
CDMTCS
Research
Report
Series

Turing Completeness of
Water Computing

Alec Henderson
Radu Nicolescu
Michael J. Dinneen
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

TN Chan
Compucon New Zealand

Hendrik Happe
Thomas Hinze
Department of Bioinformatics,
Friedrich Schiller University of Jena,
Jena, Germany

CDMTCS-554
July 2021
Centre for Discrete Mathematics and
Theoretical Computer Science



Turing completeness of water computing

Alec Henderson, Radu Nicolescu, Michael J. Dinneen
School of Computer Science, University of Auckland, Auckland, New Zealand

TN Chan
Compucon New Zealand, Auckland, New Zealand

Hendrik Happe, and Thomas Hinze
Department of Bioinformatics, Friedrich Schiller University of Jena, Jena, Germany

Abstract

We further develop water computing as a variant of P systems. We propose
an improved modular design, which duplicates the main water flows by associated
control flows. We first solve the three open problems of the previous design, by
demonstrating: how functions can be stacked without a combinatorial explosion of
valves; how termination of the system can be detected; and how to reset the system.
We then prove that the system is Turing complete by modelling the construction of
µ-recursive functions. The new system is based on directed acyclic graphs, where
tanks are nodes and pipes are arcs; there are no loops anymore, water falls strictly
in a ‘top down’ direction. Finally, we demonstrate how our water tank system can
be viewed as a restricted version of cP systems. We conclude with a list of further
challenging problems.
keywords: ater-based computing Membrane systems µ recursion

1 Introduction

There are many different computational models from the standard Turing model to bio-
inspired models such as P systems. Almost all of these systems are proven to be Turing
equivalent. However, some of these computational models can compute things provably
faster [1] or able to model computational problems easier than others.

Water has been used for information processing for over 2000 years [2]. Although water
computers are not commonly used today, they have had many successful uses in the
past. In 1901, water was used to calculate the nth root of a polynomial [3]. In the 1930s,
water integrators were made to solve ordinary differential equations and not surpassed
by digital computers until the 1980s [4]. In the late 1940s, the first Phillips machine was
built [5]. The Phillips machine was used to model macroeconomic theory and was used
in lectures for many years after the original prototype of the 1940s [6]. In the 1960s,
water was used to implement logic gates such as AND, OR and NOT [7]. In the early
2000s, a fluid based bilateral system was proposed and used to solve the satisfiability
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problem [8]. For a more detailed history see [9]. As our work is theoretical, we note
physical implementations of water based machines are still being developed such as in
[10].

In [11] a new model of water computing was proposed. The model worked by having a
set of tanks interconnected using pipes. Each pipe would be controlled by a set of valves
which allow water to pass through it if and only if all valves on the pipe are open. The
system would terminate after an arbitrary given amount of time, making it undecidable to
determine if the system had completed its computation. Further work was also required
to reset the system for the next evaluation or to combine a set of functions into a directed
acyclic graph without an exponential explosion of valves.

P systems are a parallel and distributed model of computing, first proposed by Gheorghe
Păun in [12], without any central control, where each membrane applies applicable rules
at each time step. These systems have been able to solve computationally hard problems
[13] utilising a time-space trade off. Recent work includes simulating P systems on
mainstream hardware [14], as well as research on the capabilities of restricted P system
models [15].

In this work we present an alternative definition for the water tank system based on
rules, which more closely aligns with cP systems [16] (but also other P system variants).
Our definition removes the timed termination of the previous model by replacing it with
a set of control tanks that tightly control the execution of the actual operation. Our
model also removes pipes having different flows as we assume that each pipe will move
one unit of water at each time step. Our system has two types of tanks: value tanks,
which correspond to the tanks presented in [11]; and control tanks, which are essentially
Boolean values. Each input and output value tank of the system has a corresponding
control tank. If a control tank is full, then the corresponding value tank has been filled.
This means that an operation has terminated if and only if all of its output control tanks
are full.

Value tanks have capacities in N+ ∪ {∞}: infinite (∞) for unbounded tanks, and finite
(N+) for bounded tanks. We assume that all bounded tanks have overflow pipes, which
cleanly drain any possible overflow down to an infinite sink; but, while still there, overflow
pipes are not represented in our diagrams (to keep these simple). Most theoretical results,
such as µ-recursivity, assume that all value tanks are unbounded; while, obviously, all
practical implementations need bounded tanks.

