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Abstract7

In this paper we study various notions of bi-immunity over alphabets with b � 2 elements and recursive8

transformations between sequences on di↵erent alphabets which preserve them. Furthermore, we extend the9

study from sequence bounded by a constant to sequences over the alphabet of all natural numbers, which10

may or may not be bounded by a recursive function, and relate them to the Turing degrees in which they11

can occur.12
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1. Introduction15

Randomness is an important resource in science, statistics, cryptography, gambling, medicine, art and16

politics. For a long time pseudo-random number generators (PRNGs) – computer algorithms designed to17

simulate randomness – have been the main, if not the only, sources of randomness. As early as 1951 von18

Neumann noted [46] that: “Anyone who attempts to generate random numbers by deterministic means is,19

of course, living in a state of sin.” This statement was not meant to stop people from using PRNGs, but20

to caution against mistakenly believing that PRNGs produce “true“ randomness. With the development21

of algorithmic information theory [19, 34, 21] classes of di↵erent quality of random strings/sequences have22

been studied and von Neumann intuition was rigorously proved: mathematically there is no “true“ random23

string/sequence [14].24

In many domains requiring random numbers it is crucial to have high quality randomness. This is obvious25

in cryptography, where good randomness is vital to the security of data and communication, but is equally26

true in other areas such as medicine, where decisions of consequence may be made based on scientific and27

statistical studies relying essentially on randomness. Problems with the poor quality of randomness of various28

PRNGs are well known and can have serious consequences: a classical example is the discovery in 2012 of a29

weakness in a worldwide-used encryption system which was traced to a PRNG [33].30

These practical requirements have driven a recent surge of interest in developing random number31

generators “better than PRNGs”, in particular, quantum random number generators (QRNGs) [16, 25].32

QRNGs are generally considered to be, by their very nature, “better” than classical RNGs and “should excel”33

precisely on properties of randomness where algorithmic PRNGs obviously fail: incomputability and inherent34

unpredictability. To date only one class of QRNGs has been proved to satisfy these desiderata [4, 5, 32].35

This type of QRNGs is based on a located form [1, 3, 6, 7, 8] of the Kochen-Specker Theorem [30], a result36

true only in Hilbert spaces of dimension at least three. These QRNGs – which locate and repeatedly measure37

a value-indefinite quantum observable – produce more than incomputable sequences (over alphabets with38
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at least three letters), more precisely, bi-immune sequences1, that is, sequences for which no algorithm can39

compute more than finitely many exact values. As almost all applications need quantum random binary40

strings, there is a stringent demand of randomness-preserving algorithms transforming non-binary strings41

into binary ones. This is the context motivating the following questions studied in this paper: (a) which42

sequences on non-binary alphabets are immune or bi-immune?, (b) how can one algorithmically transform a43

bi-immune sequence over a non-binary alphabet into a binary bi-immune sequence?44

Historically, the notion of immunity grew out of attempts to solve Post’s problem [38]; it has since been45

studied in other areas such as algorithmic randomness [27, 9], the theory of minimal index sets [45] as well as46

the theory of numberings and ⌃0
1-dense sets [11]. In this context we investigate various generalised notions of47

(bi-)immunity for sequences over finite and infinite alphabets, in particular sequences that do not grow too48

quickly in the sense that a single recursive function bounds each term of such a sequence. The following49

questions will be studied: (c) how does the Turing degree of a (bi-)immune sequence bounded by a recursive50

function h (or recursively bounded (bi-)immune sequence) depend on h?, (d) which oracles are powerful51

enough to compute recursively-bounded (bi-)immune sequences?, (e) what is the computational power of52

recursively-bounded (bi-)immune sequences compared to that of the halting problem?, (f) are the Turing53

degrees of recursive-bounded bi-immune sequences closed upwards?54

2. Notation55

For background on algorithmic randomness, we refer the reader to books of Calude, Downey and56

Hirschfeldt, Nies [14, 21, 36]. The set of positive integers will be denoted by N; N [ {0} will be denoted57

by N0. Consider the alphabet Ab = {0, 1, . . . , b � 1}, where b � 2 is an integer; the elements of Ab are to58

be considered the digits used in natural positional representations of numbers in the interval B at base59

b where B is the unit interval of real numbers. By A
⇤
b and A

!
b we denote the sets of (finite) strings and60

(infinite) sequences over the alphabet Ab. Strings will be denoted by �, x, y, u, w; the length of the string61

x = x1x2 . . . xm, xi 2 Ab, is denoted by |x|b = m (the subscript b will be omitted if it is clear from the62

context); Am
b is the set of all strings of length m. Sequences will be denoted by w = w1w2 . . . ; the prefix63

of length m of w is w � m = w1w2 . . . wm. The complement of U ✓ N0 will be denoted by U , that is,64

U = N0 \ U .65

We denote by � the prefix relation (between two strings or a string and a sequence).66

Any unexplained recursion-theoretic notation can be found in the textbooks of Rogers, Soare and Odifreddi67

[39, 43, 37]. We assume knowledge of elementary computability theory over di↵erent size alphabets [14].68

Sequences can be also viewed as Ab-valued functions defined on N. Further, we consider a generalised kind of69

sequence called an h-bounded sequence for some recursive function h; for such a sequence w = w1w2 . . . , one70

has wi < h(i) for each i 2 N (h(0) is excluded for notational convenience). An h-bounded function is any71

(possibly partial) function g satisfying g(i) < h(i) for each i 2 dom(g).72

For each u 2 A
⇤
2, we identify u with n 2 N0 such that 1u is the binary representation of n+ 1 and write73

n = number(u), u = string(n). For every n 2 N, define log(n) := max{k 2 N0 : 2k  n}; it follows that if74

u = string(n), then |u| = log(n+ 1).75

For any string y 2 A
⇤
b , the class of b-ary infinite sequences extending y is denoted by y · A!b = {w 276

A
!
b : y � w}; as before, the subscript b will be omitted if it is clear from the context. Extending this77

notation, if W is any set of strings belonging to A
⇤
b , then W ·A!b = {w 2 A

!
b : (9y 2 W )[y � w]} where · is78

the concatenation of strings with other strings or sequences. Given alphabets Ab and Ab0 , a morphism (or79

homomorphism) of Ab into Ab0 is a mapping µ : A⇤
b ! A

⇤
b0 such that µ(xy) = µ(x)µ(y) for all x, y 2 A

⇤
b . A80

morphism µ of A⇤
b into A

⇤
b0 is alphabetic if, for every a 2 Ab, µ(a) is either a letter of Ab0 or the empty word,81

and it is non-erasing if no µ(a), a 2 Ab, is the empty word. We extend a morphism µ : A⇤
b ! A

⇤
b as follows82

in a natural way to sequences w 2 A
⇤
b : µ(w) = µ(w1) · µ(w2) · · ·µ(wi) · · · 2 A

⇤
b [A

!
b .83

The value of a string w1w2 . . . wn 2 A
⇤
b is the real number vb(w1w2 . . . wn) =

Pn
i=1 wib

�i 2 R. The value84

of the sequence w = w1w2 . . . 2 A
!
b is the real number vb(w) =

P1
i=1 wib

�i 2 R. Clearly, vb(w � n) ! vb(w)85

as n ! 1.86

1The weakest form of algorithmic randomness [21].
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If vb(w) is irrational, then vb(w0) = vb(w) implies w0 = w. Some rational numbers have two di↵erent87

representations. Since our interest is in incomputable reals and rational numbers are far from being88

incomputable, this issue will not cause a problem.89

Let P denote the class of all partial-recursive functions of one argument over N0, let P2 denote the class90

of all partial-functions of two arguments over N0, and let R denote the class of all recursive functions of one91

argument over N0.92

Any function  2 P2 is called a numbering of partial-recursive functions. Set  e = �i. (e, i) and93

P := { e : e 2 N0}. A numbering ' 2 P2 is said to be an acceptable numbering or Gödel numbering of all94

partial-recursive functions if P' = P and for every numbering  2 P2, there is a f 2 R such that  e = 'f(e)95

for all e 2 N0 (see [39]). Throughout this paper, ' denotes a fixed acceptable numbering and 'e denotes the96

partial-function computed by the e-th program in the numbering '. � denotes a fixed Blum complexity97

measure [12] for the numbering '. For every e, We denotes the domain of 'e.98

Let e, i 2 N0; if 'e(i) is defined then we write 'e(i)# and also say that 'e(i) converges. Otherwise, 'e(i)99

is said to diverge (abbr. 'e(i)").100

A martingale is a function mg : A⇤
b ! R+ [ {0} that satisfies for every x 2 A

⇤
b the equality

P
a2Ab

mg(x ·101

a) = b · mg(x). For a martingale mg and a sequence w 2 A
!
b , the martingale mg succeeds on w if102

supn mg(w � n) = 1.103

Let D0, D1, D2, . . . be a canonical indexing of all finite sets. For any two sets U and V , U is truth-table104

reducible or tt-reducible to V , denoted U tt V , if for some recursive functions f and g, U(i) = g(ha, ii) for105

all i, where a is the canonical index of Df(i) \ V . U is bounded truth-table reducible or btt-reducible to V ,106

denoted U btt V , if U tt V and there is some number m such that |Df(i)|  m for all i (where f is as in107

the definition of tt-reducibility). In the latter definitions, the role of f is to select the elements to be queried,108

while g evaluates the value of the truth-table condition. U is tt-equivalent (resp. btt-equivalent) to V if109

U tt V (resp. U btt V ) and V tt U (resp. V btt U). A set U has PA degree (or is PA-complete) if U110

computes a {0, 1}-valued diagonally non-recursive (d.n.r.) function, that is, a {0, 1}-valued function f such111

that f(e) 6= 'e(e) for any e such that 'e(e)#. Equivalently, a set U has PA degree if one can compute relative112

to oracle U a total extension of any partial-recursive {0, 1}-valued function, that is, for any {0, 1}-valued113

function  , there is a total function g T U such that g(i) =  (i) whenever  (i) #; moreover, g may be114

chosen to be {0, 1}-valued.115

An r.e. open set is an open set generated by an r.e. set of binary strings. Regarding We as a subset of116

A
⇤
2, one has an enumeration W0 ·A!2 ,W1 ·A!2 ,W2 ·W!

