
solution since x s v,z does not contain Ko minor [4] (i.e. optimal solution is Kpp4q if
not K L M)

The algorithm in [4] can also be used on induced subgraphs of xasn . However, it is
much harder to adapt (at least from an efficiency point of view) to general subgraphs of
Xwm,n,.- As mentioned before, quantum annealers manufactured by D-Wave Systems often
have inactive qubits as well as additional faulty couplers between active qubits. So the
algorithm in [4] cannot be used (at least not directly) since the graph induced by the set
of active qubits is not the actual hardware structure that we can use. To solve this issue,
a workaround was proposed in [4] which involves enumerating all minimum vertex covers of
the subgraph induced by the set of faulty couplers.

Specifically, given a subgraph x/; ., = (V', E') of Chimera graph xu,n,. = (V, E) (note
that X}, v 1 is not necessarily an induced-subgraph of xarn,). We first compute the edge
difference A = E(xmn (V') — E' where x v (V') is the subgraph induced by the set V.
If the set A is empty, then it means x, v ; is an induced-subgraph of xu v,z (i.e. there are
no additional faulty couplers) and so we can use the induced-subgraph embedding algorithm
directly. Otherwise, consider the graph G = (V’, A) which is the graph that consists of the

additional missing edges. Let X C V' be a vertex cover for G and consider the induced-
subgraph xy n (V' — X) = (V”,E"). It is fairly easy to show that xyny (V' — X) is a
subgraph of x, v, since we have (V' — X)) C V' and for each edge (u,v) € E” we know
that u ¢ X and v ¢ X which means (u,v) € E’ as otherwise (u,v) € A and the vertex cover
X would need to contain either w or v. Therefore, E” C E’ which means xp n (V' —X) is a
subgraph of x, v Which is also an induced-subgraph of xa 1 and so the aforementioned
clique embedding algorithm can be used on xnrn..(V' — X) [4].

This simple argument leads to the following approach. For each minimum vertex cover
X of the graph G, we run the induced-subgraph algorithm on the graph Cy; v (V' —X) and
return the maximum clique found at the end. We only consider minimum vertex covers since
we would like to preserve as many active qubits as possible to use in the actual embedding.
It is important to note that the maximum clique embedding found using this method is not
likely to be the optimal solution for X/ y ; and there is no known efficient method to even
estimate the size of the largest embeddable clique in an arbitrary Chimera subgraph, finding
the exact solution is at least NP-hard (since it is a generalized version of finding clique
embeddings on the complete architecture) while the vertex cover enumeration algorithm is
at least fixed-parameter tractable [4]. See Appendix C for a sample implementation of this
method that can be used on D-Wave 2X models (which can be modified slightly to be used
on other models). Note that the minimum vertex covers are somewhat ‘hard-coded’ in the
source code. There were 14 additional faulty couplers on the D-Wave 2X model we have
used. All the missing edges have no common end-points except for two edges, {235,331}
and {331,334}. So it was relatively straightforward to enumerate over all minimum vertex
covers; all minimum vertex covers have to contain the vertex 331 and one end-point of each
of the other 12 faulty couplers. Computing minimum vertex covers will not be a simple
task if the additional faulty couplers have more common end-points, much more complicated
approaches (e.g. an approximation algorithm) have to be considered if it is the case.

Please note that all of the various clique embedding techniques and algorithms for the
Chimera graphs also work directly on the Pegasus graphs without the need of any mod-
ification since the Chimera graph is a subgraph of the Pegasus graph [11]. One obvious
disadvantage of using these Chimera graph embedding algorithms on the Pegasus graph
is that they typically do not fully take advantage of the additional couplers (edges) in
the Pegasus graph and so the results are in general sub-optimal. A native clique embed-
ding algorithm for the Pegasus graph is also given in [11] which can generate Kjan_10
embeddings in ¢,;. Please note that there is an error in the paper [3]® in the descrip-
tion of the native clique embedding method on page 9. The given set A on the said
page does not produce a valid clique embedding, and it is quite easy to verify since the
set would give disconnected physical qubits mapping. A correct chain descriptor? is A =
{{0,M—=2,4)},{(1,M—-2,1)},{(0,0,3), (1, M—2,3)},{(0, M—2,3), (1, M—1,2)},{(0, M —
1,1),(1,M—1,0)},{(0,M-2,5),(1,0,4)},{(0, M—1,2), (1, M—1,1)},{(0, M—1,0), (1, M —
2,5)}}.

3The same error can also be found in the technical report [11] of the same name on D-Wave Systems’
official website.
4We would like to thank Dr. Kelly Boothby from D-Wave Systems for providing us the correct formula.

4 Simulation of clique embeddings on physical graphs
with random faults

As mentioned in previous sections, it is very likely that the actual hardware manufactured
by D-Wave Systems will not have a complete structure. And there does not seem to be
many research that focus on the performance of these various clique embedding algorithms
on more realistic host graphs with inactive qubits and faulty couplers. Before we discuss
our experiment setup, we will first define a few new terms in order to have a more rigorous
understanding of the setup. There are numerous ways to define faulty qubits and couplers.
For example, we could define faulty qubits as those with an incident faulty edge and instead
of saying a qubit v € V' are faulty, we could just say the set of edges {{u,v} | u € V', {u,v} €
E'} is faulty. If we define faulty hardware components this way, we would only need to specify
a set of faulty edges. However, this approach does not fully reflect the different engineering
aspects of the actual hardware where there are some differences between a faulty edge and
a faulty qubit (since they are different hardware components) and so we will need to specify
these faulty parts in a slightly more complicated way.

