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Abstract

We study the “gap" between the length of a theorem and the small-
est length of its proof in a given formal system T. To this aim, we de-
fine and study f -short and f -long proofs in T, where f is a computable
function. The results show that formalisation comes with a price tag,
and a long proof does not guarantee a theorem’s non-triviality or im-
portance. Applications to proof-assistants are briefly discussed.

1 Introduction
According to Spencer [24],

Long proofs are an anathema to mathematicians.

Gödel’s seminal length-of-proof paper [15] was “re-discovered" after its
English translation [16, p. 396–399] and led to studies of theorems with long
proofs, see [20, 21], and more generally, to Blum’s (abstract) computational
complexity theory [2].

But, what is a “long proof"? First, we note that the original proof of a
theorem tends to be unnecessarily long (and sometimes not entirely correct),
but shorter and better proofs emerge in time. For example, Abel-Ruffini
Theorem, stating the impossibility of finding a solution in radicals to poly-
nomial equations of degree five or higher with arbitrary real coefficients, was
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initially 500 pages long (Ruffini’s proof). Still, later, Abel obtained a mere
9-page proof.

Second, as every sufficiently complex formal system, for example, a system
which includes Peano arithmetic (PA), proves infinitely many theorems, we
can easily deduce:

Fact 1 (Norwood [19]) Assume that the formal theory T based on a finite
alphabet proves infinitely many theorems. Then, for every positive integer
N , there exist infinitely many theorems in T whose smallest proof lengths
are larger than N .

2 Notation
By N denote the set of non-negative integers. Fix a formal axiomatic theory
with negation T based on a finite alphabet. The formula ¬S is the negation
of S.

A formula (sentence) S is a theorem of T, written, T
S, if there exists a

proof ⇡ in T for S, written, ⇡
T

S.

Consider the following symbol-length measure: the proof-length of the
proof ⇡ is the length of ⇡ (as a word on the finite alphabet of T) and is
denoted by |⇡|. The minimum-length proof of S is the shortest proof of S if
S is provable in T:

⇡(S) = inf{|�| | �
T

S}. (1)

If there is more than one proof ⇡ satisfying the first condition in (1), then
⇡(S) is the lexicographically first such proof.

The following properties of a formal theory T are used in what follows:

• T is computably enumerable if the set of proofs (hence, theorems) in T
is computably enumerable.

• T is rich enough1 if a certain amount of elementary arithmetic can be
carried out in it.

• T is consistent if there is no sentence S in T such that ` S and ` ¬S.
1The minimal amount of arithmetic required will be clear in each case.
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In what follows, we will use Turing machines M operating with words
on a finite alphabet [23, 11]. We will assume that the space complexity
of the Turing machine T , spaceT , satisfies the following natural condition:
spaceT (x) � |x|, for every input x. A decider is a Turing machine that stops
on every input and returns either 0 or 1.

The set ⌃⇤ is the free monoid under concatenation generated by the finite
set ⌃; its elements are called words. If u 2 ⌃⇤, by |u| we denote the length
of the word u and by u⌃⇤ the set {uv | v 2 ⌃⇤}.

3 Prerequisites
A famous result on Turing machines refers to the

Halting Problem: Given a pair (M,x), decide whether M halts
on x.

There are no resource limitations on the amount of memory or time re-
quired for the decider’s execution. The decider is a Turing machine that
stops in finite time and gives the correct answer for all possible pairs (M,x).
The undecidability of the Halting Problem [9, p. 70–71] is arguably the most
important result in computability theory:

Theorem 1 (Halting Theorem) No decider solves the Halting Problem.

Corollary 1 There exists a computably enumerable set that is incomputable.

A special class of computably enumerable but incomputable sets is the
class of creative sets, i.e. computably enumerable sets such that every other
computably enumerable set can be one-one reduced to it. All creative sets are
recursively isomorphic [22]. The set of theorems of many interesting formal
theories, including PA and Zermelo-Fraenkel set theory with choice (ZFC),
are creative [22].