In Section 2 we briefly describe the basics of water computing systems. In Section 3 we
describe how a control tank can be constructed and how to reset a system. In Section
4 we define formally our new model. In Section 5 we prove that the system is Turing
complete and that the tank system can be viewed as a directed acyclic graph. In Section
6 we describe how the valves are viewed as a set of membrane computing rules and
establish the water tank system as a restricted version of cP systems.
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2 Background

Saturation arithmetic. As discussed in [17], saturation arithmetic restricts operations
to a fixed range. If an operation results in a number exceeding the upper bound, then
the result is the upper bound. Conversely, if the operations result goes below 0, then the
result is 0. If the upper and lower bounds are +∞ and −∞ respectively, then saturation
arithmetic is standard arithmetic. For example, in the range [0,100], 5 × 30 = 100
and 20 − 30 = 0. The tank system presented in [11], as well as our system, both use
saturation arithmetic where the lower bound value is 0 (no water) and the upper bound is
the capacity of the result tank (sometimes unbounded). Saturation arithmetic produces
more ‘natural’ results than the usual modular arithmetic used by current computers We
denote saturating addition as ⊕, and saturating subtraction as 	.

Water tank system. Tanks are displayed as open rectangles, the pipes as lines between
the tanks and valves as lines crossing the pipe it belongs. We denote water going to the
infinite sink by a black arrow at the end of the pipe. If the pipe starts with an empty
rectangle, then the water comes from the infinite source.

Figure 1 and Figure 2 illustrate two tank systems that only contain value tanks (and no
control tanks).

1. Subtraction(	): Basic saturated subtraction can be achieved using three tanks.
The input tanks x and y, and the output tank z as shown in Figure 1. The system
drains from both x and y until y is empty. Once y is empty, x corresponds to the
result to be stored in z.

2. Addition(⊕): Basic saturated addition is achieved using three tanks: the two
inputs and the output total as shown in Figure 2. The system does not contain
valves and the values of x and y go directly to the result. Once x and y are empty,
z contains the final result.

As discussed in [11], although we can intuitively model simple stand-alone gates – such
as basic addition and subtraction - several essential open problems remain:

• Termination detection: a tank system that self-determines when it has completed,
with a control tank becoming full when the system has finished.

• System reset: a way to evaluate the system again, possibly on other data.

z

y = 0

y 6= 0

x y

Figure 1: A diagram representing basic subtraction z = x	 y.
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x y

z

Figure 2: A diagram representing basic addition z = x⊕ y.

• Simplifying the control valves, to avoid a combinatorial explosion in number of
tanks – essential for building more complex systems.

• Limiting the system structure to be a directed acyclic graph – the previous paper
[11] used loops for implementing more complex arithmetic, such as multiplication
and division. Where a loop requires a ‘pump’ to move the water against the natural
flow (gravitational gradiant).

This paper solves all these problems, by extending the basic approach with a parallel
support network of control tanks. Also, we prove that this extended water system is
Turing complete (by way of µ-recursive functions).

3 Modularisation and control tanks

In this section we describe the use of control tanks for termination detection. We also
discuss how these allow for modularisation and composition of functions.

Constructing complex expression such as h(x, y, u, v) = (x ⊕ y) 	 (u 	 v), from the
functions in Figures 1 and 2 requires additional valves to be added. If one combines
these without the addition of valves, then the result may be unexpected, because of the
synchronisation requirements of the subtraction operator. To overcome this issue we use
modularisation to allow for easier composition of operations.

Thus, the following restrictions are placed on all functions. A function f(x1, ..., xn) =
y1, ..., ym has accompanying controls on the inputs x′1, ..., x

′
n and outputs y′1, ..., y

′
m. The

function executes when all input control tanks are filled. Each output of the function
has finished being computed, when its corresponding control tank has been filled. For
example, a function f with n inputs and m outputs is presented in Figure 3. We note
that inner control tanks initially are empty for example, q′ in Figure 4.

x1 x′
n

y1, ..., ym = f(x1, ..., xn)

x′
1 ... xn

y1 y′
my′

1 ... ym

Figure 3: A diagram representing a function f following the conventions y1, ..., ym =
f(x1, ..., xn).
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x y′

z
z′

q′ = 1

q′ = 1

y = 0

y 6= 0

q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

x′

q′ = 1

y

q′ = 1

Figure 4: A diagram representing the controlled saturating subtraction operator z = x	y.