Suppose we have actual hardware, with inactive qubits and/or couplers, which is de-
scribed by the graph H = (V, E), and suppose the complete structure was supposed to be
H' = (V' E'). Note that H' can either be a Chimera graph or a Pegasus graph and H is an
arbitrary subgraph of H’. The set of inactive qubits is V' — V' and the number of inactive
qubits is obviously |V — V|. Similarly, we can calculate the probability of faulty qubits as

IV‘;;?/' . Now consider the subgraph induced by the set of active qubits G = H'(V') = (V", E").
If E” = E, then we say that there are no additional faulty edges. Here the set of faulty
edges is calculated as E” — E and the probability of an edge being faulty is ‘E;—T,f‘ A sample
implementation is given in Script A to compute the probabilities of faulty qubits and edges

in a given hardware structure.

We can also generate more realistic hardware structures with these types of faults. Doing
so is relatively straightforward. Given a hardware architecture G = (V, E), suppose that the
probability of a qubit being faulty is p and the probability of an additional faulty coupler is
g. First, we randomly select a set of faulty qubits, denoted by V', with uniform probabilities
where each qubit in the complete architecture has a probability p of being faulty. We then
compute the induced subgraph G(V — V') = (V" E’), and select a set of additional faulty
couplers, denoted by £” C E’, in G(V — V') in a similar fashion with uniform probability q.
Finally, the hardware structure with random faults can be described by G’ = (V" E' — E").
See Python Script B for a sample implementation.

4.1 Experiment setup

To generate physical graphs with random faults, we need to specify the probabilities of
faulty qubits and couplers. Exactly what percentage of qubits (and couplers) on a D-Wave
quantum annealer will be active after manufacturing is not public information, and we had
to estimate these numbers from the D-Wave 2X we had access to. The D-Wave 2X quantum
annealer that we have used for various experiments throughout this work had 1098 active

10

qubits and 3049 functional couplers®. Based on its physical graph, we calculated p and ¢ to
be 0.0469 and 0.0046 respectively. See Section 4.2.3 for a brief discussion of the parameters
p and q.

For each 16 < M < 32, we used the Python program in Appendix B (with p and ¢ set
to 0.0469 and 0.0046 respectively) to generate 50 faulty Pegasus graphs ¢,;. We ran the
clique embedding algorithm implemented in the minorminer Python package (part of Ocean
SDK) on all generated test cases. See Appendix D for the script®. To measure the quality of
the embeddings, we also implemented a simple greedy chain-removal algorithm. The greedy
algorithm operates as follows: We first use the chain-descriptor method as described in [11]7
to build a clique embedding ignoring faulty qubits and couplers; For each logical qubit v in
the clique, the physical qubits map needs to be connected (i.e. G(f(v)) has to be a connected
graph) and so we remove v from the clique if it is not the case; We now have a set of intact
chains (physical qubits maps) which are not necessarily connected pair-wise. And so we
sort the intact chains in decreasing order of the number of chains they are disconnected
from (i.e. for each logical qubit v, we calculate |{u | G(f(u)U f(v)) is not connected}|); We
then repeatedly remove vertices from the embedding until the remaining chains form a valid
clique. A sample implementation of this method is given in Appendix E.

4.2 Experiment results and discussion

We ran both algorithms on all test cases generated. For each 16 < M < 32, the average
number of vertices in the largest embeddable clique found is presented in Table 1. The ‘Max
clique order’ column in the table shows the largest known embeddable clique for a complete
architecture (i.e. if ¢); has no faulty components). This number is calculated based on the
chain-descriptor method [11]. The amount of time it took for each algorithm to solve all 50
instances of each ¢, is presented in Table 2.

As can be seen in Table 1 and Table 2, the minorminer algorithm can find better solutions
than the greedy approach but is also much slower. We will discuss several key points here.

4.2.1 Degree of fault-tolerance

Since faulty components seem unavoidable (at least with current technologies), and so the
architecture design process should take this into consideration when designing the topology
of the chipset. Ideally, faulty components should have a minimum effect on the largest
embeddable problem; in this case it would mean that the hardware architecture is very
robust. However, this notion of fault-tolerance is quite difficult to be defined precisely. First
of all, there is no proof as to the order of the largest embeddable clique on the physical graph
¢nr. The chain-descriptor method produces cliques of order 12M — 10, but we do not know

5As we have mentioned earlier, qubits and couplers sometimes becomes unavailable for maintenance
purposes and are generally restored later. So this specific structure here is the physical graphs that we most
often had access to.

6The official Ocean SDK API does not have any details on this particular embedding algorithm, but we
suspect that it is mainly based on the algorithm described in [4]

"Note that the correct chain descriptor mentioned in Section 3 should be used.