A more interesting result than Fact 1 was proved by Hartmanis [18] for
the class of formal systems whose theorems form a creative set. Hartmanis
proof-length is the amount of tape used by Turing machines to accept the
theorems of a formal system. This measure is justified by the fact that for
any reasonable formal system, one can design a Turing machine which, for
any given sentence in the system, successively checks all possible proofs of
increasing length until it finds a proof of the given sentence or never halts if
the input is not provable in the system.
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Theorem 2 (Hartmanis [18]) Fix a formal theory T whose set of theo-
rems is creative, a Turing machine M that enumerates the theorems of T

and Hartmanis proof-length with respect to M . Then, one can effectively find
infinite subsets of “trivially true" theorems which require as long proofs in T

as the hardest theorems of T.

The proof consists in constructing a decidable infinite set of theorems
S in T TrivialTrue such that their shortest Hartmanis proof-length proofs
in T grow faster than any computable function (of the length of the the-
orems to be proved). The theorems S 2 TrivialTrue are called “trivially
true" because there is a decider for TrivialTrue which decides the question
S 0 2 TrivialTrue with computably bounded space. The proofs in T of the
theorems in TrivialTrue can be algorithmically generated by enumerating
all proofs in T and selecting those whose corresponding theorems are in
TrivialTrue. Theorem 2 shows that their shortest Hartmanis proof-length
proofs in T grow faster than any computable function (of the length of the
theorems to be proved).

4 Results
We start with a stronger form of Spencer Theorem [24]:

Theorem 3 Assume T is a computably enumerable, rich enough and con-
sistent formal theory and f : N ! N a computable function. Then there
exist an incomputable set of theorems I in T such that for every S 2 I:

|⇡(S)| � f(|S|). (2)

Proof. Assume by absurdity the existence of a computable function f
as in the statement of the Theorem 3 such that for every theorem S in T we
have

|⇡(S)| < f(|S|). (3)

Under this assumption, we show that the set of theorems in T is com-
putable, which contradicts Gödel’s First Incompleteness Theorem [5] for T.
Indeed, the following algorithm decides membership in the set of theorems
of T. Given a formula S in T

1. Calculate f(|S|).

2. Enumerate the finite set of proofs � with |�| < f(|S|).
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3. If for some proof � we have �
T

S, then return “yes" and stop; otherwise,
return “no" and stop.

This algorithm stops in finite time and returns the correct answer “yes".
In case no proof � proves S, then S is not a theorem of T because by (3)
every theorem has a proof |⇡(S)| < f(|S|), hence the “no" answer is also
correct.

Finally the set

{S | T
S, |⇡(S)| � f(|S|)} (4)

is incomputable because otherwise the set {S | T
S} would be computable

as the complement of the set (4) is computable, contradicting again Gödel’s
First Incompleteness Theorem [5] for T. QED

Remark 1 Note the difference between the following two sets: a) {� | �
T

S, for some S}, and b) {S | �
T

S, for some �}. The first set is computable,
but, in the context of Theorem 3, the second one is not.

Remark 2 Theorem 3 applies to PA, ZFC, the first-order theory of the
rational numbers with addition, multiplication and equality, and the first-
order theory of groups. In contrast, Presburger arithmetic, the first-order
theory of the natural numbers in the signature with equality and addition,
the first-order theory of Euclidean geometry and the first-order theory of
Abelian groups are each decidable. Hence Theorem 3 does not work.

Next, we give a simple affirmative answer to the following open question [19,
p. 112]:

It remains, however, an open and interesting question whether the
ratio of the [minimum-] length of proofs to the size of theorems
is unbounded.

Corollary 2 Assume T is a computably enumerable, rich enough and consis-
tent formal theory. Then, for every positive integer N there exists a theorem
S in T such that |⇡(S)| > N ⇥ |S|.

Proof. Let f(n) = n2. By Theorem 3, there exists an incomputable set of
theorems I (depending on f) such that for each S 2 I, |⇡(S)| � f(|S|) = |S|2.
Giving a positive integer N we can choose S 2 I with |S| > N (because I is
incomputable, hence infinite) so that |⇡(S)| > N ⇥ |S|. QED
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Corollary 3 Assume T is a computably enumerable, rich enough and con-
sistent formal theory. Then, for every positive integer N , the set.

{S | T
S, |⇡(S)| > N ⇥ |S|} (5)

is incomputable.