Saturating subtraction following these conventions becomes the system presented in Fig-
ure 4. Although the system looks more complicated, it is much easier to combine the
system into a complex system. Any function relying on the results from another function
only needs a relationship with its result and control tanks. Thus a function can be viewed
as a black box, cf. Figure 3, where the inputs are passed to the function and the outputs
are a control and result tank. The inner workings can be ignored as before, and after
execution they are the same. The Appendix presents an example trace of the controlled
subtraction via images as well as, cell contents of a cP representation.

Complex expressions can be built using a high level design. For example, if we have the
addition function f(x, y) = x ⊕ y as seen in Figure 5, then we can create the complex
expression h(x, y, u, v) = (x⊕y)	(u	v) by simply using the outputs and output controls
as the inputs to the subtraction, as seen in Figure 6.

4 New model

With the addition of control tanks we formalise our model based on the work presented
in [11]. Our water based system:

Π = (T, T ′, F, E,R, L,C, V, S, P )

x y′

z z′

x′ y

q′ = 1 q′ = 1

q′ = 1 q′ = 1

q′

x′ = 1

y′ = 1

y = 0

x = 0

x′ = 0

y′ = 0

Figure 5: A diagram representing the controlled saturating addition operator z = x⊕ y.
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x y′

z z′

x′ y

z = x+ y

u v′

w w′

v u′

w = u− v

t = z − w

t t′

Figure 6: A diagram showing how complex expressions can be created.
t = (x⊕ y)	 (u	 v).

With its components:

• T finite set of tank identifiers.

• T ′ ⊂ T finite set of control tank identifiers.

• F ⊂ T ′ set of control tanks that when full indicate termination of the system.

• E ∈ T \ T ′ the unique infinite sink of the system.

• R ∈ T \ T ′ the unique infinite source in the system.

• L : T → N+ The level which the tanks are built, the lower the number the concep-
tually higher the tank. Water can only flow from a tank with a lower number to
one with a higher number. r is at 0 and s at ∞.

• C : T → N+ ∪ {∞} capacity of the tanks. Where we assume that value tanks are
able to be unbounded. Of course for practical cases all value tanks will need to
have finite capacity. Control tanks all have capacity 1 (they act as Boolean values).

• V finite set of valve identifiers.

• S : V → (T = N+∪T 6= N+) An expression from a valve identifier to check whether
or not a tank has a certain volume.

• P ⊂ T × T × P(V ) (P(V ) denotes the power set over V ) finite set of pipes where
water flows from the first element to the second. A pipe (i, j, v) must have L(i) <
L(j), meaning water only flows in one direction (‘down’).

To clarify the model we present controlled subtraction:

• T = {x, y, x′, y′, q′, z, z′, r, s}

• T ′ = {x′, y′, z′}

• F = {z′}

• E = s

• R = r

• L = (x, 1), (y, 1), (x′, 1), (y′, 1), (q′, 2), (z, 3), (z′, 3), (r, 0), (s,∞)
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• C = (x,∞), (y,∞), (x′, 1), (y′, 1), (q′, 1), (z,∞), (z′, 1), (r,∞), (s,∞)

• V = {1, 2, 3, 4, 5, 6, 7, 8}

• S = (1, q = 1), (2, y 6= 0), (3, y = 0), (4, x = 0), (5, y′ = 1), (6, y′ = 0), (7, x′ =
0), (8, x′ = 1)

• P = (x, s, {1, 2}), (x, z, {1, 3}), (y, s, {1}), (x′, s, {1}), (y′, s, {1}),
(r, q′, {5, 8}), (q′, z′, {3, 4, 5, 7})

As with the majority of models of computation the formal definition is not used in the
majority of cases but rather more intuitive descriptions which can be transformed into
the formal definition with a small amount of work. In this work we shall present where
appropriate a pictorial view of our functions as well as a set of equations which both
describe the system. Both of these can be transformed back into the formal definition.