11

Table 1: Clique embedding result

Physical graph | Physical qubits | Max clique order | Minorminer avg | Greedy avg
P16 5760 182 85.18 69.12
P17 6528 194 85.92 68.96
P18 7344 206 87.52 69.16
P19 8208 218 88.62 69.3
®20 9120 230 87.8 65.84
P21 10080 242 89.86 70.16
D22 11088 254 89.48 67.38
P23 12144 266 91.22 65.22
P24 13248 278 90.46 66.52
P25 14400 290 92.58 67.24
P26 15600 302 93.54 67.16
(05%e 16848 314 92.7 67.18
P28 18144 326 94.34 65.28
®29 19488 338 94.18 65.82
®30 20880 350 95.1 64.58
P31 22320 362 96.38 66.66
P32 23808 374 94.76 61.6

how close this value is to the actual optimal solution. Secondly, even if a better estimation
is known, there is no guarantee that we will be able to find an embedding algorithm that
produces the largest clique embedding (e.g. we might only be able to obtain a better bound
via a non-constructive proof). It is important to note that both features (robust architecture
topology and clique embedding algorithm) are equally important. Having a perfectly robust
architecture is pointless if there is no embedding algorithm that can handle these faulty
components effectively. Unfortunately, there does not seem to be much research (at least
not publicly available research) on these topics.

While keeping the limitation of the theory mentioned in the previous paragraph in mind,
we propose a crude estimation of the degree of fault-tolerance of the current clique embedding
method. As mentioned earlier, if the hardware architecture has no faulty component, then
the largest known embeddable clique for ¢); has order 120 — 10 which can be produced
using the chain-descriptor method. We define the optimal solution ratio, denoted by OPT,.,
as the average embeddable clique order found by the two algorithms divided by 12M — 10.
The value OPT, provides an indication to the degree of fault-tolerance. See Figure 3 for a
plot of OPT, values.

Obviously, one would like to see that the value of OPT, be as close to 1 as possible.
Unfortunately, Figure 3 shows that the current OPT, values for both algorithms are far
from ideal. Not only is the maximum OPT, value less than 0.5, it also decreases as the
hardware gets bigger. The scaling behavior seems linear in terms of M where the actual
number of qubits in the hardware is in order of O(M?) so the scaling behavior is slightly
better (decreases slower) if the OPT,. values are plotted against the number of physical qubits.
This type of scaling behavior shows that even if the probabilities of hardware components

12

Table 2: Clique embedding time (seconds)

Physical graph | Minorminer time | Greedy time
D16 7548.672 3255.868
P17 9944.826 3526.758
P18 12854.408 4202.116
?19 16483.624 5010.189
®20 20667.485 4685.019
P21 25579.545 5925.193
D22 31162.816 5845.398
23 37531.649 6204.689
P24 46321.589 6782.656
25 55792.984 7656.772
P26 63068.193 8507.113
Por 73958.661 9331.7
P28 85649.297 9340.8
P29 99245.257 9601.456
D30 114409.068 10284.73
31 131812.174 11300.102
P32 151603.578 11125.429

being faulty remain the same, it will have a much larger negative effect on the qualities of
clique embeddings as the hardware increases in scale.

4.2.2 Greedy algorithm comparison

Note that the scaling behavior of both algorithms exhibits a similar scaling behavior in
Figure 3. This was quite surprising considering the fact that the greedy algorithm is quite
straightforward. As we have seen in Table 2, the greedy algorithm is much faster than the

minorminer algorithm. To better understand the time differences, we define the running
Minorminer time
Greedy time

time ratio, denoted by Time,, as . See Figure 4 for a plot of Time, values.

In Figure 4, we can see that the Time, values also exhibit a somewhat linear scaling
behavior. Together with the fact that the OPT, values of the greedy algorithm are only
lower than the OPT, values of the minorminer algorithm by a constant factor, it shows
that the relatively simple greedy approach could be useful especially in time-constrained
situations when the best solution quality is not required.

We could also improve the greedy algorithm in several ways. For instance, we could use a
vertex cover approach similar to that described in Section 3. Instead of repeatedly removing
chains after the initial step of building the clique embedding using the chain descriptor, we
could compute a minimum vertex cover on the graph consisting of all the chains as vertices
and broken connection between the chains as edges (i.e. an edge {u, v} if G(f(u)Uf(v)) is not
connected), and just remove the chains that correspond to the vertices in the minimum vertex
cover instead. We are guaranteed to remove a minimum number of chains and therefore have

13

0.5

h/‘[inermi‘nor ra‘tio 4{‘*
0.45 - Greedy ratio -~ X - |

<

N}

St
T

0.15 ! ! ! ! ! ! ! ! \
16 18 20 22 24 26 28 30 32

Pum

Figure 3: OPT, plot

—_
[\
T

2 | | |

|
16 18 20 22 24 26 28 30 32
Oum

Figure 4: Time, plot

14

a maximum number of chains in the clique remaining at the end. The difficult part is that
computing a minimum vertex cover for these graphs might not be an easy task. As can be
seen in Table 1, we are basically dealing with graphs with hundreds of vertices and computing
a minimum vertex cover will add a lot of overhead in terms of computation time. And it
has been shown that the approximability of the vertex cover problem is not very good [9,
17] and approximation algorithms might not even be sufficient here. Secondly, we could try
to extend the clique after the chain-removal process is done. The greedy algorithm does
nothing with the chains it removes and since it removes most of the chains (note that we
have less than 40% of chains remaining with ¢4 and the number only gets lower), a lot of
physical qubits and couplers are left unused. If we could enumerate the unused qubits in
some systematic way, we might be able to add more chains to the clique embedding. This
requires a more careful study of the hardware architecture to exploit its properties.