2 , . . . of all r.e. open sets. A uniformly r.e. sequence117

(Gm)m<! of open sets is given by a recursive function f such that Gm = Wf(m) ·A!2 for each m. A Martin-Löf118

test is a uniformly r.e. sequence (Gm)m<! of open sets such that (8m < !)[�(Gm)  2�m]; here � denotes119

the uniform measure, that is, for every � 2 A
!
2 , �(� · A!2 ) = 2�|�|. A sequence w 2 A

!
2 fails the test if120

w 2
T

m<! Gm; otherwise w passes the test. w is Martin-Löf random if w passes each Martin-Löf test [35].121

Martin-Löf randomness may be defined analogously for non-binary sequences over a finite alphabet;122

however, this work will consider Martin-Löf randomness only for binary sequences. Thus, throughout this123

paper, by “Martin-Löf random sequence” will always be meant “Martin-Löf random binary sequence”.124

3. Degrees of Bi-immunity Over Di↵erent Size Finite Alphabets125

We recall that an infinite set U ✓ N0 is immune (in the sense of recursion theory) if it contains no infinite126

recursively enumerable (r.e.) subset; U is bi-immune set if both U and U are immune [39, 37]. Bi-immune127

sets are highly non-recursive in the sense that no partial-recursive function with an infinite domain can be128

extended to the characteristic function of such a set. The notion of algorithmic randomness is also closely129

related to that of immunity: every Martin-Löf random sequence w, for example, is e↵ectively bi-immune in130

the sense that there is a recursive function that computes for every e such that We is contained in w
�1(1)131

(resp. w�1(0)) an upper bound on the size of We. Even stronger than the notion of immunity is that of132

hyperimmunity : an infinite set U is hyperimmune if it is infinite and there is no recursive function f such that133

|U \ {0, . . . , f(n)}| � n for all n. In what follows, we generalise the notions of immunity and bi-immunity134

to sequences. One may take a cue from how Martin-Löf randomness for binary sequences is adapted to135
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sequences over an arbitrary base b � 2 by identifying a sequence w 2 A
!
b with the real number

P1
i=0 wib

�i�1;136

it is that Martin-Löf randomness and asymptotic Kolmogorov complexity (constructive dimension) are137

base-invariant [15, 44]. Unfortunately, as we will show later in Propositions 18 and 20, there are reals that138

are bi-immune in one base but not in another base; thus the concept of bi-immunity is – like the concepts139

of Borel normality and disjunctiveness (see [18, 40, 41] or [29]) – base-dependent if one directly adapts the140

definition of bi-immune sets to sequences.141

Further, motivated by non-binary quantum random number generators [1, 7] we study which recursive142

transformations between sequences on di↵erent alphabets preserve bi-immunity. A specific case of interest is143

the ternary and binary sequences: which recursive transformations between ternary and binary sequences144

preserve bi-immunity?145

Broadly speaking, a sequence w 2 A
!
b is b-graph-immune (resp. b-graph-bi-immune) if no algorithm that146

outputs only elements of Ab can generate infinitely many correct (resp. incorrect) values of its elements147

(pairs, (i, wi)).2 This condition can be formalised directly by the following definition (given in [10]):148

Definition 1. A sequence w 2 A
!
b is b-graph-immune (resp. b-graph-bi-immune) if there exists no partial-149

recursive function ' from N to Ab having an infinite domain dom(') with the property that '(i) = wi150

(resp. '(i) 6= wi) for all i 2 dom(').151

Clearly, bi-immunity is a stronger form of incomputability.152

Remark 2. If w 2 A
!
b does not contain a certain letter c 2 Ab then the recursive function '(i) = c witnesses153

that w cannot be b-graph-bi-immune.154

In case of b-graph-immunity the situation is di↵erent. Therefore, we introduce a more restrictive type of155

b-graph-immunity, known as strong b-graph-immunity :156

Definition 3. A sequence w 2 A
!
b is strongly b-graph-immune if it is b-graph-immune and for every c < b157

there are infinitely many i with wi = c.158

For the next proposition, we define b-graph(w) := {b · (n� 1) + wn : n 2 N}. This proposition provides159

various characterisations for the notion of b-graph-immune and b-graph-bi-immune sequences; the reader160

should note that we will generalise these notions in Section 6 to the case where the bound b is not a constant161

but where it is either absent (alphabet is N0) or where the size of the alphabet depends on the index of the162

item in the sequence. Also there a characterisation similar to the next proposition is possible.163

Proposition 4. The following three items characterise b-graph-immunity, strong b-graph-immunity and164

b-graph-bi-immunity, respectively.165

(a) w is b-graph-immune if one of the following equivalent characterisations holds:166

1. for all a 2 Ab, w�1(a) is immune or finite;167

2. b-graph(w) is immune.168

(b) w is strongly b-graph-immune if and only if for all a 2 Ab, w�1(a) is immune.169

(c) w is b-graph-bi-immune if one of the following equivalent characterisations holds:170

1. for all a 2 Ab, w�1(a) is bi-immune;171

2. for all non-empty A ⇢ Ab,
S

a2A w
�1(a) is immune;172

3. for all non-empty A ⇢ Ab,
S

a2A w
�1(a) is bi-immune;173

4. b-graph(w) is bi-immune;174

2The modifier ‘graph’ comes from the fact that the immunity of a sequence w is equivalent to the immunity (in the usual
recursion-theoretic sense) of its associated b-graph, defined as {b · (n� 1) + wn : n 2 N}; see Proposition 4.
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5. b-graph(w) is co-immune.175

Proof. (a) Assume that w is not b-graph-immune. Then there is a partial-recursive function ' with infinite176

domain such that '(i) = wi on the domain of '; one can now select a value a 2 Ab such that ' takes a177

infinitely often and let  be the restriction of ' to the set of inputs which are mapped by ' to a. It follows178

that the domain of  is an infinite r.e. subset of w�1(a). Thus Item 1 is not satisfied. Now if Item 1 is not179

satisfied, then some w
�1(a) is neither immune nor finite, hence w

�1(a) has an infinite recursive subset R.180

Now {b · (n� 1) + a : n 2 R} is an infinite recursive subset of b-graph(w).181

Finally, if b-graph(w) is not immune, as it is infinite, it has an infinite recursive subset R. Then '(n) = a182

if and only if b · (n� 1) + a 2 R defines a partial-recursive function witnessing that w is not b-graph-immune.183

(b) This statement is only an obvious variant of the definition.184

(c) Let w�1(a) be not bi-immune. Then there is an infinite recursive subset R ✓ {n : wn = a}. Define185

the partial-recursive function ' : R ! Ab via '(n) = a
0
, n 2 R, a

0 6= a. Thus ' witnesses that w is not186

b-graph-bi-immune.187

If, for all a 2 Ab, the set w
�1(a) is bi-immune then its complement

S
a0 6=a w

�1(a0) and all its infinite188

subsets
S

a02A w
�1(a0), a /2 A, are immune, so Item 1 implies Item 2.189

If all sets
S

a2A w
�1(a), ; 6= A 6= Ab, are immune, so are their complements. Hence Item 2 implies Item 3.190

Let b-graph(w) be not bi-immune. Then there is an infinite recursive subset R ✓ N0 such that R ✓191

b-graph(w) or R \ b-graph(w) = ;. Without loss of generality, let R ✓ {b · (n � 1) + a : n 2 N}, a 2 Ab.192

Consider R
0 = {n : n 2 N ^ b · (n � 1) + a 2 R}. Then, in case R ✓ b-graph(w) the set R

0 is an infinite193

recursive subset of w�1(a), and in case R \ b-graph(w) = ; the set R0 is disjoint to w
�1(a). Thus, Item 3194

implies Item 4.195

Item 4 trivially implies Item 5.196

Finally, let w be not b-graph-bi-immune and ' be a partial-recursive function with infinite domain dom(')197

such that '(n) 6= wn for n 2 dom('). Then {b · (n� 1)+'(n) : n 2 dom(')} is an infinite r.e. subset disjoint198

to b-graph(w).199

⇤200

Remark 5. In the binary case (that is, b = 2) Proposition 4 shows that 2-graph-immunity is equivalent201

with the property that w�1(1) and its complement w�1(0) are immune, and hence bi-immune, in the sense202

of recursion theory, i.e. they are infinite and do not contain infinite recursively enumerable (equivalently,203

recursive) sets [39]. Furthermore, we obtain that in the binary case all variants of immunity – 2-graph-204

bi-immunity, 2-graph-immunity and strong 2-graph-immunity – coincide. This does not hold for larger205

alphabets.206

Example 6. An immune sequence w 2 A
!
2 considered as an element of A!3 is 3-graph-immune but not207

3-graph-bi-immune since {i 2 N : wi = 2} = ;. In fact, every b-graph-bi-immune w 2 Ab as an element of208

Ab+1 is (b+ 1)-graph-immune but neither strongly (b+ 1)-graph-immune nor (b+ 1)-graph-bi-immune. ⇤209

It is obvious that every b-graph-bi-immune sequence is strongly b-graph-immune. The converse does not210

hold for b > 2.211

Example 7. Let M0 ✓ N be an immune set whose complement (with respect to N) N \M0 is recursively212

enumerable, let g : N ! N, g(N) = N \M0 be an injective recursive mapping, and let M ✓ N be a bi-immune213

set. Set M1 = g(M) and M2 = g(N \M). Then M1 and M2 are immune.214

Define a sequence w = w1w2 · · · 2 A
!
3 via the preimages w�1(a) = Ma, a 2 {0, 1, 2}. Then, clearly, every215

preimage w
�1(a) is immune, but as a recursively enumerable set the union w

�1(1) [w
�1(2) = M1 [M2 is216

not immune.217

Observe that the other combinations M0 [M1 and M0 [M2 are immune. Assume e.g. M ✓ M0 [M1218

to be recursive. Then M \ M1 = M \ g(N0) as a recursively enumerable subset of M1 is finite. Thus219

M \M0 = M \ (M \M1) is recursive too, hence also finite. ⇤220
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4. Base-invariance221

In this section, we study the question of whether (bi-)immunity for sequences over a finite alphabet is222

preserved over di↵erent bases. The main insight is that while b-graph-bi-immunity is indeed preserved over223

bases of the form b
k, where k � 1, the same does not hold for (strong) b-graph-(bi-)immunity.224

First we start with the preservation of (strongly) b-graph-(bi)-immune sequences under morphisms.225