5 Turing completeness

We first prove that our system can construct all unary primitive recursive functions. We
assume that our value tanks are unbounded for this proof. In [18, 19, 20, 21] it was
shown that these base functions and closure operators are sufficient to construct the
unary primitive recursive functions:

• Successor function: S(x) = x+ 1 (cf. Figure 10)

• Subtraction function: B(x, y) = x− y (cf. Figure 4)

• Composition operator: C(h, g)(x) = h(g(x)) (cf. Figure 11)

• Difference operator: D(f, g)(x) = g(x)− f(x) (cf. Figure 12)

• Primitive recursion operator: P (f) = p, p(0) = 0, p(x+ 1) = f(p(x)) (cf. Fig-
ure 13)

To construct these functions we make two copy functions: an inplace copy and a de-
structive copy. Inplace copy as seen in Figure 7 takes input x and outputs x1, whilst x
receives a copy of its original content. The destructive copy as seen in Figure 8 takes an
input x and outputs two copy’s of x1 and x2, emptying x. in Figure 6.

Successor function S(x) = x + 1: The successor function S(x) adds one to the given
input x. Using similar ideas to the addition displayed in Figure 5 we arrive at the function
displayed in Figure 10, where instead of draining from y we drain from the input control
(the control would always contain a unit amount of water).

Composition operator C(h, g)(x) = h(g(x)): The composition operator as seen in
Figure 11 is started by filling the control tank x′. Once the composition is started it runs
the function g(x), where g(x)’s output y is the input for f(y), and f(y)’s output z is the
output for the composition.

Difference operator D(f, g)(x) = g(x)−f(x): The difference operator works similar to
that of the composition, where the input to the difference is the input to the destructive
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x x′

q′

x′ = 1

a

x1 x′
1

x = 0

q′ = 1

x′ = 0

x 6= 0

q′ = 1

x′ = 1

q′ = 1

a = 0

x′ = 0

x1 = x

Figure 7: A diagram representing the inplace copy function i(x) = x.

Table 1: Equations for inplace copy.

a(t+ 1) = if x(t) 6= 0 & q′(t) = 1 then a(t)⊕ 1
else if x′(t) = 0 then a(t)	 1
else a(t)

x(t+ 1) = if x′(t) = 0 & a(t) > 0 then x(t)⊕ 1
else if x′(t) = 1 & q′(t) = 1 then x(t)	 1
else x(t)

x′(t+ 1) = if x(t) = 0 & q′(t) = 1 then x(t)	 1 else x(t)

q′(t+ 1) = if x′(t) = 1 then q′(t) + 1
else if a(t) = 0 & x′(t) = 0 then q′(t)	 1
else q′(t)

x1(t+ 1) = if x′(t) = 1 & q′(t) = 1 & x(t) > 0 then x1(t)⊕ 1 else x1(t)

x′1(t+ 1) = if a(t) = 0 & x′(t) = 0 & q′(t) > 0 then x′1(t)⊕ 1 else x′1(t)

x x′

x1

q′ = 1

q′ = 1

x′
2

q′ 6= 0

x = 0

x1 = x2 = x q′

x′ = 1

x′
1

x = 0

x2

q′ = 1

x 6= 0

Figure 8: A diagram representing the destructive copy function c(x) = x, x.
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Table 2: Equations for destructive copy.

x(t+ 1) = if q′(t) = 1 then x(t)	 1 else x(t)

x′(t+ 1) = if q′(t) = 1 then x′(t)	 1 else x′(t)

q′(t+ 1) = if x′(t) = 1 then q′(t)⊕ 1
else if x(t) = 0 then q′(t)	 1
else q′(t)

x1(t+ 1) = if q′(t) = 1 & x(t) > 0 then x1(t)⊕ 1 else x1(t)

x2(t+ 1) = if q′(t) = 1 & x(t) 6= 0 then x2(t)⊕ 1 else x2(t)

x′1(t+ 1) = if x(t) = 0 & q′(t) > 0 then x′1(t)⊕ 1 else x′1(t)

x′2(t+ 1) = if x(t) = 0 & q′(t) 6= 0 then x′2(t)⊕ 1 else x′2(t)

copy function (Figure 8). The output of the destructive copy is then passed to f and g.
The output of f and g is then passed to the subtraction function (Figure 4). Finally the
output of the subtraction is the output of the difference function D.