Proof. The complement of the set (5) is computable, so by the Gödel’s
First Incompleteness Theorem [5] for T, the set (5) is computably enumerable
and incomputable. QED

Consider a formal theory T over a finite alphabet ⌃ containing the symbol
¬. In T we fix two sets: P1 is a non-empty computable set of sentences not
starting with ¬ and its set of negations P2 = {¬S | S 2 P1}, and define two
sets of sentences in P1 provable in T:

Prov1 = {S 2 P1 | ` S},Prov2 = {S 2 P1 | ` ¬S}.

Theorem 4 ([5]) Let T be a computably enumerable, rich enough and con-
sistent formal theory such that Prov1 is not computable. Then, there exist
infinitely many sentences S in P1 such that S and ¬S are not provable in T.

The sentence “N(P, v)” says that the Turing machine P never halts on input
v. So, for every Turing machine P and word v, “N(P, v)” is a perfectly definite
sentence which is either true (if P never halts) or false (if P eventually halts).
The falsity of “N(P, v)" can always be proved by exhibiting the sequence
of Turing machine instructions run by P on v which leads to termination.
However, due to Theorem 1, when “N(P, v)" is true, no finite sequence of
instructions suffices to demonstrate it.

The sentence “N(P, v)" can be formalised in a sufficiently complicated
formal theory T like PA or ZFC. In such a T we choose P1 to be the set of
sentences “N(P, v)". By Theorem 1, the set Prov1 is computably enumerable
but not computable; in fact Prov1 is creative. Hence, by Theorem 2 we get:

Corollary 4 One can effectively construct infinite subsets of “trivially true"
sentences “N(P, v)" that require as long proofs as the hardest theorems of T.

Let f : N ! N be a computable non-decreasing function. For example,
f(n) = n + log n. We say that a proof ⇡ for S is f -short if |⇡|  f(|S|);
otherwise, ⇡ is f -long.
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Theorem 3 shows the existence of an incomputable set of theorems with
f -long proofs in T. Is this set “small"?

The proof of Hartmanis Theorem 2 shows that the sets of “trivially true"
theorems, which require as long proofs in T as the hardest theorems of T

contain an open set in the prefix topology of words on ⌃⇤ [7, 3] (the open
sets are unions of sets u⌃⇤). Theorems 5 and 6 prove a similar result in
terms of minimal-length proofs.

Theorem 5 Assume {S | ⇡
T

S} is creative, and f : N ! N is a computable
function. Then we can effectively find an infinite computable subset L ✓ {S |

⇡
T

S} which can be accepted by a Turing machine M such that for every
S 2 L we have:

|⇡(S)| � f(spaceM(S)). (6)

Proof. We use the following Turing machine T accepting {S | ⇡
T

S}. On
input S ✓ ⌃⇤ the machine T enumerates in length-lexicographical order all
proofs ⇡ in T and accepts S as soon as ⇡ is a proof for S. Then, using a
suitably large tape alphabet ⌃0 ◆ ⌃, we can construct T in such a way that
spaceT (S) = |⇡(S)| ([26]).

Corollary 4 in [18] shows the existence of L and M as in the statement
of Theorem. QED

Theorem 6 Let L ✓ ⌃⇤ be an infinite computable set. Then there is a
computable bijection  L : ⌃⇤ ! ⌃⇤ such that  L(L) contains an open subset
u⌃⇤.

Proof. If ⌃⇤ \ L is finite the assertion is obvious.
If ⌃⇤ \ L is infinite, let u 2 ⌃⇤, |u| > 0, and fix the computable bijections

f : N ! L, g : N ! ⌃⇤ \ L, hu : N ! u⌃⇤, and h̄u : N ! ⌃⇤ \ u⌃⇤,
respectively.

Define the function  L : ⌃⇤ ! ⌃⇤ as follows:

(a) if w 2 L then set  L(w) = hu(f�1(w)), and

(b) if w /2 L then set  L(w) = h̄(g�1(w)).