We also provide su�cient conditions that guarantee a morphism µ : Ab ! A
⇤
b preserves (strong) b-graph-226

(bi-)immunity.227

We start with a property of morphisms of a special kind. Let ⇡i : {w : w 2 A
⇤
b ^ |w| � i} ! Ab be the228

projection on the ith letter, that is, ⇡i(w1 · · ·w`) := wi for i  `. We call a morphism µ : Ab ! A
`
b stable if229

for all i  ` and for every a 2 Ab there is an a
0 2 Ab such that ⇡i(µ(a0)) = a, that is, the letters at a fixed230

position i in the words µ(a), a 2 Ab, are just a permutation of Ab.231

Lemma 8. Let ` � 1 and let µ : Ab ! A
`
b be a stable morphism. Then µ(w) is b-graph-immune (b-graph-bi-232

immune, respectively) if and only if w is b-graph-immune (b-graph-bi-immune, respectively).233

Proof. Assume that
S

a2A w
�1(a), ; ⇢ A ⇢ Ab, contains an infinite recursive subset M ✓ N and consider234

A
(1) = {⇡1(µ(a)) : a 2 A}. Then {` · (n�1)+1 : n 2 M} ✓

S
a02A(1) µ(w)�1(a0) and {` · (n�1)+1 : n 2 M}235

is also infinite and recursive.236

Conversely, let M ✓ N be an infinite recursive subset of
S

a02A0 µ(w)�1(a0), ; ⇢ A
0 ⇢ Ab. Then237

there is a j  ` such that M
0 := M \ {` · (n � 1) + j : n 2 N} is also infinite and recursive. Let238

A := {a : 9a0(a0 2 A
0 ^ ⇡j(µ(a)) = a

0)}. Then for every w 2 A
!
b , {n : ` · (n � 1) + j 2 M

0} is an infinite239

recursive subset of
S

a2A w
�1(a). ⇤240

Remark 9. Lemma 8 does not hold for arbitrary morphisms µ even if all letters are mapped to words of241

the same length. Consider e.g. µ : A2 ! A
⇤
2 where µ(a) := 0a.242

Lemma 10. Let 2  b
0  b and let w 2 A

!
b be b-graph-bi-immune. If µ is a non-erasing alphabetic morphism243

of Ab onto Ab0 then µ(w) 2 Ab0 is b
0-graph-bi-immune.244

Proof. We have µ(Ab) = Ab0 and µ(a) 2 Ab0 for a 2 Ab. Consider a nonempty subset A
0 ⇢ Ab0 . Then245

A = {a : µ(a) 2 A
0} 6= Ab and

S
a02A0 µ(w)�1(a0) =

S
µ(a)2A0 w

�1(a). If w 2 A
!
b is b-graph-bi-immune,246

according to Proposition 4, every set
S

a02A0 µ(w)�1(a0), ; 6= A
0 6= Ab0 is immune, and therefore µ(w) is247

b
0-graph-bi-immune. ⇤248

Lemma 10 does not hold for (strongly) b-graph-immune sequences.249

Example 11. We refer to the immune subsets M0,M1,M2 ✓ N defined in Example 7 where M1 [M2 is250

recursively enumerable. Define w 2 A
!
3 via w

�1(a) = Ma, a 2 {0, 1, 2}, and µ(0) = 0, µ(1) = µ(2) = 1. Then251

w is strongly b-graph-immune but µ(w) is not 2-graph-immune. ⇤252

The preimages of alphabetic morphisms preserve b-graph-immunity of sequences but not b-graph-bi-253

immunity even if we require that every letter occurs infinitely often in the preimage.254

Lemma 12. Let µ be a non-erasing alphabetic morphism of Ab onto Ab0 . If µ(w) 2 Ab0 is b
0-graph-immune255

then w 2 A
!
b is also b-graph-bi-immune.256

Proof. Observe that µ(w)�1(a0) =
S

µ(a)=a0 w
�1(a). Consequently, if µ(w)�1(a0) is immune or finite then257

its subset w�1(a) is also immune or finite. ⇤258

Example 13. To show that Lemma 12 cannot be extended to b-graph-bi-immunity we refer to Example 7 and259

the sequence w defined there, and we use the morphism µ : A3 ! A2 defined by µ(0) = µ(1) = 0 and µ(2) = 1.260

Since µ(w)�1(0) = M0 [M1 and µ(w)�1(2) = M2 are both immune, µ(w) 2 A
!
2 is 2-graph-bi-immune, but,261

as shown in Example 7 the sequence w 2 A
!
3 is not 3-graph-bi-immune. ⇤262

As a case of special interest (cf. [1, 7]) we obtain from Lemma 10 the following.263
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Corollary 14. Consider b � 3 and a non-erasing alphabetic morphism µ of Ab onto Ab�1. Then for every264

b-graph-bi-immune sequence w 2 A
!
b , the sequence µ(w) 2 Ab�1 is (b� 1)-graph-bi-immune.265

Next we study the preservation of b-(bi-)immunity under base change, that is, we consider sequences266

w 2 A
!
b and v 2 A

!
b0 which are expansions of the same real number r = vb(w) = vb0(v).267

Proposition 15. Let w 2 A
!
b be the b-ary expansion of the real r 2 R. If v 2 Abk , k � 1, is the b

k-ary268

expansion of r and for some a 2 Abk the subset v�1(a) ✓ N is infinite and not immune then there is an269

a
0 2 Ab such that w�1(a0) ✓ N is infinite and not immune.270

Proof. Let v�1(a) be infinite but not immune, and let M ✓ N be an infinite and recursive set such that271

M ✓ v
�1(a). Since w is the b-ary expansion of r there is a homomorphism µ : Abk ! A

k
b satisfying µ(v) = w.272

Let µ(a) = a1 · · · ak, ai 2 Ab. Then w
�1(a1) ◆ {k · (n� 1)+1 : n 2 M}, and consequently w

�1(a1) is infinite273

and not immune. ⇤274

Corollary 16. Let w 2 A
!
b be b-graph-bi-immune and be the b-ary expansion of the real r 2 R. If275

v 2 A
!
bk , k � 1, is the b

k-ary expansion of r then v is b
k-graph-bi-immune.276

Corollary 16 cannot be extended to b-graph-bi-immunity.277

Example 17. Corollary 14 shows that for b = 3 the coding µ0 : 0 7! 0, 1 7! 1, 2 7! 0 converts a 3-graph-bi-278

immune sequence to a 2-graph-bi-immune sequence, but µ1 : 0 7! 0, 1 7! 1, 2 7! " does not. Indeed, consider279

the family of all r.e. subsets (Ni)i2N0 of N and choose from Ni the first three elements n3i < n3i+1 < n3i+2280

larger than3 n3(i�1)+2 and let Mj := {n3i+j : i 2 N0}, j = 0, 1, 2. Then every Mj ✓ N is bi-immune as each281

of them contains (and does not contain) at least one element from every infinite r.e. subset. Now define w as282

follows:283

wn =

8
<

:

0, if n 2 M0,

1, if n 2 M1,

2, otherwise.

Then the image under the coding µ1 satisfies µ1(w) = 010101 . . . .284

From Corollary 16 we know that e.g. for b = 4 the coding µ2 : 0 7! 00, 1 7! 01, 2 7! 10, 3 7! 11 converts a285

4-graph-bi-immune sequence to a 2-graph-bi-immune sequence. ⇤286

Proposition 18. For every base b there is a sequence which is b-graph-bi-immune but only b
2-graph-immune287

in base b
2.288

Proof. Note that when w is strongly b-graph-bi-immune, so is also v with v2n�1 = v2n = wn. This follows289

from Lemma 8 since the morphism µ : Ab ! A
2
b with µ(a) = aa is stable.290

However, if we consider the real r whose b-expansion is given by v then its b
2-expansion is given by291

n 7! wn ·(b+1) which has only multiples of (b+1) as digits, thus this sequence is not strongly b
2-graph-immune.292

⇤293

One might also have a b-graph-bi-immune w such that the corresponding v is strongly b
2-graph-immune294

but not b2-graph-bi-immune.295

Example 19. Let y = y1y2 · · · 2 A
!
2 be b-graph-bi-immune. Define w := y1y2 · · · 2 A

!
2 by296

x2i�1x2i =

8
>><

>>:

00, if yi = 0 ^ i is odd,
01, if yi = 0 ^ i is even,
10, if yi = 1 ^ i is even,
11, if yi = 1 ^ i is odd.

3For completeness, set n�1 = �1.
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Then according to Proposition 4, the sequence w 2 A
!
2 is also 2-graph-bi-immune, e.g. {j 2 N : xj =297

0} = {2i � 1 2 N : yi = 0} [ {2i 2 N : yi = 0 ^ i is odd} [ {2i 2 N : yi = 1 ^ i is even}. Let w 2 A
!
4 such298

that v2(w) = v4(w).299

By construction w contains at even positions only the letters 1 and 2 and at odd positions only the300

letters 0 and 3. Thus Proposition 15 and Proposition 4 show that w is strongly 4-graph-immune but not301

4-graph-bi-immune. ⇤302

Proposition 20. There exists a real whose base 8-expansion is strongly 8-graph-bi-immune while its base 4303

expansion is not 4-graph-bi-immune.304

Proof. Let c denote the mirror image of the binary complement of b, so possible pairs bc in the system of305

base 8 are 07, 13, 25, 31, 46, 52, 64, 70 and from now on, bc is always one pair of these octal digits. Next we306

define the stable morphism µ : A8 ! A82 via µ(b) = bc and choose an 8-bi-immune sequence w. According307

to Lemma 8 the image w = µ(w) is also 8-bi-immune.308

However, the base 4 counterpart y 2 A
!
4 of w translates every block w2nw2n+1 into three quaternary309

digits where the middle digit is either 1 or 2 as this is binary 01, 10 and the pairs bc are such selected that the310

end digit of b in binary di↵ers from the first digit of c in binary. Thus y�1(1) [ y
�1(2) contains the infinite311

recursive subset {3(n� 1)+ 2 : n 2 N}, and according to Proposition 4 the sequence y is not 4-bi-immune. ⇤312

5. Blind Martingales313

In this section we use blind martingales to study recursive transformations preserving bi-immunity.314

A martingale is called blind if its bet on u 2 A
⇤
b only depends on the length |u| and not on the actual315

history coded in u; furthermore, the share of the capital betted on a digit a 2 Ab is also blindly computed,316

but the scaling in dependence of the available capital can, of course, be done.317