4.2.3 Remarks on faulty hardware component probabilities

Note that the estimated p and ¢ values we used in the experiment are likely out of date. At
the time when we conducted this experiment, we only had access to a D-Wave 2X model. We
have had (somewhat limited) access to a D-Wave 2000Q and a D-Wave Advantage machine
at some point. The probabilities of faulty qubits and couplers on the D-Wave 2000Q are
0.0034 and 0.0003 respectively which are a lot better than the same statistics on the D-Wave
2X. These numbers mean that only 7 of the 2048 physical qubits are faulty and there are
only 2 additional faulty couplers. On the D-Wave Advantage, however, these numbers are
0.0362 and 0.0052 which are significantly worse than the D-Wave 2000Q) statistics despite the
Advantage being the most advanced model at the time. We suspect that using a new chipset
architecture (the Pegasus graph) might be one of the reasons that lead to the probability
of faulty components being higher. In hindsight, the statistics on the Advantage annealer
do somewhat justify our parameter settings for p and ¢ since these probabilities on the
Advantage are relatively close to the probabilities we used in our experiment.

5 Conclusion and future work

As we have seen, computing maximum clique embeddings in a given hardware architecture
with faulty components is not an easy task. Being able to find the largest embeddable
clique in a given physical graph is of huge importance from a practical point of view since it
completely mitigates the embedding cost for all logical graphs up to the order of the clique
which is a large factor in whether quantum speedup in practice can be observed. Therefore,
finding the maximum embeddable clique can be interpreted as a form of quassical computing
as discussed in [1]. One may even argue that the maximum clique approach is more flexible
since it is not based on any specific problem structure but rather on the physical graph
topologies of quantum annealers which can be taken into consideration when designing the
hardware. Unfortunately, there does not seem to be much research that focuses on finding
these clique embeddings in a more realistic setting where faulty hardware components exist.

In this report, we have proposed a method of simulating hardware graphs with faulty

15

components as well as a (very crude) method of evaluating the robustness of the hardware
structure. Based on our experiment results, we have come to the conclusion that efficient
clique embedding algorithms are as equally important as larger and more connected hardware
topologies. Increasing the order and the density of the chipset is important since it allows
larger problems to be solved on the annealer, but a large number of qubits and couplers will
be wasted if the embedding algorithm does not fully exploit them. And this is indeed the case
with the current approach, we can see that the majority of the physical qubits in the hardware
are left unused by the minorminer algorithm in Table 1 and Figure 3 since the minorminer
algorithm produces embeddings with mostly uniform chain length so an OPT, value of less
than 0.5 essentially means that less than half of the physical qubits are unused in the final
output. Based on our experiment results we suggest that the scalability of the current
setup (hardware topology plus the clique embedding algorithm) is not ideal, especially if
the current trend continues as D-Wave computers typically use the same family of hardware
topology for a few generations before developing a new structure®. Computational efficiency
is also an important feature, we have seen in Section 4.2.2 that even a quite unoptimized
greedy algorithm can have some merits in this aspect.

We do not have enough experimental data to reach any definitive conclusion at this
point due to time constraints. To gather the (somewhat) limited amount of data we had,
the experiment we conducted took more than two weeks to run. But we do plan to run more
experiment and to investigate further some of the points we discussed in Section 4.2.2. We
also plan to study the new Zephyr topology [14] to see if the ideas we proposed in this report
are applicable to the new chipset design.

References

[1] A. A. Abbott, C. S. Calude, M. J. Dinneen, and R. Hua. “A hybrid quantum-classical
paradigm to mitigate embedding costs in quantum annealing”. In: International Jour-
nal of Quantum Information 17.05 (2019), p. 1950042. DOI: 10.1142/30219749919500424.

[2] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. “Adiabatic
quantum computation is equivalent to standard quantum computation”. In: STAM
Review 50.4 (2008), pp. 755-787. DOI: 10.1137/080734479. URL: https://doi.org/
10.1137/080734479.

(3] K. Boothby, P. Bunyk, J. Raymond, and A. Roy. Nezt-generation topology of D-Wave
quantum processors. 2020. DOI: 10.48550/ARXIV.2003.00133. URL: https://arxiv.
org/abs/2003.00133.

[4] T. Boothby, A. D. King, and A. Roy. “Fast clique minor generation in Chimera qubit
connectivity graphs”. In: Quantum Information Processing 15.1 (2016), pp. 495-508.

[5] C.S. Calude, E. Calude, and M. J. Dinneen. “Adiabatic Quantum Computing Chal-

lenges”. In: ACM SIGACT News 46.1 (2015), pp. 40-61. DOI: 10. 1145 /2744447 .
2744459. URL: http://doi.acm.org/10.1145/2744447 .2744459.

8This might not be the case with the Pegasus graph since D-Wave has already announced the Zephyr
topology.

16

https://doi.org/10.1142/S0219749919500424
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.48550/ARXIV.2003.00133
https://arxiv.org/abs/2003.00133
https://arxiv.org/abs/2003.00133
https://doi.org/10.1145/2744447.2744459
https://doi.org/10.1145/2744447.2744459
http://doi.acm.org/10.1145/2744447.2744459

[6]

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. S. Calude, M. J. Dinneen, and R. Hua. “Quantum solutions for Densest k-Subgraph
Problems”. In: Journal of Membrane Computing 2.1 (2020), pp. 26-41. DOI: 10.1007/
s41965-019-00030-1.

C. S. Calude, M. J. Dinneen, and R. Hua. “QUBO formulations for the Graph Isomor-
phism Problem and related problems”. In: Theoretical Computer Science 701 (2017),
pp. 54-69. 18sN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2017.04.016.

URL: http://www.sciencedirect.com/science/article/pii/%2050304397517304590.