Primitive recursion operator P (f) = p, p(0) = 0, p(x+ 1) = f(p(x)): The primitive
recursion operator P as seen in Figure 13 can be explained by the program in Figure 9.
If the counter is 0, then the result is 0. Otherwise, function f is repeatedly executed
while decrementing x, until x becomes 0. Once x is zero, the function returns the result
and fills the control tank .

Theorem 1. Our water system can construct all unary primitive recursive functions.
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1 i f x ’ = 1 then
2 i f x = 0 then
3 y ’ ← 1 ; y ← 0 ;
4 return
5 e l s e
6 u ← 0 ;
7 loop :
8 v ← f (u ) ;
9 i f x = 0 then

10 y ← v ; y ’ ← 1 ;
11 return
12 e l s e
13 x ← x − 1 ;
14 u ← v ;
15 goto loop

Figure 9: Code to describe the execution of the primitive recursion operator
p = P (f), p(0) = 0, p(x+ 1) = f(p(x)).

operator.pdf

x x′

q′ = 1

x′ = 1

x = 0

x′ = 0

q′ = 1

z = x+ 1 q′

z′z

Figure 10: A diagram representing the successor function S(x) = x+ 1.

Table 3: Equations for the successor function.

x(t+ 1) = if q′(t) = 1 then x(t)	 1 else x(t)

x′(t+ 1) = if q′(t) = 1 then x′(t)	 1 else x′(t)

q′(t+ 1) = if x′(t) = 1 then q′(t)⊕ 1
else if x(t) = 0 then q′(t)	 1
else q′(t)

z(t+ 1) = if q′(t) = 1 & x(t) > 0 & x′(t) > 0 then z(t)⊕ 2
else if q′ = 1 & (x(t) > 0 or x′(t) > 0) then z(t)⊕ 1
else z(t)

z′(t+ 1) = if x′(t) = 0 & x(t) = 0 & q′(t) > 0 then z′(t)⊕ 1 else z′(t)
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x x′

y = g(x)

y y′

z = f(y)

z z′

Figure 11: A diagram representing the composition of functions C(x) = f(g(x)).

x1 x′
1

u = g(x)

u u′

z = B(u, v) = u− v

x x′

z z′

x2 x′
2

v = f(x)

v v′

c(x) : x1 = x2 = x

Figure 12: A diagram representing the difference of functions D(x) = g(x)− f(x).

x x′

q′ = 1

u

v = f(u)

v v′

x′ 6= 0

q′ = 1

u′

x = 0

x = 0

v = 0

y y′

x 6= 0

x 6= 0

v′ = 1

v 6= 0

d′

x 6= 0

v = 0

v′ = 0

d′ 6= 0

v′ = 0

x′ = 0

x = 0

u′ = 0

q′

x′ = 1

u′ 6= 0

Figure 13: A diagram representing the primitive recursion operator
P (f) = p, p(0) = 0, p(x+ 1) = f(p(x)).
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To prove Turing completeness, we require that our system can construct the unary prim-
itive recursive functions as well as [19]:

• Addition function: A(x, y) = x+ y (see Figure 5)

• µ operator: µy(f)(x) = miny{f(x, y) = 0}

We note that the µ operator currently takes two arguments and all other functions take
one (except addition and subtraction). To overcome this issue we apply the Cantor
pairing function [19]:

Π(x, y) =
(x+ y)(x+ y + 1)

2
+ y =

((x+ y)2 + 3y + x)

2

As squaring, multiplying by a constant, and division of one variable are primitive recur-
sive, the only two variable function required to construct the Cantor pairing function is
addition (see Figure 5). µ operator µy(f)(x) = miny{f(x, y) = 0}: The µ operator as
seen in Figure 14 first transfers the data from x to x′. It then utilises the inplace copy
function (Figure 7) i on both x′ and y (y is initially 0). It uses these copies to run f(x, y).
If f(x, y) results in 0, then y is copied into the result z and the control tank is filled. If
the result was not 0, then y is incremented and starts the copying process again until the
result becomes 0 (which may or may not occur).

Theorem 2. Our water system is Turing complete.