We start with the definition of the blind martingale:318

Definition 21. A martingale over Ab is referred to as blind if there is a family (�`)`2N0 , ; 6= �` ✓ Ab, such319

that, for u 2 A
⇤
b and a 2 Ab it holds320

mg(u · a) =
(

b
|�|u|| ·mg(u), if a 2 �|u|,

0, otherwise.
321

A blind martingale is recursive if the mapping f : N0 ! 2Ab with f(`) = �` is recursive.322

We note that �` = Ab is equivalent to abstaining from betting.323

Proposition 22. (a) A sequence w 2 A
!
b is b-graph-bi-immune if and only if there is no blind recursive324

martingale succeeding on w.325

(b) A sequence w 2 A
!
b is b-graph-immune if and only if there is no blind recursive martingale succeeding326

on w with |�`| = 1 for infinitely many ` 2 N0.327

Proof. (a) If w is not b-graph-bi-immune then there is a nonempty subset � ⇢ Ab for which
S

a2� w
�1(a)328

is infinite and not immune. Let M ✓
S

a2� w
�1(a) be infinite and recursive. Then the martingale329

mg(u · a) =

8
><

>:

mg(u), if |u|+ 1 /2 M,
b
|�| ·mg(u), if a 2 � and |u|+ 1 2 M,

0, otherwise.
330

succeeds on w.331

Conversely, let a blind recursive martingale succeed on w. Since Ab is finite, there is an infinite recursive332

set M ✓ N0 such that for some subset A ⇢ Ab, for all ` 2 M , �` = A. Consequently, M ✓
S

a2A w
�1(a),333

and according to Proposition 4, w is not strongly b-graph-bi-immune.334
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(b) Assume w to be not b-graph-immune. Then the subset � ⇢ Ab can be chosen to be a singleton, and335

the construction is the same as in part (a).336

Let a blind recursive martingale succeed on w with |�`| = 1 for infinitely many ` 2 N0. As in case337

(a) there is an infinite recursive set M ✓ N0 such that for some a 2 Ab and all ` 2 M , �` = {a}, that is,338

M ✓ w
�1(a). Again Proposition 4 shows that w is not b-graph-immune.339

⇤340

For any function f : N ! N, say that f preserves strong b-graph-immunity if for any strongly b-graph-341

immune sequence w 2 A
!
b , the sequence v defined by vi = wf(i) for all i 2 N is strongly b

0-graph-immune for342

some b
0 2 {2, . . . , b}.343

Theorem 23. 1. Suppose b � 3. Then for all recursive functions f : N ! N, f preserves strong b-344

graph-immunity if and only if range(f) is co-finite and f
�1(j) := {i 2 N : f(i) = j} is finite for all345

j 2 N.346

2. Suppose b = 2. Then for all recursive functions f : N 7! N, f preserves strong b-graph-immunity if and347

only if range(f) is infinite and f
�1(j) := {i 2 N : f(i) = j} is finite for all j 2 N.348

Proof. Assertion 1. Let f be any recursive function. Suppose range(f) is co-finite and f
�1(j) := {i 2 N :349

f(i) = j} is finite for all j 2 N. Take any strongly b-graph-immune sequence w 2 A
!
b . By the definition350

of strong b-graph-immunity, range(w) = Ab and every a 2 Ab occurs infinitely often in w. As range(f) is351

co-finite, it follows that every a 2 Ab occurs infinitely often in the sequence v 2 A
!
b given by vi = wf(i) for352

all i 2 N. Thus for each a 2 Ab, v�1(a) is infinite. Since f
�1(j) := {i 2 N : f(i) = j} is finite for all j 2 N,353

it follows that if M were an infinite recursively enumerable subset of v�1(a), then {f(i) : i 2 M} would be354

an infinite recursively enumerable subset of w�1(a), contradicting the immunity of w�1(a). Therefore v is355

strongly b-graph-immune.356

Next, suppose that range(f) is co-infinite. We first prove the statement “range(f) is co-infinite ) f does357

not preserve strong b-graph-immunity” for the case b = 3, and then explain at the end how to extend the358

proof to the case b > 3. Consider two cases.359

Case 1: range(f) is finite. Take any strongly b-graph-immune sequence w 2 A
!
b . Without loss of generality,360

assume that {i : f(i) = f(1)} is infinite (otherwise, one may replace 1 by any i0 2 N for which361

{i : f(i) = f(i0)} is infinite in the subsequent argument; such an i exists because range(f) is finite).362

Then {i : f(i) = f(1)} is an infinite recursively enumerable subset of v�1(v1) = v
�1(wf(1)), and so v363

is not b-graph-bi-immune (in particular, v is not strongly b
0-graph-immune for any b

0 2 {2, . . . , b}).364

Case 2: range(f) is infinite.365

Consider any bi-immune set U such that N \ (range(f) [ U) is infinite. We will show later that such a366

set U exists. Let s = min(range(f) \ U); such an s exists due to the bi-immunity of U . Now define a367

sequence w 2 A
!
3 as follows. For all i 2 N,368

wi =

8
<

:

0, if i 2 {s} [ (N \ (range(f) [ U)),
1, if i 2 U \ {s},
2, ifi 2 range(f) \ U .

Let v be the sequence defined by vi = wf(i) for all i 2 N. Then by construction, v�1(0) = {j 2 N :369

f(j) = s}; the latter set being recursively enumerable (possibly even finite), it follows that v cannot370

be a strongly b
0-graph-immune sequence for any b

0 2 {2, . . . , b}. On the other hand, w is a strongly371

3-graph-immune sequence because:372

• w
�1(0) = {s} [ (N \ (range(f) [ U)), which is infinite due to N \ (range(f) [ U) being infinite by373

assumption, and {s} [ (N \ (range(f) [ U)) ✓⇤ N \ U . Since N \ U is immune, w�1(0) must also374

be immune.375
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• w
�1(1) = U \ {s} is an infinite subset of U and so it is immune.376

• w
�1(2) = range(f) \ U is an infinite subset of N \ U ; otherwise, range(f) ✓⇤

U , which would377

contradict the immunity of U . Therefore, since N \ U is immune, w�1(2) is also immune.378

It remains to show that a set U as chosen above exists. Let I0, I1, I2, . . . be a one-one enumeration379

of all infinite recursively enumerable sets. For all i 2 N, define U and pairs (s2i�1, t2i�1), (s2i, t2i) in380

stages as follows.381

• (s2i�1, t2i�1) is any pair of distinct elements belonging to Ij for the least j such that s2i�1 and t2i�1382

are di↵erent from any si0 or ti0 with i
0
< 2i� 1, and

S
i0<2i�1{si0} ⇢ Ij or

S
i0<2i�1{si0} ⇢ N \ Ij .383

Put s2i�1 into U .384

• (s2i, t2i) is any pair of distinct elements belonging to Ij for the least j such that s2i and t2i are385

di↵erent from any si0 or ti0 with i
0
< 2i, and s2i 2 range(f) and t2i /2 range(f). Such j, s2i and t2i386

exist because the infinitude and coinfinitude of range(f) together imply that there are infinitely387

many infinite recursively enumerable sets that infinitely intersects both range(f) and N \ range(f).388

Put s2i into U .389

By construction, every infinite recursively enumerable set Ij intersects both U and N \ U . Thus U is390

bi-immune. Furthermore, N\U intersects N\range(f) infinitely often. Consequently, N\ (range(f)[U)391

is infinite, as required.392

To finish this part of the proof, we explain how to convert the strongly 3-graph-immune sequence w393

into a strongly b-graph-immune one w
0 for any b > 3. In the definition of w, replace the last condition394

“wi = 2 if i 2 range(f) \ U” by “w0
i = k+2 if i 2 (range(f) \U) \ Vk”, where {V0, . . . , Vb�3} is a partition of395

range(f) \U into b� 2 infinite sets. For all other values of i, w0
i is defined to be wi. Each Vi is an infinite396

subset of the immune set N \ U , and is thus immune too. Therefore w
0 2 A

!
b and w

0�1(i) is immune for all397

i 2 {0, . . . , b}. The same argument as before shows that the sequence v
0 with v

0
i = w

0
f(i) for all i 2 N cannot398

be strongly b
0-graph-immune for any b

0 2 {2, . . . , b}.399

Finally, suppose there is some j 2 range(f) such that f
�1(j) is infinite. Fix any such j. Take any400

bi-immune set U 0. Without loss of generality, assume that j 2 U
0 (otherwise, one may replace U

0 by N \ U 0
401

in the subsequent argument). Let {U 0
0, . . . , U

0
b�2} be any partition of N \ U

0 into b � 1 infinite sets. Let402

w 2 A
!
b be the sequence for which wi = 0 if i 2 U

0 and wi = k + 1 if i 2 U
0
k. The bi-immunity of U 0 implies403

that w�1(a) is immune for every a 2 Ab, and so w is strongly b-graph-immune. If v is the sequence given404

by vi = wf(i) for all i 2 N, then f
�1(j) = {i 2 N : f(i) = j} is an infinite recursively enumerable subset of405

v
�1(0). Therefore v cannot be a strongly b

0-graph-immune sequence for any b
0 2 {2, . . . , b}.406

Assertion 2. Suppose b = 2, and f is any recursive function such that range(f) is infinite and f
�1(j) is407

finite for all j 2 N. As mentioned earlier, all variants of immunity coincide over binary alphabets; thus it408

su�ces to consider 2-graph-immune sequences in the following proof. Let w 2 A
!
2 be any 2-graph-immune409

sequence. By the 2-graph-immunity of w, range(f) \w
�1(0) and range(f) \w

�1(1) are both infinite. Thus410

the sequence v defined by vi = wf(i) for all i 2 N belongs to A
!
2 , and v

�1(0) and v
�1(1) are both infinite.411

If M were an infinite recursively enumerable subset of v�1(0), then {f(i) : i 2 M} would be contained412

in w
�1(0); moreover, since f

�1(j) is finite for all j 2 N, {f(i) : i 2 M} would be an infinite recursively413

enumerable subset of w�1(0), contradicting the 2-graph-immunity of w. A similar argument shows that414

v
�1(1) cannot contain any infinite recursively enumerable subset. Thus v is 2-graph-immune, as required.415