By construction, the function  L is a computable bijection and by (a),
 L(L) = u⌃⇤. QED

The set of theorems in a formal theory T is computably enumerable;
hence by Theorem 6 contains, in some suitable topology, a non-empty open
subset; hence it is not “small".
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Finally, we prove an analogue of Theorem 3 for theorems with long state-
ments and short proofs:

Theorem 7 Assume T is a computably enumerable, rich enough and consis-
tent formal theory. Then, there exist an infinite computable set of theorems
in T with n+ log n-short proofs.

Proof. Consider the theorem Sx = “21x is even”, where x is a non-empty
binary word. The proof ⇡ “As 21x is a positive power of 2, hence it is even"
has |⇡|+ constant < |Sx|+ log |Sx|, whenever |x| is long enough. By varying
x we get a computable set whose elements Sx have the required property.

QED

5 Proof-assistants
The sentence [1]

This statement has no proof in PA that contains fewer than N
symbols.

can be formulated in PA (using Gödel’s method [14]) but cannot be proved
with less than N symbols if PA is consistent. If we take an integer N larger
than the number of particles of ordinary matter in the Universe, crudely
estimated to 1080, this proof cannot be written down even if one could write
one symbol on each particle.

From an arithmetical point of view, the above sentence is not particularly
interesting. Can we give relevant examples of theorems with long proofs?2

The answer is affirmative.
The results presented above show that formalising mathematics comes

with price tags, which include unprovable statements and the existence of
infinite sets of “trivially true" theorems that have very long proofs. Therefore,
it is essential to search various formalisations and to explore new axioms [12].

A seemingly naive question is: Can brute-force-proof-search be improved
to become a helpful tool? The answer is related, at least in part, to the
problem of “automating" mathematics.

Fix a formal theory for a part of mathematics, A. There are at least three
interpretations of “automating A":

a) We can write an algorithm that decides whether an arbitrary statement
in A can be proved or not in A.

2Examples of interesting theorems with long proofs can be found in [27].
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b) We can write an algorithm that finds proofs for all provable sentences
in A.

c) An economically-viable algorithm can perform the human activity of
proving theorems in A.

The alternative a) is valid for some A (like the propositional calculus) but
false for more complex theories, like PA or ZFC for the whole mathematics,
because of the Halting Theorem. The weaker interpretation b) is true because
it does not require an algorithm to decide the provability status within A

of an arbitrary sentence. Indeed, a brute-force algorithm can find proof for
every sentence which is provable A. Such an algorithm is highly inefficient
and impractical when proofs are very long. However, this is not a limitation
affecting the working mathematician because humans cannot even read, even
less understand, “too long” mathematical sentences.

Brute-force-proof-searches show that b) is possible, which is one reason
for developing proof-assistants.

From b), we naturally arrive at c), which can be discussed from three
points of view: computational complexity, economics, and epistemology.

Following Gödel [13], if P=NP, then there is a polynomial-time algorithm
that given a first-order sentence and a positive integer n (in unary), decides
whether the sentence has size n proof in ZFC. It may seem that under this
hypothesis, there is no computational complexity obstacle to answering the
question c) affirmatively. However, this is not true because the distinction
between P and NP is mathematically, but not practically, meaningful: P=NP
only implies that problems that can be verified in polynomial time can also
be solved in polynomial time; however, polynomial-time algorithms are not
necessarily practical [10]. A quadratic time algorithm can check very long
proofs; in fact, proofs longer than any proof a human can write; hence, if the
algorithm does not find an answer, then the sentence is practically/humanly
impossible to prove.

Is it enough to know that something follows from some axioms and rules
of inference, or is a proof something that provides deeper insight? Under-
standing is a crucial point in mathematics, so what kind of statements could
be “humanly interesting"? What is the meaning of such a sentence? Is a
practical prover epistemologically viable, too? Fortunately, proof-assistants
are not ordinary algorithms working “in their world", but algorithms used in
human-machine cooperation, in which understanding is essential and achiev-
able [4, 8, 25].

Incompleteness can be proved by reduction to the Halting Theorem, so
one possibility of improvement is to use approximate solutions to the Halting
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Problem. Anytime algorithms trade execution time for quality of results [17].
Instead of correctness, an anytime algorithm returns a result together with a
“quality measure” which evaluates how close the obtained outcome is to the
result returned if the algorithm ran until completion. An efficient statistical
algorithm for solving the Halting Theorem is in [6].
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