Theorem 3. Our water system can be viewed as a directed acyclic graph.

Our construction of µ recursive functions (all base functions and the operators) required
the pipes to only go in one direction (‘down’). Hence, if the pipes are viewed as arcs and
tanks as nodes, then the digraph contains no cycles. This is in contrast to the system
presented in [11], where loops were used to achieve operations such as multiplication and
division.

6 High Level Rules

6.1 P systems

There are many P system variants such as: the original [12], spiking neural [22], tissue [23]
and cP systems [16]. Our water tank system could be described in a variety of ways,
however, we find that a cP system model fits easily.

Using a BNF-like notation, Tables 4 and 5 describe the basic structure of cP systems.
The grammar presented in Table 4 describes the contents for top-cells and sub-cells, i.e.
how data is stored in cP multisets. The grammar presented in Table 5 describes the
high-level rewriting rules for cP systems.

Before a rule can be applied, it must match, by way of unification, all conditions specified
by its left-hand-side, and promoter constraints. vterm arguments enclosed in round
parentheses ‘()’ require complete match. weak priority order – i.e., rules are sequentially
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x x′

y′

q′ = 1

u u′ v v′

w w′

w = f(u, v)

x1

q′ = 1

x′
1

x = 0

u = i(x) = x1

y y′

v = i(y) = y

q′

x′ = 1

w′ = 1

w = 0

y

w′ = 1

w = 0

y 6= 0

w = 0

y = 0

d′

w 6= 0d′ 6= 0

w = 0

d′ 6= 0

w = 0

d′ 6= 0

w = 0

d′ 6= 0

w = 0

q′ = 1

x = 0

x′ 6= 0

w′ 6= 0

w′ = 1

w = 0

x1 = 0

Figure 14: A diagram representing the µ operator µy(f)(x) = miny{f(x, y) = 0}.
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considered in the top-down order. The first applied rule commits the target state, any
subsequent rule that indicates a different target state is then disabled. This way, the weak
priority order can be used to simulate if-then-else structures of traditional programming.

The system described in [11] contains a set of tanks which contain at any time step a
fixed volume of water. Each tank is a data storage device working similarly to that of
a cP system sub-cell. cP systems, however, are able to create or delete sub-cells during
execution, whereas water tanks must be created before and cannot be removed. A rule
in a cP system may cause a change to the number of sub-cells or the sub-cells content.
Similarly the pipes and valves of a water tank change the volume of water contained in
the tanks. These similarities allow us to define the tank system as a restricted version of
cP systems. Our tank system rules can be defined by the grammar in Table 5. Of course
this grammar makes no reference to the maximum value which can be contained in a tank.
The maximum content in a cell can be easily described by a rule which subtracts from
the tank any water which goes above that value. For example, if we have a tank vx which
has a maximum value of 2, then we add the rule in Table 6. This rule removes any water
above the maximum and ensures the tank returns to its maximum value. We ignore this
technical detail when describing our rule sets as the maximum value is implicitly defined
or an implementation detail defining the maximum in the saturating arithmetic.

6.2 Examples

We now present a few examples of rules for some of the gates presented earlier(ignoring
the overflow for brevity):

1. Addition: Figure 2 shows a tank system for the saturated addition y1 = x1 ⊕ x2.
This tank system can be faithfully emulated by the following cP ruleset:

2. Subtraction: Figure 1 shows a tank system for the saturated subtraction y1 =
x1 	 x2. This tank system can be faithfully emulated by the following cP ruleset:

3. Controlled subtraction: The controlled subtraction presented in Figure 4 has
the rules:

with a trace of the ruleset and tank system shown in the appendix.

We note that utilising the full power of cP systems we can simplify the rule sets further.

Table 4: BNF grammar for cP top-cells.

<top−c e l l> : := <s ta te> <term> . . .
<s ta te> : := <atom>
<term> : := <atom> | <sub−c e l l>
<sub−c e l l> : := <compound−term> . . .
<compound−term> : := <functor> <args> . . .
<functor> : := <atom>
<args> : := ‘ ( ’ <term> . . . ‘ ) ’

14



Table 5: BNF grammar for rules, here omitting inter-cell messaging.