If range(f) is finite, then the argument in Case 1 of the proof of Assertion 1 shows that f cannot be 2-graph-416

immune-preserving. Finally, if range(f) is infinite and there is some j 2 range(f) such that f�1(j) is infinite,417

then an argument similar to that in the proof of Assertion 1 shows that f is not 2-graph-immune-preserving.418

⇤419

Remark 24. Suppose a function f : N ! N is said to be strongly b-graph-weakly-immune-preserving if420

for any strongly b-graph-immune sequence w 2 A
!
b , the sequence v defined by vi = wf(i) for all i 2 N is421



Bi-immunity 11

strongly b-graph-bi-immune (in contrast to being strongly b
0-graph-immune for some b

0 2 {2, . . . , b}). Then422

any one-one increasing recursive function f : N ! N is strongly b-weakly-immune-preserving: for each a 2 Ab,423

either v
�1(a) = {i : wf(i) = a} is finite, or {i : wf(i) = a} is infinite; in the latter case, if there were an424

infinite recursively enumerable subset M of {i : wf(i) = a}, then, since f is one-one and increasing, the set425

{f(i) : i 2 M} would be an infinite recursively enumerable subset of w�1(a), which would contradict the426

immunity of w�1(a).427

6. Immunity and Bi-immunity for Sequences Over Infinite Alphabets428

In this section we introduce and study various notions of (bi-)immunity for sequences over an infinite429

alphabet. Immunity and bi-immunity for sequences over infinite alphabets are defined almost exactly as430

they for sequences over finite alphabets: a graph-immune (resp. graph-bi-immune) sequence w is one such431

that no algorithm (with no restriction on the output range) can generate infinitely many, and only correct432

(resp. incorrect) values of its elements – pairs of the form (i, wi). Graph-immunity of w is equivalent to433

immunity, in the usual recursion-theoretic sense, of the graph of w as a subset of N⇥ N0; this is analogous434

to the earlier observation (Proposition 4) that w is b-graph-immune if and only if b-graph(w) is immune435

as a set. We also consider sequences that are strictly bounded above by a single recursive function h with436

h(i) � 2 for all i, or h-bounded sequences. Unless otherwise specified, when we refer to a h-graph-(bi-)immune437

sequence, h is always taken to be a generic recursive function such that h(i) � 2 for all i. The terms of such438

a recursively-bounded sequence may range over an infinite alphabet, though they do not grow too quickly in439

that they are bounded by a single recursive function. Since no h-bounded sequence is graph-bi-immune, as440

witnessed by h itself, it is fairly natural to define immunity and bi-immunity for h-bounded sequences with441

respect to h-bounded partial-recursive functions with an infinite domain. An interesting question, which is442

partially addressed in this section, is whether, and if so how, the choice of the bound function h influences the443

computational power of the class of h-graph-(bi-)immune sequences. We proceed with the formal definitions444

of graph-(bi-)immunity.445

Definition 25. Let h be a recursive function such that h(i) � 2 for all i. An h-bounded sequence is any446

sequence w = w1w2 . . . satisfying wi < h(i) for each i 2 N. Let w = w1w2 . . . be a sequence.447

(i) w is graph-immune if for every partial-recursive function g with an infinite domain, there is an448

i 2 dom(g) with wi 6= g(i).449

(ii) w is graph-bi-immune if for every partial-recursive function g with an infinite domain, there are450

i, j 2 dom(g) with wi = g(i) and wj 6= g(j).451

(iii) w is h-graph-immune if w is h-bounded and for every partial-recursive function g such that the domain452

of g is infinite and g is h-bounded, there is an i 2 dom(g) with wi 6= g(i).453

(iv) w is h-graph-bi-immune if w is h-bounded and for every partial-recursive function g such that the454

domain of g is infinite and g is h-bounded, there are i, j 2 dom(g) with wi = g(i) and wj 6= g(j).455

Remark 26. (i) Definition 25(i) is just a reformulation of the fact that {(i, wi) : i 2 N} is immune as456

a subset of N ⇥ N0. However, Definition 25(ii) does not imply that {(i, wi) : i 2 N} is bi-immune457

as a subset of N ⇥ N since, for example, {(1, c) : c 6= w1} is already an infinite recursive subset of458

(N⇥ N) \ {(i, wi) : i 2 N}.459

(ii) Flajolet and Steyaert introduced the concept of immunity into computational complexity theory by460

defining an infinite set U to be immune for a complexity class C if U contains no infinite subset belonging461

to C; an infinite, coinfinite set U is bi-immune for C if U and U are both immune for C [22, 23]. The notion462

of h-graph-immunity may be formulated in a similar fashion: w is h-graph-immune if {hi, wii : i 2 N}463

is immune for
n
{hi,'e(i)i : i 2 N0} : e 2 N0 ^

��dom('e)
�� = 1 ^(8i 2 dom('e))['e(i) < h(i)]

 
. The464

notions of graph-(bi-)immunity, h-graph-bi-immunity and strong b-graph-(bi-)immunity may be defined465

analogously.466
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Here are some examples of graph-(bi-)immune sequences, as well as h-graph-(bi-)immune sequences.467

Example 27. (i) If U is limit-recursive and non-recursive, then its convergence-module sequence given468

by w
U
i := min{s0 � i : 8s � s

0 8j  i [Us(j) = U(j)]} is a graph-immune sequence, where for each j,469

the uniformly recursive approximation Us(j) converges to U(j).470

(ii) Let 'e1 ,'e2 , . . . be an enumeration of all partial-recursive functions with infinite domain. For every i,471

let (ai, bi) be a pair of elements in the domain of 'ei such that {ai, bi} \ {aj , bj} = ; whenever i 6= j.472

Then for every sequence w such that for each i, w and 'ei agree on exactly one of {ai, bi} (for example,473

wai = 'ei(ai) and wbi = 'ei(bi) + 1), w is graph-bi-immune. Thus there are 2@0 graph-bi-immune474

sequences.475

(iii) Let h be a recursive function with h(i) � 2 for all i. Let 'd1 ,'d2 , . . . be an enumeration of all476

partial-recursive functions with infinite domain such that 'di(j)#< h(j) for each j 2 dom('di). Let477

a1, a2, . . . be a strictly increasing sequence such that 'di(ai)# for each i. Then the sequence w defined478

by wai = 'di(ai) for each i 2 N and wj = 0 for each j /2 {a1, a2, . . .} is h-graph-bi-immune.479

⇤480

We begin by providing equivalent characterisations of (h-)graph-(bi-)immunity; these characterisations481

will be useful later in some proofs.482

Proposition 28. Let w = w1w2 . . . be a sequence.483

(i) w is graph-immune if and only if every partial-recursive g with infinite domain satisfies that g(i) 6= wi484

for infinitely many i 2 dom(g).485

(ii) w is graph-bi-immune if and only if every partial-recursive g with infinite domain satisfies that g(i) = wi486

for infinitely many i 2 dom(g).487

(iii) w is graph-bi-immune if and only if for every partial-recursive function g with infinite domain, there is488

an i 2 dom(g) such that wi = g(i).489

(iv) Assertions (I), (II) and (III) hold also for h-graph-(bi-)immunity, where w and g are h-bounded for490

any recursive function h satisfying h(i) � 2 for all i.491

Proof. Assertion (I). Let g be a partial-recursive function with infinite domain. Suppose on the contrary492

that g(i) 6= wi for only finitely many i 2 dom(g). Let U = {i 2 dom(g) : g(i) 6= wi}. Define f as follows493

f(i) =

(
wi, if i 2 U ,

g(i), otherwise.
(1)

Since U is finite, f is partial-recursive. Moreover, f(i) = wi for all i 2 dom(f), where dom(f) = dom(g) is494

infinite. This contradicts that w is graph-immune. Hence, every partial-recursive g with infinite domain495

satisfies that g(i) 6= wi for infinitely many i 2 dom(g).496

The proof of the converse is trivial.497

Assertion (II). We prove the contrapositive. Let g be a partial-recursive function with infinite domain498

such that g(i) = wi for only finitely many i 2 dom(g). Define f as follows499

f(i) =

(
|g(i)� 1| if g(i) = wi,

g(i) otherwise.
(2)

Since there are finitely many i such that g(i) = wi, f is partial-recursive. Moreover, dom(f) = dom(g) is500

infinite and f(i) 6= wi for all i 2 dom(f). Thus w is not graph-bi-immune. Now, suppose that w is not501
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graph-bi-immune. Then, there is a partial-recursive function g
0 with infinite domain such that g0(i) = wi for502

all i 2 dom(g0) or there is a a partial-recursive function g
00 with infinite domain such that g00(i) 6= wi for all503

i 2 dom(g0). In the first case define ĝ as ĝ(i) = |g0(i)� 1|. Then, ĝ is partial-recursive and dom(ĝ) = dom(g0)504

is infinite but ĝ(i) 6= wi for all i 2 dom(ĝ).505

Thus in both cases there is a a partial-recursive function f 2 {g00, ĝ} with infinite domain such that506

f(i) 6= wi for all i 2 dom(f), that is, w is not graph-bi-immune.507

Assertion (III). Suppose that for every partial recursive function g with infinite domain, there is an508

i 2 dom(g) such that wi = g(i). Let g be a partial recursive function. Define g
0 : i ! |g(i) � 1|. Then,509

for every partial recursive function g with infinite domain, there is a j 2 dom(g) = dom(g0) such that510

wj = g
0(j) = |g(j)� 1| 6= g(j). So w is graph-bi-immune.511

The proof of the converse is trivial.512

Assertion (IV). The above proofs also apply for the h-bounded version, since if w and g are both bounded513

by h, then so are the functions constructed in the proofs. ⇤514

The following series of propositions will establish methods for constructing new h-graph-(bi-)immune515

sequences from given ones. In the subsequent proposition, it is shown that any recursive finite-one function516

preserves graph-bi-immunity of each h-graph-bi-immune sequence, albeit with respect to a recursive bound517

function that may be di↵erent from h in general.518

Proposition 29. Assume that w is h-graph-bi-immune and f a recursive finite-one function. Then the519

function i 7! wf(i) is h̃-graph-bi-immune, where h̃(i) = h(f(i)) for all i.520

Proof. First, note that since wi < h(i) for all i, wf(i) < h̃(i) for all i. Suppose that g̃ is a partial-recursive521

function with infinite domain such that g̃(i) < h̃(i) for all i 2 dom(g̃). Let f
0 be a partial-recursive522

function defined such that f 0(i) is the first j 2 dom(g̃) found that satisfies f(j) = i. Define g(i) = g̃(f 0(i)).523