V. Choi. “Minor-embedding in adiabatic quantum computation: I. The parameter set-
ting problem”. In: Quantum Information Processing 7.5 (2008), pp. 193-209. 1SSN:
1570-0755. DOIL: 10.1007/s11128-008-0082-9. URL: http://dx.doi.org/10.1007/
$11128-008-0082-9.

A. E. Clementi and L. Trevisan. “Improved non-approximability results for mini-
mum vertex cover with density constraints”. In: Theoretical Computer Science 225.1-2
(1999), pp. 113-128.

D-Wave QPU Architecture: Topologies. https://docs.dwavesys.com/docs/latest/
c_gs_4.html. D-Wave Systems. 2021.

D-Wave Systems. Next-Generation Topology of D-Wave Quantum Processors. https:
//www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-
of-dw-quantum-processors.pdf. Feb. 2019.

D-Wave Systems. “The D-Wave 2000Q™ Quantum Computer Technology Overview”.
In: (2017). URL: https://dwavejapan.com/app/uploads/2019/10/D-Wave-2000Q-
Tech-Collateral _1029F.pdf.

D-Wave Systems. “The D-Wave 2X™ Quantum Computer Technology Overview”. In:
(2016).

D-Wave Systems. Zephyr Topology of D-Wave Quantum Processors. https://www .
dwavesys . com/media/2uznecds/14-1056a-a_zephyr _topology _of _d-wave _
quantum_processors.pdf. Sept. 2021.

V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Mar-
tinis, and H. Neven. “What is the computational value of finite-range tunneling?” In:
Physical Review X 6 (2016), p. 031015. DO1: 10.1103/PhysRevX.6.031015.

M. J. Dinneen and R. Hua. “Formulating graph covering problems for adiabatic quan-
tum computers”. In: Proceedings of the Australasian Computer Science Week Multi-
conference. Vol. 18. ACSW ’17. Geelong, Australia: ACM, 2017, p. 1. ISBN: 978-1-4503-
4768-6. DOI: 10.1145/3014812.3014830.

[. Dinur and S. Safra. “On the hardness of approximating minimum vertex cover”. In:
Annals of mathematics (2005), pp. 439-485.

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. “A quan-
tum adiabatic evolution algorithm applied to random instances of an NP-complete
problem”. In: Science 292.5516 (2001), pp. 472-475. 1SsN: 0036-8075. DOI: 10.1126/
science.1057726. URL: http://science.sciencemag.org/content/292/5516/472.

17

https://doi.org/10.1007/s41965-019-00030-1
https://doi.org/10.1007/s41965-019-00030-1
https://doi.org/https://doi.org/10.1016/j.tcs.2017.04.016
http://www.sciencedirect.com/science/article/pii/%20S0304397517304590
https://doi.org/10.1007/s11128-008-0082-9
http://dx.doi.org/10.1007/s11128-008-0082-9
http://dx.doi.org/10.1007/s11128-008-0082-9
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://dwavejapan.com/app/uploads/2019/10/D-Wave-2000Q-Tech-Collateral_1029F.pdf
https://dwavejapan.com/app/uploads/2019/10/D-Wave-2000Q-Tech-Collateral_1029F.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1145/3014812.3014830
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
http://science.sciencemag.org/content/292/5516/472

[19]

[20]

[21]

[22]

[24]

[25]

[26]

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic
evolution. 2000. DOI: 10 .48550/ARXIV.QUANT-PH/0001106. URL: https://arxiv.
org/abs/quant-ph/0001106.

R. Hua and M. J. Dinneen. “Improved QUBO formulation of the Graph Isomorphism
Problem”. In: SN Computer Science 1.1 (2020), p. 19. DOI: 10.1007/s42979-019-
0020-1.

W. Lechner, P. Hauke, and P. Zoller. “A quantum annealing architecture with all-to-all
connectivity from local interactions”. In: Science Advances 1 (2015), €1500838. DOI:
10.1126/sciadv.1500838.

A. Lucas. “Ising formulations of many NP problems”. In: Frontiers in Physics 2.5
(2014). 1SSN: 2296-424X. DOIL: 10 . 3389/ fphy . 2014 . 00005. URL: http: //www .
frontiersin . org/interdisciplinary _physics/ 10 . 3389/ fphy . 2014 . 00005/
abstract.

A. Mahasinghe, R. Hua, M. J. Dinneen, and R. Goyal. “Solving the Hamiltonian Cycle
Problem using a quantum computer”. In: Proceedings of the Australasian Computer
Science Week Multiconference. ACSW 2019. Sydney, NSW, Australia: ACM, 2019,
8:1-8:9. 1SBN: 978-1-4503-6603-8. DOI: 10.1145/3290688 . 3290703. URL: http://
doi.acm.org/10.1145/3290688.3290703.

C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing. Theory and
Practice. Morgan & Claypool Publishers, 2014.

C. McGeoch and P. Farré. Advantage Processor Querview. https://www.dwavesys .
com/media/3xvdipcn/14-1058a-a_advantage _processor _overview.pdf. Jan.
2022.

A. Mishra, T. Albash, and D. A. Lidar. “Finite temperature quantum annealing solving
exponentially small gap problem with non-monotonic success probability”. In: Nature
communications 9.1 (2018), pp. 1-8.

K. L. Pudenz, T. Albash, and D. A. Lidar. “Error-corrected quantum annealing with
hundreds of qubits”. In: Nature communications 5 (2014), p. 3243. DOI: https://doi.
org/10.1038/ncomms4243.