<ru le> : := <lhs> →a <rhs> <promoters>
<lhs> : := <s ta te> (<vterm>). . .
<rhs> : := <s ta te> (<vterm>). . .
<promoters> : := ( ‘ | ’ <vterm>). . .
<vterm> : := <var i ab l e> | <atom> | <compound−vterm>
<compound−vterm> : := <functor> <vargs> . . .
<vargs> : := ‘ ( ’ <vterm> . . . ‘ ) ’

Table 6: Rule to ensure tank vx does not exceed 2 units of water.

s1 vx(111 ) → s2 vx(11) (1)

Table 7: Rules to describe y1 = x1 ⊕ x2.

s1 x1(1X) x2(1X) y1(Y ) → s1 x1(X) x2(X) y1(Y 11) (1)
s1 x1(1X) y1(Y ) → s1 x1(X) y1(Y 1) (2)
s1 x2(1X) y1(Y ) → s1 x2(X) y1(Y 1) (3)

Table 8: Rules to describe y1 = x1 	 x2.

s1 x1(X1) → s1 x1(X) | x2( 1) (1)
s1 x2(Y 1) → s1 x2(Y ) (2)
s1 x1(X1) y1(Y ) → s1 x1(X) y1(Y 1) | x2() (3)

Table 9: A ruleset for the controlled saturating subtraction operator z = x	 y.

s1 q() → s2 q(1) | cx(1) cy(1) (1)
s2 cx(1) → s2 cx() | q(1) (2)
s2 cy(1) → s2 cy() | q(1) (3)
s2 vx(X1) → s2 vx(X) | q(1) vy( 1) (4)
s2 vy(Y 1) → s2 vy(Y ) | q(1) (5)
s2 vx(X1) vz(Z) → s2 vx(X) vz(Z1) | q(1) vy() (6)
s2 q(1) cz() → s3 q() cz(1) | cx() cy() (7)
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For example, a traditional cP solution to subtraction (x	 y) is achieved using the rules
in Table 10. Noting that the full cP system solution takes only 1 step where as, the water
based system will take a linear number of steps.

7 Conclusion and future work

We have proven that our water tank system based on the system proposed in [11] is
Turing complete, via construction of µ recursive functions. We have demonstrated how
termination can be detected, and how to combine different functions without an expo-
nential explosion of the number of valves. Furthermore, we have shown that the water
tank system only requires water to flow in one direction (no loops are required). Future
work includes exploring asynchronous circuits which do not require all inputs to be filled
before processing starts. For example, a logical ‘or’ gate could proceed as soon as one of
the inputs is full. Although we have shown Turing completeness, more practical examples
need to be explored. For example: equation solvers, non-numerical problems and models
of biological systems.

We have shown how to create µ recursive functions, but practical constructions (without
just relying on our µ constructions) of RAM and PRAM machines could also be useful.
Constructing a programmed universal water machine, which takes a program as data,
may allow the system to be more practical. Direct translation between water and cP
systems would simplify the design of the water based system, and allow a practical
implementation of a restricted version of cP systems.
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Theoretical Computer Science, vol. 296, no. 2, pp. 295–326, 2003.

I Example trace of controlled subtraction

Here we present a trace of saturation subtraction, for both the tank system presented in
Figure 4, and cP rules in Table 3.
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x′

q′ = 1

s1 q() cx(1) cy(1) cz() vx(3) vy(2) vz()

Figure 15: The initial state of controlled subtraction of 3	 2.
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s2 q(1) cx(1) cy(1) cz() vx(3) vy(2) vz() rule (1)

Figure 16: The first step of controlled subtraction of 3− 2.
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s2 q(1) cx() cy() cz() vx(2) vy(1) vz() rules (2, 3, 4, 5)

Figure 17: The second step of controlled subtraction of 3	 2.
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s2 q(1) cx() cy() cz() vx(1) vy() vz() rules (4, 5)

Figure 18: The third step of controlled subtraction of 3	 2.
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Figure 19: The fourth step of controlled subtraction of 3	 2.

x y′

z

q′ = 1

q′ = 1

y = 0

y 6= 0

q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

z = x− y

z′

x′

q′ = 1

y

q′ = 1

s3 q() cx() cy() cz(1) vx() vy() vz(1) rule (7)

Figure 20: The last step of controlled subtraction of 3	 2.
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