Then, g is a partial-recursive function with domain f(dom(g̃)) and g(i) = g̃(f 0(i)) < h̃(f 0(i)) = h(i) for524

all i 2 dom(g). Since f is finite-one and g̃ has infinite domain, dom(g) is also infinite. Then there are525

i, j 2 dom(g) with wi = g(i) and wj 6= g(j). Then, f 0(i), f 0(j) 2 dom(g̃) and wf(f 0(i)) = wi = g(i) = g̃(f 0(i))526

and wf(f 0(j)) = wj 6= g(j) = g̃(f 0(j)). So, by Proposition 28, the function is h̃-graph-bi-immune. ⇤527

Proposition 30. Assume that h, h̃ are recursive functions, w is h-graph-bi-immune and 8i [2  h̃(i)  h(i)].528

Let w̃i = wi mod h̃(i) for all i. Now w̃ is h̃-graph-bi-immune.529

Proof. Let g be a partial-recursive function with infinite domain such that g(i) < h̃(i) for all i 2 dom(g).530

Since w is h-graph-bi-immune and h̃(i)  h(i), by Proposition 28, g(i) = wi for infinitely many i. Since531

g is strictly bounded by h̃, for all i such that g(i) = wi, we also have that w̃i = wi. Hence, g(i) = w̃i for532

infinitely many i. So, by Proposition 28, w̃ is h̃-graph-bi-immune. ⇤533

Proposition 31. If w is graph-bi-immune and h is a recursive function such that h(i) � 2 for all i, then w̃534

with w̃i = wi mod h(i) is h-graph-bi-immune.535

Proof. Let g be a partial-recursive function with infinite domain such that g(i) < h(i) for all i 2 dom(g).536

Since w is graph-bi-immune, by Proposition 28, g(i) = wi for infinitely many i 2 dom(g). Since g is strictly537

bounded by h, for all i 2 dom(g), if g(i) = wi, then wi = w̃i. Hence, g(i) = w̃i for infinitely many i. So, by538

Proposition 28, w̃ is h-graph-bi-immune. ⇤539

Proposition 32. If there is a U -recursive sequence w and an unbounded recursive function h such that540

h(i) � 2 for all i, and w is h-graph-bi-immune then for any recursive function h̃ with 8i [h̃(i) � 2] it holds541

that there is a w̃ T U such that w̃ is h̃-graph-bi-immune.542

Proof. Let f(i) be the first number j found such that h(j) � h̃(i) and if i > 0, j > f(i � 1). Since h is543

unbounded, f is recursive and one-one. Then by Proposition 29, the sequence i 7! wf(i) is h
0-graph-bi-immune544

where h
0(i) = h(f(i)) for all i. By the definition of f , h0(i) � h̃(i) for all i. So, by Proposition 30, the545
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sequence w̃ : i 7! wf(i) mod h̃(i) is h̃-graph-bi-immune. Moreover, since w̃ is recursive in w, w̃ T U . This546

completes the proof. ⇤547

The next theorem shows that for every many-one recursive function h, the class of h-graph-immune548

sequences is fairly rich; in fact, every non-recursive Turing degree contains such a sequence. The proof is549

e↵ective in that it shows how to construct such a sequence from any given set in the non-recursive degree.550

Theorem 33. Let h be a recursive function such that h(i) � 2 for all i. If h is finite-one then every551

non-recursive Turing degree contains an h-graph-immune sequence.552

Proof. Let a be a non-recursive Turing degree. Let U be a set in a. Define wi =
P

m:2m+1<h(i) 2
m · U(m)553

where U(m) takes the value 1 if m 2 U and 0 otherwise.554

Let g be a partial-recursive function with infinite domain, bounded by h. Suppose that g(i) = wi for all555

i 2 dom(g). Since h is finite-one, for any i there must be a j 2 dom(g) such that h(j) > 2i+1. Then, U(i) is556

the (i+ 1)-st digit counted from the right of the binary representation of g(j). So, U is Turing reducible to557

every recursive enumeration of the graph of g. Such recursive enumerations exist and therefore then U would558

be recursive, a contradiction. Hence, w must be h-graph-immune.559

Clearly, w T U . Moreover, we can determine whether or not i 2 U from w where h(j) > 2i+1 as shown560

earlier. Hence, w is in a. ⇤561

The next result characterises the Turing degrees containing at least one h-graph-immune sequence for562

any recursive function h such that h takes at least one value infinitely often.563

Theorem 34. Let h be a recursive function such that h(i) � 2 for all i. If h takes some value infinitely564

often then a Turing degree contains an h-graph-immune function if and only if it contains a bi-immune set.565

Proof. We will use the following lemma to prove the backward direction.566

Lemma 35. Let h, h̃ be recursive functions such that 8i[h̃(i) � h(i) � 2]. If sequence w is h-graph-immune,567

then w is h̃-graph-immune.568

Proof. Let g be a partial-recursive function strictly bounded by h̃ with infinite domain. Suppose that g is569

strictly bounded by h. Then, there is an i 2 dom(g) with wi 6= g(i). Otherwise, there is an i 2 dom(g) such570

that g(i) � h(i) > wi. So, wi 6= g(i). ⇤571

Let a be a bi-immune Turing degree. Then, there is a bi-immune set V in a. By Proposition 4, the572

characteristic function of V is 2-graph-immune. Thus, by the above lemma, the characteristic function of V573

is h-graph-immune.574

Conversely, suppose that a contains an h-graph-immune sequence w. By definition, there is a c such that575

h takes the value c infinitely often. Then, there is a one-one recursive function f such that h(f(i)) = c for all i.576

Suppose that there is a partial-recursive function g with infinite domain, bounded by c such that g(i) = wf(i)577

for all i 2 dom(g). Then, there is a partial-recursive function g
0 : i 7! g(f�1(i)) where g(f�1(j)) = wj578

for all j 2 dom(g0) = f(dom(g)). Since f is one-one, dom(g0) is also infinite. This contradicts that w is579

h-graph-immune. So, w(f) is c-graph-immune. Note that w(f) is Turing reducible to w.580

To show that the degree of w is bi-immune, we use the following lemma.581

Lemma 36. Let w
c be a c-graph-immune sequence. Then, there is a sequence reducible to w

c which is582

2-graph-immune.583

Proof. Suppose that wc is c-graph-bi-immune. Then, by Proposition 30, the sequence i 7! w
c
i mod 2 is584

2-graph-bi-immune and so 2-graph-immune. This sequence is Turing reducible to w
c.585

Otherwise, suppose that there exists a partial-recursive function g with infinite domain and bounded586

by c such that g(i) 6= w
c
i for all i 2 dom(g). There exists an a such that g

�1(a) is infinite. Without587

loss of generality, assume that a = c � 1. Now we can find a one-one recursive function f such that588

g
0(i) = g(f(i)) = c� 1 for all i. Then, wc�1

i = w
c
f(i) 6= g(f(i)) = c� 1 for all i. By the c-graph-immunity of589

w
c, wc�1 is thus (c� 1)-graph-immune. Moreover, wc�1 T w

c.590
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By iterating this process repeatedly, we can find a sequence w
2 which is 2-graph-immune and Turing591

reducible to w
c. ⇤592

Hence, by the lemma, there is a sequence reducible to w which is 2-graph-immune and thus is a593

characteristic sequence of a bi-immune set. By the upward closure of bi-immune degrees (as shown in [26]),594

the degree a containing w is also bi-immune. ⇤595

The following theorem shows that for any unbounded recursive function h with h(i) � 2 for all i,596

Martin-Löf random sequences of hyperimmune-free degree cannot compute any h-graph-bi-immune sequence.597

Theorem 37. Let h be a recursive unbounded function which is always at least 2. Then no Martin-Löf598

random sequence v which has a hyperimmune-free degree can compute an h-graph-bi-immune sequence w.599

Proof. Recall from [34] that v is Martin-Löf random if and only if the prefix-free Kolmogorov complexity600

H satisfies the inequality H(v1v2 . . . vn) � n for all su�ciently large n.601

Now assume that v has hyperimmune-free Turing degree and w T v. Then w is truth-table reducible602

to v (see, for example, [37, Proposition VI.6.18]). Furthermore, there is a recursive function f such that f is603

strictly ascending and h(f(n)) > n
3, as h is unbounded. Furthermore one can for the truth-table reduction604

choose a use-function which is recursive and one-one; here a use-function is a function which bounds all the605

queries of the truth-table reduction.606

Now let g be a partial-recursive function with the recursive domain {f(0), f(1), . . .} such that g(f(n)) is607

that value m below h(f(n)) for which the number of tuples of length use(f(n)) mapped by the truth-table608

reduction to m is the smallest among all possible values. So there are at most 2use(f(n))/n3 many strings609

mapped to g(f(n)) by the truth-table reduction and the prefix of v up to use(f(n)) must be among these610

strings for those n where wf(n) = g(f(n)) and there exist infinitely many of those in the case that w is611

h-graph-bi-immune. So one can describe the string v1v2 . . . vuse(f(n)) in a prefix-free way by H(n) bits612

giving n in a prefix-free way and then compute from n the value use(f(n)) and the right choice among the613

2use(f(n))/n3 possibilities can be selected with a binary number of length use(f(n))� 3 log(n) plus constant614

bits.615

The length of this binary number can also be computed from n. Thus there is a prefix-free code using616

H(n) + use(f(n)) � 3 log(n) + d bits where d is a constant to describe v1v2 . . . vuse(f(n)) infinitely often;617

as H(n)  2 log(n) + d
0 where d

0 is some constant for almost all n, there are infinitely many n where618

H(v1v2 . . . vuse(f(n)))  use(f(n)) + d
00 � log(n) for some constant d

00 and so, for binary sequences v of619

hyperimmune-free degree, either v is not Martin-Löf random or there is no h-graph-bi-immune sequence620

Turing reducible to v. ⇤621

Remark 38. There are Martin-Löf random sequences that have hyperimmune-free degree, so Theorem 37 is622

not vacuously true. By the characterisation of Martin-Löf randomness via prefix-free Kolmogorov complexity,623

for any fixed b, if vb := {v : (8n)[H(v � n) > n � b]}, then every member of vb is Martin-Löf random.624