N. Robertson and P. D. Seymour. “Graph minors. XIII. The disjoint paths problem”.
In: Journal of Combinatorial Theory, Series B 63.1 (1995), pp. 65-110.

G. Rose and W. Macready. An Introduction to Quantum Annealing. Tech. rep. Docu-
ment 0712. D-Wave Systems, Inc., 2007, pp. 1-3.

D.-W. Systems. D-Wave Ocean Software Documentation. https ://docs . ocean .
dwavesys.com/en/stable/index.html. Accessed: 2020-12-19.

D. Wang and R. Kleinberg. “Analyzing Quadratic Unconstrained Binary Optimization
problems via multicommodity flows”. In: Discrete Applied Mathematics 157.18 (2009),
pp. 3746-3753.

18

https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1007/s42979-019-0020-1
https://doi.org/10.1007/s42979-019-0020-1
https://doi.org/10.1126/sciadv.1500838
https://doi.org/10.3389/fphy.2014.00005
http://www.frontiersin.org/interdisciplinary_physics/10.3389/fphy.2014.00005/abstract
http://www.frontiersin.org/interdisciplinary_physics/10.3389/fphy.2014.00005/abstract
http://www.frontiersin.org/interdisciplinary_physics/10.3389/fphy.2014.00005/abstract
https://doi.org/10.1145/3290688.3290703
http://doi.acm.org/10.1145/3290688.3290703
http://doi.acm.org/10.1145/3290688.3290703
https://www.dwavesys.com/media/3xvdipcn/14-1058a-a_advantage_processor_overview.pdf
https://www.dwavesys.com/media/3xvdipcn/14-1058a-a_advantage_processor_overview.pdf
https://doi.org/https://doi.org/10.1038/ncomms4243
https://doi.org/https://doi.org/10.1038/ncomms4243
https://docs.ocean.dwavesys.com/en/stable/index.html
https://docs.ocean.dwavesys.com/en/stable/index.html

A Python program to compute faulty hardware com-
ponent rates

#!/usr/bin/env python2

#usage: compute_hardware_stats.py graph_type n < hardware_edge_list
#hardware_edge_list has to contain a list of nodes in the first line

#and a list of 2—tuples representing the edges of the graph in the second line
#graph_type can be either ’C’ for Chimera graphs or P’ for Pegasus graphs

import sys
import networkx as nx
import dwave_networkx as dnx

graph_type = sys.argv|[1]
graph_size = int(sys.argv[2])

nodes_list = eval(sys.stdin.readline().split(’=")[1].strip())
print len(nodes_list)
sys.stdin.readline ()
edge_list = eval(sys.stdin.readline().split(’'=")[1].strip())

if graph_type = ’C’:

complete_hardware = dnx.chimera_graph(graph_size)
elif graph_type =— 'P’:

complete_hardware = dnx.pegasus_graph(graph_size)
else:

sys.exit (’Unrecognized graph type’)

number_of_faulty _qubits = complete_hardware.order () — len(nodes_list)

print ’‘number of faulty qubits =7, number_of_faulty_qubits

print 'probability of faulty qubits =7, round(float (number_of_faulty_qubits)/
complete_hardware.order () ,4)

active_qubits_induced = complete_hardware.subgraph(nodes_list)

number_of_faulty_edges = active_qubits_induced.size () — len(edge_list)

print ’‘number of faulty edges =’, number_of_faulty_edges

print ’probability of faulty edges
active_qubits_induced . size () ,4)

", round(float (number_of_faulty_edges)/

listings/compute_hardware_stats.py

19

B Python program to generate hardware graph with
faulty qubits and couplers

#!/usr/bin/env python2

#usage: generate_faulty_hardware_graph.py graph_type n qubit_fault_rate
edge_fault_rate

#graph_type can be either ’C’ for Chimera graphs or P’ for Pegasus graphs

import dwave_networkx as dnx
import sys
import random

graph_type = sys.argv|[1]

M = int(sys.argv|[2].strip())

faulty_qubit_prob = float (sys.argv[3].strip())
faulty_edges_prob = float (sys.argv[4].strip())

if graph_type = ’C’:

complete_hardware = dnx.chimera_graph (M)
elif graph_type = 'P’:

complete_hardware = dnx.pegasus_graph (M)
else:

sys.exit (’unrecognized graph type’)

faulty_qubits = []
faulty_edges = []
temp_graph = complete_hardware.copy ()

compute set of faulty qubits
for i in range(complete_hardware.order()):
if random.random () < faulty_qubit_prob:
faulty _qubits .append (i)

remove faulty qubits
for i in faulty_qubits:
if i in temp_graph.nodes():
for j in temp_graph.neighbors(i):
faulty_edges.append ((min(i,j), (max(i,j))))

temp_graph.remove_nodes_from (faulty_qubits)
for (i, j) in temp-_graph.edges():
if random.random() < faulty_edges_prob:
faulty_edges .append ((i,]))
temp_graph.remove_edges_from (faulty_edges)
print complete_hardware.order ()
for i in range(complete_hardware.order()):

if i in temp_graph.nodes():
for j in temp_graph.neighbors(i):