Furthermore, vb is a ⇧0
1-class since it is closed and the corresponding tree Tvb = {x : (x ·A!2 ) \ v

b 6= ;} is625

co-r.e. It is known (see, for example, [36, Theorem 1.8.42]) that every non-empty ⇧0
1 class has a member626

that is recursively dominated.627

The fact that there exist Martin-Löf random sequences with hyperimmune-free degree also implies628

that the condition in Theorem 37 that the function h be unbounded cannot be lifted: otherwise, taking629

h(i) = 2 for all i, any Martin-Löf random sequence with hyperimmune-free degree would automatically be630

h-graph-bi-immune.631

Remark 39. Kučera [31] and Gács [24] independently showed that any sequence is weak truth-table632

reducible to some Martin-Löf random sequence. In particular, an h-graph-bi-immune sequence is always633

weak truth-table reducible to a Martin-Löf random sequence. Thus the condition in Theorem 37 that v be of634

hyperimmune-free degree is essential.635

In contrast to Theorem 37, the next result shows that for any PA-complete set U , there is a sequence636

w T U for which w is h-graph-bi-immune.637
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Theorem 40. Let h be a recursive function with h(i) � 2 for all i. Let U be a PA-complete set. Then there638

is a sequence w ⌘T U such that w is h-graph-bi-immune.639

Proof. The proof is based on the fact that PA-complete sets can compute an infinite branch in a finitely640

branching infinite co-r.e. tree [37, Theorem V.5.35]. The tree will at input i branch with all functions which641

on input i take one of the values ?, 0, 1, . . . , h(i)� 1. Furthermore, let the interval I` = {3`, 3`+ 1, 3`+ 2}642

and fix a recursive enumeration  0, 1, . . . of all partial-recursive functions with recursive domains; here  e643

can either code an undefined place with ? or remain undefined from some point i onwards. The specific644

domain of  e are those i where  e(i) outputs a natural number (and not ?).645

Now a string � satisfies the requirement E(e) if and only if there is an i 2 dom(�) such that  e(i)646

mod h(i) = �(i) and  e(i) 6=?. A string � gets cancelled if either there is a requirement E(e) for which there647

are at least e+ 1 intervals I` completely covered by the domain of � and which intersect the specific domain648

of  e but E(e) is not satisfied or if there is an interval I` completely inside the domain of � on which �649

does not take at least twice the value ?. The cut-o↵ branches of the tree T are all those which extend some650

cancelled string �.651

Note that one can, using the oracle for the halting problem K, construct an infinite branch of this tree652

such that no prefix � gets cancelled: The algorithm is to find in each I` the smallest e such that on one653

i 2 I`,  e(i) is defined and the prefix � up to the beginning of I` does not satisfy the requirement E(e).654

Let sk be the smallest such i 2 I`. Then one lets �(sk) =  e(sk) mod h(i) and �(j) =? for the two other655

members j of I`.656

Note that this priority algorithm blocks the requirement E(e) on at most e many intervals where  e is657

defined on some member of I`; on the first such interval where the requirement is not blocked, a coincidence658

with  e is put and therefore the requirement is satisfied before the requirement can cancel the branch659

constructed. Furthermore, it is made sure that always at least two values in I` are assigned a ?.660

Note that the tree T of all � which never get cancelled and never have a prefix which gets cancelled is a661

co-r.e. tree which has an infinite branch and which is finitely branching, due to the bound function h. As662

argued two paragraphs ago, this tree T has infinite branches and since T is co-r.e., the class of all infinite663

branches of T is a ⇧0
1 class and consequently U allows to compute one such branch w̃. Now on any interval664

I` and i 2 I`, if w̃i =? then wi = U(`) else wi = w̃i. The so constructed w is Turing equivalent to U , as U(`)665

is the majority-value of w on I`.666

Now consider a partial-recursive function g with infinite domain which is bounded by h. This g extends667

some  e which has an infinite recursive domain; that  e coincides with w on some i 2 dom( e). Thus g668

agrees with w at least once. Thus w is h-graph-bi-immune. ⇤669

The notion of a diagonally non-recursive (d.n.r.) function, that is, a function f such that f(e) 6= 'e(e)670

whenever 'e(e)#, arises quite naturally in the study of Martin-Löf randomness. For example, every Martin-Löf671

random set weak truth-table computes a d.n.r. function [31]. The following observation follows from the672

definition of h-graph-bi-immunity together with the fact that there are infinitely many recursive functions f673

such that f(i) < h(i) for all i.674

Proposition 41. Let h be a recursive function with h(i) � 2 for all i. Then no h-graph-bi-immune sequence675

is d.n.r.676

We recall that the Boolean algebra of r.e. sets does not contain any bi-immune set: this follows from677

an argument by induction, using the fact that the di↵erence between two r.e. sets cannot be bi-immune. A678

similar observation extends to h-graph-bi-immune sequences, as the next proposition shows.679

Proposition 42. If h is a recursive function satisfying h(i) � 2 for all i, then the Boolean algebra of r.e.680

sets does not contain the graph of any h-graph-bi-immune sequence.681

Proof. Consider any Boolean combination Cw of r.e. sets equal to the graph of some sequence w682

such that wi < h(i) for all i; without loss of generality, assume Cw :=
S

1i` Ui \ Vi, where, for all i,683

Ui and Vi are r.e. sets for which Ui \ Vi ✓ {hi, ji : j < h(i)}. Assume further that for each i, there684

are infinitely many i
0 such that for some j, hi0, ji 2 Ui \ Vi; this assumption will be lifted at the end685
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of the proof. It will be shown by induction that for each k  `, there is a partial-recursive function g686

with infinite domain and g(i) < h(i) for each i 2 dom(g) such that (i) graph(g) ✓
S

ik Ui \ Vi or (ii)687

graph(g) ✓ {hi, ji : j < h(i)} \
S

ik Ui \ Vi. The induction statement holds for k = 0 (the empty union);688

now assume it holds for some k, and let g be a partial-recursive function with infinite domain such that (i)689

or (ii) holds. If (i) holds, then graph(g) ✓
S

ik Ui \ Vi [ (Uk+1 \ Vk+1) =
S

ik+1 Ui \ Vi, so the induction690

statement for k + 1 automatically follows. Suppose (ii) holds. Consider two cases.691

Case 1: graph(g) ✓⇤ {hi, ji : j < h(i)} \ (Uk+1 [ Vk+1). Then there is a partial-recursive function g
0 and a692

finite set F with graph(g0) = graph(g) \ F and graph(g0) ✓ {hi, ji : j < h(i)} \
S

ik+1 Ui \ Vi, so the693

induction statement (for some partial-recursive g
0 satisfying (ii)) holds for k + 1.694

Case 2: Not Case 1. Then graph(g) \ (Uk+1 [ Vk+1) is infinite. If graph(g) \ Vk+1 is also infinite, then one695

could enumerate an infinite subgraph graph(g0) of graph(g)\Vk+1 for some partial-recursive function g
0;696

therefore graph(g0) ✓ {hi, ji : j < h(i)} \
S

ik+1 Ui \ Vi, and again the induction statement (for some697

partial-recursive g
0 satisfying condition (ii)) holds for k + 1. Suppose graph(g) \ Vk+1 is finite. Then698

graph(g)\ (Uk+1[Vk+1) = (graph(g)\ (Uk+1 \Vk+1))[ (graph(g)\Vk+1) =⇤ graph(g)\ (Uk+1 \Vk+1).4699

It follows that graph(g)\ (Uk+1 \Vk+1) is an infinite r.e. set equal to the graph of some partial-recursive700

function g
0 with g

0(i) < h(i) for all i, so the induction statement (for some partial-recursive g0 satisfying701

condition (i)) holds for k + 1.702

This completes the proof by induction. To conclude the proof of the original statement, take the union of703

Cw and the graph of any function f with finite domain such that f(i) < h(i) for all i, and consider the case704

that {hi, ji : j < h(i)} \ Cw contains the graph of some partial-recursive function g with infinite domain705

and g(i) < h(i) for all i (if, instead, Cw contains such a function g, then there is nothing more to prove).706

Then {hi, ji : j < h(i)} \ (Cw [ graph(f)) ✓⇤ {hi, ji : j < h(i)} \ Cw, so {hi, ji : j < h(i)} \ (Cw [ graph(f))707

contains the graph of some partial-recursive function g
0 with infinite domain and g

0(i) < h(i) for all i, as708

required. ⇤709

In the next series of results, we compare the computational power of h-graph-bi-immune sequences to that710

of the halting problem K by studying various types of reducibilities between them. The following proposition711

shows that K is truth-table equivalent to some h- graph-bi-immune sequence. Since, as mentioned earlier,712

every set is weak truth-table reducible to some Martin-Löf random set, and, as shown by Calude and Nies713

[17], no Martin-Löf random set truth-table computes K, it follows that an h-bi-immune sequence may not be714

truth-table reducible to any Martin-Löf random set.715

Proposition 43. Suppose h is a recursive function such that h(i) � 2 for all i. Then there is an h-716

graph-bi-immune sequence w such that w ⌘tt K. In particular, no Martin-Löf random sequence v satisfies717

w tt v.718

Proof. We construct a sequence w satisfying two requirements for each s: (1) 's(s)# if and only if exactly719

one of {w2s+1, w2s+2} equals 0; (2) if dom('s) is infinite and 's(i) < h(i) for all i, then there is some j720

satisfying wj = 's(j). Requirement (1) codes K into the values of w, while Requirement (2) ensures that no721

h-bounded partial-recursive function g with infinite domain satisfies g(i) 6= wi for all i 2 dom(g) (this would722

in turn ensure that w is h-graph-bi-immune).723

In detail: at stage s, the following steps are carried out in sequence using oracle K:724

1. Search for the least e  s such that 'e has not yet been diagonalised against and 'e(2s+1)#< h(2s+1)725

or 'e(2s+ 2)#< h(2s+ 2). If such an e exists, go to Step 2. If no such e exists, go to Step 3.726

2. Let s0 be the minimum of {2s+1, 2s+2} such that 'e(s0)# and set ws0 = 'e(s0). Let s00 be the unique
element of {2s+ 1, 2s+ 2} \ {s0}, and define

ws00 =

⇢
1, if (ws0 = 0 ^ 's(s)#) _ (ws0 6= 0 ^ 's(s)"),
0, otherwise.

4For any sets U and V , we write U =⇤ V to mean that U is a finite variant of V , that is, (U \ V ) [ (V \ U) is finite.
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3. If 's(s)#, set w2s+1 = 0 and w2s+2 = 1. If 's(s)", set w2s+1 = w2s+2 = 0.727

By construction, 's(s)# if and only if exactly one of {w2s+1, w2s+2} equals 0. Thus K is btt-reducible to w.
To see that w tt K, let g and f be recursive functions such that for all e, s and j,

'e(s)#< h(s) , g(e, s) 2 K,

'e(s)#= j , f(e, s, j) 2 K.

Given any number 2s+ 1, the tt-reduction from w to K makes queries to the given oracle for elements in728

{g(e, t) : e  s^ t  2s+2}[{f(e, t, z) : e  s^ t 2 {2s+1, 2s+2}^ z < max{h(j) : j  2s+2}}[{s}. The729

reduction then determines w2s+1 based on the answers to these queries. First, based on the answers to queries730

for elements in {g(e, t) : e  s ^ t  2s+ 2}, one may determine whether there is a least e  s such that 'e731

has not yet been diagonalised against up to stage s and 'e(2s+ 1)#< h(2s+ 1) or 'e(2s+ 2)#< h(2s+ 2);732

moreover, if such a least e exists, then its value may be determined. If no such e exists, then w2s+1 = 0. If733

such an e exists, then the answers to queries for elements in {g(e, 2s+ 1), g(e, 2s+ 2), s} [ {f(e, t, z) : t 2734

{2s+1, 2s+2}^ z < max{h(j) : j  2s+2}} allow one to determine the least s0 2 {2s+1, 2s+2} such that735

'e(s0)#, as well as the value of 'e(s0) and whether 's(s)#; it follows from Step 2 of the earlier algorithm736

that this information may be used to determine w2s+1. We note that this procedure for determining w2s+1737

is recursive for any oracle (not just K). A similar tt-reduction applies to any even number. ⇤738

Remark 44. Although, as shown in the proof of Proposition 42, K is btt-reducible to some h-graph-739

bi-immune sequence, in general no h-graph-bi-immune sequence is btt-reducible to K. This follows from740

Proposition 42 and the fact that a set is btt-reducible to K if and only if it is in the Boolean algebra741

generated by the r.e. sets [37, Proposition III.8.7]. More generally, we observe in the next proposition that742

no h-graph-bi-immune sequence is bounded Turing reducible to any r.e. set.743

Any tt-reduction from an h-graph-(bi-)immune sequence w to an r.e. set cannot be positive; in other744

words, the tt-condition in any such reduction must contain negation. For otherwise, one could recursively745

enumerate infinitely many pairs (i, j) for which the tt-condition is true (which implies that j = wi), thereby746

contradicting the h-graph-(bi-)immunity of w.747

If U is a non-recursive r.e. set, then any tt-reduction from U to an h-graph-(bi-)immune sequence w cannot748

be conjunctive, that is, the tt-condition is not a conjunction of positive formulas. For otherwise, given a one-one749

recursive enumeration x0, x1, x2, . . . of U , one obtains a corresponding enumeration Dg(x0), Dg(x1), Dg(x2), . . .750

(for some recursive function g) of queried sets such thatDg(xi) ✓ graph(w) for all i. Furthermore,
S

i2N0
Dg(xi)751

is infinite; otherwise, {g(xi) : i 2 N0} would be finite and one could then determine recursively whether752

xi 2 U for each i via the relation xi 2 U , Dg(i) ✓ graph(w). Thus there would be an infinite one-one753

recursive enumeration of a subset of graph(w), contradicting the h-(bi-)immunity of w. Similarly, if U754

is a non-recursive r.e. set, then any tt-reduction from U to an h-graph-(bi-)immune sequence cannot be755

disjunctive, that is, the tt-condition is not a disjunction of positive formulas.756

We recall that a function f is bounded Turing reducible to a set U (f bT U) if there is a Turing functional757

�e and a constant c such that f = �U
e and for all i, �e on input i makes at most c queries to the oracle U .758

Proposition 45. No graph-immune sequence and no h-graph-immune sequence is btt-reducible to an r.e.759

set.760

Proof. Assume that w bT U for an r.e. set U with constant c. Now one can for each i define the761

computation-track of i as the oracle answers given by U while computing wi followed by a 2. These finite762

strings have at most length c+ 1. Furthermore, one can define similar strings for approximations Us to U763

and observe that those computation-tracks which converge in s states converge from below lexicographically764

to the computation track for U at i. Let � be the lexicographically maximal computation track taken by765

infinitely many i, let X be the set of these i. There are only finitely many i in a further set Y where some766

approximation has a computation track which takes the value � as at those i 2 Y the computation track767

is larger. For that reason, the set X is recursively enumerable as the set of all i /2 Y where at some s the768
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computation track � is taken. For the i 2 X one can compute wi by supplying the oracle answers of U769

according to the bits in � and will eventually obtain the correct value of w. Thus there is a partial-recursive770

function with the infinite domain X which coincide with w on its domain. Thus w is not graph-immune and771

also not h-graph-immune for any h. ⇤772

In the next proposition, we observe that the bi-immune-free Turing degrees exclude not only traditional773

bi-immune sets, but also h-graph-bi-immune sequences and graph-bi-immune sequences. This contrasts with774

Theorem 33, where it was shown that every non-recursive Turing degree contains an h-graph-immune set775

whenever h is a many-one recursive function.776

Proposition 46. Let h be a recursive function such that h(i) � 2 for all i. The bi-immune-free Turing777

degrees do not contain any h-graph-bi-immune sequence and also no graph-bi-immune sequence.778

Proof. Let U be a set of bi-immune-free Turing degree. Assume that w T U is graph-bi-immune or779

h-graph-bi-immune for a suitable h; now w̃ given by 8i [w̃i = wi mod 2] is 2-graph-bi-immune and thus780

the characteristic function of a bi-immune set. However, U does not Turing compute any bi-immune set.781

Therefore such an w cannot exist. ⇤782

It is known (see, for example, [36, Proposition 4.3.11]) that the Martin-Löf random Turing degrees are783

not closed upwards; the following proposition shows, in contrast, that the degrees of h-graph-bi-immune784

sequences are closed upwards.785

Proposition 47. Let h be recursive such that h(i) � 2 for all i. If w is an h-graph-bi-immune sequence786

and v is a binary sequence in a hyperimmune-free Turing degree which can compute w then there is a further787

h-graph-bi-immune sequence within the same Turing degree as v.788

Proof. Let B be the set of all binary strings x which are a prefix of the sequence v1v2v3 . . . (written x � v)789

and assume that there is a recursive set R of strings which contains infinitely many members of B and also790

infinitely many non-members of B. In the case that for each x /2 B, the set R contains only finitely many791

strings extending x, then one can compute B in the limit, as for each string of length n, one guesses always792

that the string of length n with the most extensions found so far in R is the member of B; this algorithm793

converges for all n to v1v2 . . . vn. However, the only binary sequences of hyperimmune-free Turing degree794

which are limit recursive are the recursive sequences (see, for example, [36, Proposition 1.5.12]) and those795

do not compute an h-graph-bi-immune sequences; hence this case does not occur. Thus there is an x /2 B796

such that infinitely many extensions of x are in R; all these are not in B and R has the infinite recursive797

subset {y 2 R : x � y} not containing a member of B. This fact will be used in the construction of w̃ – the798

sequence with the same Turing degree as v and is h-graph-bi-immune.799

One makes a recursive bijection from binary strings to the natural numbers following the length-800

lexicographic ordering, so the empty string gives 0, the string 0 gives 1, the string 1 gives 2 and the string 00801

gives 3. Let num(x) be the natural number assigned to x. Now one defines802

w̃i =

(
vn, if i = num(v1v2 . . . vn�1),

wi, if i = num(y) for some y 6� v, that is, if i /2 num(B).

One can reconstruct v recursively from w̃ as vn = w̃num(v1v2...vn�1), so v T w̃. Now consider any partial-803

recursive function g̃ such that the domain of g̃ is infinite and, for all i 2 dom(g̃), g̃(i) < h(i) and g̃(i) 6= w̃i.804

The domain of g̃ has an infinite recursive subset R which, as explained above, can be chosen to be disjoint805

from num(B). Now one defines, for all i 2 R, g(i) = g̃(i); for all other x, g(i) is undefined. It follows that806

g(i) < h(i) and g(i) 6= wi for all i 2 R. Thus if g̃ witnesses that w̃ is not h-graph-bi-immune then g witnesses807

that w is not h-graph-bi-immune, in contradiction to the choice. Hence w̃ is h-graph-bi-immune. It was808

already mentioned that v T w̃. It can also be seen that w̃ T v�w and, as w T v, w̃ ⌘T v. Here w�v809

denotes the join of two binary sequences w and v, defined to be the sequence w1v1w2v2w3v3 . . . as usually810

done in recursion theory. ⇤811
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7. Conclusions812

The motivation of this study came from the necessity to find an algorithm to transform an infinite ternary813

bi-immune sequence into a binary bi-immune sequence. This problem has arisen in the design of a QRNG814

based on measuring a value-indefinite quantum observable [1, 3, 6, 7]. Each ternary sequence generated by815

such a QRNG is bi-immnune, which shows that the quality of randomness generated is provable higher than816

the quality of randomness generated by software. Preserving bi-immunity in algorithmic transformations of817

infinite ternary bi-immune sequences into a binary sequences turned to be a non-trivial problem: to solve it818

we had to better understand the notion of bi-immunity on non-binary alphabets, the scope of this paper. A819

result proved here has been used in the design of the QRNG in [8].820

In this paper we have studied various notions of bi-immunity over alphabets with b � 2 elements and821

recursive transformations between sequences on di↵erent alphabets which preserve them. Furthermore, we822

have extended the study from sequence bounded by a constant to sequences over the infinite alphabet N0823

which may or may not be bounded by a recursive function, and relate them to the Turing degrees in which824

they can occur.825

Finally we mention a few open questions. What is the computational power of algorithms using various826

bi-immune sequences as oracles [2]? In particular, can the Halting Problem be solved with such an algorithm?827

A weaker question is to replace the Halting Problem with the lesser principle of omniscience [13]: given828

a recursive binary sequence (xn) containing at most one 1, decide whether x2n = 0 for each � 1 or else829

x2n+1 = 0 for each n � 1.830
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