20

print j,
print

listings/generate_faulty_hardware_graph.py

C Python program to find largest embeddable clique
in Chimera subgraphs

#!/usr/bin/env python2

#usage: clique_emb_chimera_subgraph.py < graph_adj_list
#graph_adj_list is the physical graph in standard adj list format
#prints the largest embeddable clique in the hardware structure

from dwave_sapi2.util import get_hardware_adjacency ,get_chimera_adjacency
from chimera_embedding import processor

from itertools import product

import networkx as nx

import networkx.algorithms.isolate as isolate

import sys

def read_graph (f=sys.stdin):
n=int (f.readline ().strip())
G=nx.empty_graph(n, create_using=nx.Graph())
for u in range(n):
neighbors=f.readline ().split ()
for v in neighbors: G.add_edge(u, int(v))
return G

def iterate_min_vertex_cover (bin_strs, index):
string = bin_strs[index]

vertex_cover = []
for i in range(len(string)):
bin_value = int(string[i])
vertex_cover.append (missing_edges[i][bin_value])
vertex_cover.append(331)
return vertex_cover

M= 12
N =12
L=4

G = read_graph ()

complete_hardware_adj = get_chimera_adjacency (12,12 ,4)

complete_hardware_graph = nx.Graph ()

complete_hardware_graph.add_edges_from (complete_hardware_adj)

faulty_qubits = list (isolate.isolates (G))

active_qubits = list (set (complete_hardware_graph.nodes()) — set(faulty_qubits)

)

active_qubits_induced = complete_hardware_graph.subgraph(active_qubits)

21

missing_edges = [[72, 168], [86, 94], [163, 165], [248, 252], [552, 557],
(576, 582], [611, 614], [729, 732], [755, 851], [846, 854], [906, 1002],
(1147, 1149]]

bin_str = [’’.join(p) for p in product(’10’, repeat=len(missing_edges))]

enumerate all min vertex cover and get clique embeddings
max_clique_size = 0
largest_clique = []

for i in range(len(bin_str)):
min_vertex_cover = iterate_min_vertex_cover (bin_str, i)
qubits = list (set(active_qubits_induced .nodes()) — set(min_vertex_cover))

used_to_embed = active_qubits_induced .subgraph(qubits)
used_to_embed_adj = used_to_embed.edges|()

embedder = processor (used_to_embed_adj, MEM, N=N, I1=L)
embedding = embedder. largestNativeClique ()

if len(embedding) > max_clique_size:
max_clique_size = len (embedding)
largest_clique = embedding
print max_clique_size
print largest_clique

listings/clique_emb_chimera_subgraph.py

D Python program to find the largest embeddable clique
in physical graph

#!/usr /bin/env python2

#usage: find_clique_embedding_busclique.py < faulty_edge_list
#faulty_edge_list should contain multiple lines of list of 2—tuples
#representing faulty edges in the hardware, each line is treated as
#a different hardware graph

import dwave_networkx as dnx
import sys
from minorminer import busclique

M = int (sys.stdin.readline().strip())
sys.stdin.readline ()

for j in range(50):
faulty_edges = eval(sys.stdin.readline().strip())
PM = dnx.pegasus_graph (M)

coord = dnx.pegasus_coordinates (M)

PM.remove_edges_from (faulty_edges)

22

max_clique_size = 12x(M-1)

for i in range(max_clique_size, 0, —1):
result = busclique.find_clique_embedding (i, PM)

if len(result) = i:
embedding = []
for k in range(i):
embedding . append (result [k])

break

listings/find _clique_embedding_busclique.py

E Greedy algorithm to find the largest embeddable
clique in physical graph

#!/usr/bin/env python3

#usage: find_clique_embedding_greedy .py M < faulty_edge_lists

#M is the Pegasus graph spec

#compute the largest embeddable clique using the greddy algorithm

import dwave_networkx as dnx

import networkx as nx

import sys

from dwave.embedding. pegasus import find_clique_embedding

def output_max_clique_embedding (emb):
n = len (emb)
print (n)
for i in range(n):
for j in range(n):
if not i = j:
print (j),
print
print (emb)

def embed_with_faults(faulty_edges):
faulty_chain_edges = []
faulty_inter_chain_edges = []
logical_qubits_with_broken_chain = []

num_logical_qubits_affected = 0
max_clique = embed_no_faults ()

max_clique_order = len(max_clique)

max_clique_with_faults = []
max_clique_with_faults_order = 0

physical_qubits_with_faults = []

23

broken_chains_logical_qubits = []
broken_chains_physical_qubits = []
num_broken_chains = 0

actual_hardware = P.M. copy ()
actual_hardware.remove_edges_from (faulty_edges)

count the number of broken chains
temp = []
for (i,j) in faulty_edges:
for x in range(max_clique_order):
qubits = max_clique [x]
if i in qubits and j in qubits:
faulty_chain_edges.append ((i,j))
temp . append (x)

break
broken_chains_logical_qubits = list (set (temp))
num_broken_chains = len(broken_chains_logical_qubits)

for i in broken_chains_logical_qubits:
broken_chains_physical_qubits.append(max_clique[i])

for (i,j) in faulty_edges:
if (i,j) not in faulty_chain_edges:
faulty_inter_chain_edges.append((i,j))

remove broken chains from embedding
temp = []
chains_removed = []
for 1 in range(max_clique_order):
if i not in broken_chains_logical_qubits:
max_clique_with_faults.append(max_clique[i])
else:
chains_removed .append (max_clique[i])

new set of qubits without broken chains
max_clique_with_faults_order = len(max_clique_with_faults)

physical_qubits_used = [physical_qubit for chain in max_clique_with_faults
for physical_qubit in chain]

mapping of physical qubits to logical qubits of clique
physical_to_logical_map = {}
for physical in physical_qubits_used:
for i in range(max_clique_with_faults_order):
temp = max_clique_with_faults|[i]
if physical in temp:
physical_to_logical_map [physical] = i

set_of_disconnected_logical_qubits = []
verify if new set of qubits is clique
for (i, j) in faulty_inter_chain_edges:
check if both end—points are in—use
if i in physical_qubits_used and j in physical_qubits_used:

24

check if they logical qubits map are disconnected
logical_i = physical_to_logical_map [i]

logical_j = physical_to_logical_map[j]

temp = list (max_clique_with_faults[logical_i])

temp . extend (max_clique_with_faults[logical_j])

if not nx.is_connected (actual_hardware.subgraph (temp)):
if (logical_.i, logical_j) not in
set_of_disconnected_logical_qubits and (logical_j, logical_i) not in
set_of_disconnected_logical_qubits:

set_of_disconnected_logical_qubits.append((logical_i ,
logical_j))

greedily remove chains to rebuild clique

unpacked_disconnected_logical_qubits = []

for i in range(len(set_of_disconnected_logical_qubits)):
unpacked_disconnected_logical _qubits.extend (

set_of_disconnected_logical_qubits[i])

broken_connection_count = {}

count the number of chains where the connection is broken
for i in unpacked_disconnected_logical_qubits:
if i not in broken_connection_count:
broken_connection_count[i] = 1
else:
broken_connection_count [i] += 1

get logical qubits in order of num of broken connections
set_logical_qubits_to_.remove = sorted(broken_connection_count, key=
broken_connection_count.get, reverse=True)

set_of_disconnected_logical _qubits_copy = list (
set_of_disconnected_logical_qubits)
removed_logical_qubits = []

now remove chains greedily
for i in range(len(set_logical_qubits_to_remove)):
logical_qubit_to_remove = set_logical_qubits_to_remove [i]

for j in range(len(set_of_disconnected_logical_qubits)):
broken_connection = set_of_disconnected_logical_qubits[j]
if logical_qubit_to_remove in broken_connection and
broken_connection in set_of_disconnected_logical_qubits_copy:
set_of_disconnected_logical_qubits_copy .remove(
broken_connection)

removed_logical _qubits.append(logical_qubit_to_remove)

if len(set_of_disconnected_logical_qubits) = 0:
break
removed_logical_qubits = list (set(removed_logical_qubits))

removed_logical_qubits.sort ()
removed _logical _qubits.reverse ()

25

for i in removed_logical_qubits:
chains_removed .append (max_clique_with_faults[i])
max_clique_with_faults.pop(i)

if checkclique (actual_hardware, max_clique_with_faults) = False:
print ("Error’)

unused_chains = list (chains_removed)

post_process_clique = add_qubits(max_clique_with_faults ,faulty_edges,
unused_chains)

if checkclique(actual_hardware, post_process_clique) = False:

print ("Error’)
return post_process_clique

verify clique embedding is wvalid
def checkclique (host, embedding):
n = len (embedding)
temp = []
for qubit in embedding:
temp. extend (qubit)
if not len(set(temp)) = len (temp):
print ’chains not disjoint’, emebdding
return False
check each chain is connected
for chain in embedding:
if nx.is_connected (host.subgraph(chain)) = False:
#print chain, ’is not connected’
return False
check each pairs of chain is connected
for 1 in range(n):
for j in range(i+1, n):
temp = list (embedding[i])
temp . extend (embedding[j])
if nx.is_connected (host.subgraph(temp)) =— False:
print embedding[i], embedding[j], ’are not connected’
return False
return True

def embed_no_faults():

p=1[4, 0, 2, 1, 3, 5]

B =]

for k in range(len(p)):

for w in range (6xM-9):
if (4 <= (6xw + k)) and ((6xwt+k) < (6xM=9)):

#changed 1.,k
B.append ([[0,w, k], [1, w, p[k]]])

C=A+B
clique = []

for t in range(2):

26

for ¢ in C:
temp = []
for z in range(M-1):
for (u,w,k) in c:
temp . append ([u,w,2xk+t ,z])
clique . append (temp)

clique_linear_index = []

for v in clique:
temp = []
for p in v:
temp . append (coord . pegasus_to_linear (p))
clique_linear_index .append (temp)
emb = []
for linear in clique_linear_index:
emb.append (linear)

return emb
def add_qubits(max_clique_with_faults , faulty_edges, unused_chains):

actual_hardware = P.M. copy ()
actual_hardware.remove_edges_from (faulty_edges)

enumerate each chain to see if possible to add vertex to clique
for chain in unused_chains:
chain_subgraph = actual_hardware.subgraph(chain)
for component_vertices in nx.connected_components(chain_subgraph):
potential_clique = list (max_clique_with_faults)
potential_clique .append(list (component_vertices))

if checkclique (actual_hardware, potential_clique):
max_clique_with_faults = potential_clique

return max_clique_with_faults

M = int (sys.stdin.readline().strip())

M-2

T

O N T = WA
—

(
(
(
(
(

PM = dnx.pegasus_graph (M)
coord = dnx.pegasus_coordinates (M)
pegasus_2_chimera_max_clique = eval(sys.stdin.readline().strip())

for i in range(50):
faulty _edges = eval(sys.stdin.readline().strip())

27

result = embed_with_faults(faulty_edges)

listings/find _clique_embedding_greedy.py

28

