
CDMTCS
Research
Report
Series

Automata for Solid Codes

Helmut Jürgensen
The University of Western Ontario,
London, Ontario

Ludwig Staiger
Martin-Luther-Universität
Halle-Wittenberg

CDMTCS-550
January 2021

Centre for Discrete Mathematics and
Theoretical Computer Science



Automata for Solid Codes

Helmut Jürgensen∗

and

Ludwig Staiger†

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik

von-Seckendorff-Platz 1, D–06099 Halle (Saale), Germany

Abstract

Solid codes provide outstanding fault-tolerance when used for
information transmission through a noisy channel involving not
only symbol substitutions, but also synchronisation errors and
black-outs. In this paper we provide an automaton theoretic char-
acterisation of solid codes which takes this fault-tolerance into ac-
count.

The fault-tolerance afforded by a solid code L can be summarised
as follows: Consider messages, encoded using L, being sent through
a noisy channel. Any code words in L, which are present in the re-
ceived message, will be decoded correctly, unless they themselves
happen to be the results of errors. Thus, errors in the received
message will not lead to incorrect decodings of those parts which
are error-free.

In this paper we consider acceptors which are fault-tolerant in
this sense when analysing such received messages. These accep-
tors characterise the class of solid codes. For finite solid codes an
automaton characterisation was published in the sixties by Leven-
shtein and Romanov. The characterisation uses state-invariant
finite-state transducers which act as decoders in such a way that
an output is generated exactly when a code word has been read

∗Helmut Jürgensen was with the Department of Computer Science, The Univer-
sity of Western Ontario, London, Ontario, Canada

†email: ludwig.staiger@informatik.uni-halle.de



2 H. Jürgensen, L. Staiger

completely. State-invariance means that acceptance does not de-
pend on the initial state - every state can be used as the initial
state.

The results of Levenshtein and Romanov depend strongly on
the fact that the code is finite. In this paper we provide a gen-
eral automaton theoretic characterisation of arbitrary solid codes
without any such restriction. Moreover, the solid code is regular
as a language if and only if the automaton used in the charac-
terisation can be reduced to an equivalent finite automaton with
equivalent properties.

The main results of this paper are as follows: Every acceptor
defines a solid code. For every solid code there is a fault-tolerant
acceptor defining the code. Such acceptors expose the decomposi-
tion of potentially faulty received messages according to the code.
For solid codes which are regular as languages these acceptors can
be chosen to be finite while preserving all important combinatorial
properties.

Contents
1 Automata for Codes 3

2 Notation and Basic Notions 6

3 Restricted Infix Codes 15

4 Solid Codes 15

5 State-Invariant Decoders for Finite Solid Codes 17

6 Levenshtein-Romanov Mapping 19

7 The Condition Pref(L)∩X∗L = L and Its Dual 21

8 Fault-Tolerant Acceptors for Solid Codes 24

9 Reduced Fault-Tolerant Acceptors for Solid Codes 35



Automata for Solid Codes 3

1 Automata for Codes
Automaton theory has many rôles in coding theory: automata are used
to characterise classes of codes; they are employed to decide code prop-
erties; transducers serve as abstract models for encoding and decoding;
they express error resistance properties; they can be used as filters for
pattern matching; etc. Many details about automaton theoretic as-
pects of coding theory, but not all, can be found in the book “Codes and
Automata” by Berstel, Perrin and Reutenauer [BPR10]. The critical
surveys [Jür13, Jür14] may add further perspectives.

When considering the theory of codes, one has to distinguish two
nearly disjoint fields, both called “coding theory”: the theory of error-
correcting codes, mainly block codes (see [HB98], for example); the the-
ory of codes with words of possibly different lengths, sometimes re-
ferred to as variable-length codes (see [BP85, Shy01], for example).
A systematic proposal to unify these different aspects was made in
[JK97].

Automaton theoretic models are of particular interest for codes which
are finite or regular languages, because the corresponding algorithms
rely on a finite-state transition processes. In many cases the restriction
to finitely many states is not essential, but provides a deeper under-
standing of the computations involved and makes several properties
decidable [JK97, FRS07].

Automaton theoretic studies of codes take into account at least the
fol- lowing different points of view, when considering a given class L of
languages L⊆ X∗ satisfying certain properties.

• Acceptors for exactly the languages L ∈ L .

• Acceptors or decoders for exactly the messages encoded by lan-
guages L ∈ L , that is for L∗ with L ∈ L .

• Fault-tolerant acceptors or decoders for the messages encoded by
languages L ∈ L .

• Error-correcting acceptors or decoders for the messages encoded
by languages L ∈ L .

Obviously, these settings are quite different. In this paper we describe
fault-tolerant acceptors for messages encoded by solid codes.

For finite solid codes such automata were characterised in 1964 as
state-invariant decoders without look-ahead (see Section 5). This char-
acterisation is due to Levenshtein [Lev64a] and Romanov [Rom66]. We



4 H. Jürgensen, L. Staiger

generalise these considerations to infinite solid codes and show how a
finite description of such codes translates into a finite description of a
finite fault-tolerant acceptor for such codes. Intuitively, these acceptors
are also state-invariant and do not resort to look-ahead. In general, to
handle such situations, one needs to refer to a channel model as out-
lined in [JK97].

We show that every acceptor defines a solid code and that every
solid code can be represented in this way. The acceptors considered
in this context may be infinite; they are fault tolerant in the follow-
ing sense: in an encoded message received after transmission through
a noisy channel they correctly identify those code words which have
been transmitted correctly. Thus, we do not look at acceptors of solid
codes themselves, but at fault-tolerant acceptors of messages encoded
by solid codes.

Consider a message encoded using a solid code. The encoded mes-
sage is a sequence of code words. The message received after transmis-
sion through a noisy channel is a sequence of symbols the combination
of some of which may result in the recovery of a code word. The us-
age of a solid code guarantees, that code words in the received message
are detected unequivocally. A fault-tolerant acceptor, when reading a
received message, will indicate the appearance of code words and pos-
sibly enable a decoding.

One of the best known characterisations of a class of codes by au-
tomata concerns prefix codes: Prefix codes are precisely the languages
accepted by tree-shaped automata with the initial state as the root and
the leaves as accepting states. Alternatively, if A is an acceptor with
input alphabet X and L(A) is the language accepted by A, then the lan-
guage L(A)\L(A)X+ is a prefix code or consists only of the empty word.
Moreover, every prefix code is obtained in this fashion. When A is finite
then the prefix code is regular.

Similar, but less explicit characterisations exist also for hypercodes
[Val77, Thi73, Thi81] and code classes related to infix or outfix codes
[IJST91, Jür99, PT90], typically in terms of the syntactic monoid of
such codes. In addition, many studies concern the automaton the-
oretic characterisation of the set of messages encoded using a given
code. To get a fairly comprehensive understanding of the situation
we refer to [BPR10, JK97, Shy01, Yu05]. Further important early
studies concerning the connection between automata and codes include
[Gle61, Lev61, Lev62, Lev64b, Mar62].

In this paper we consider the class of solid codes. A solid code is
a language L such that every word has a unique decomposition into



Automata for Solid Codes 5

words belonging to L and words which do not contain a word in L. Thus,
solid codes are strongly resistant to transmission errors: those parts of
a message which were transmitted correctly are also decoded correctly.
We provide further details about solid codes in Section 4 below.

For finite solid codes an automaton characterisation was given by
Levenshtein [Lev64a] and Romanov [Rom66]. The characterisation
uses state-invariant finite-state transducers which act as decoders in
such a way that an output is generated exactly when a code word has
been read completely. State-invariance means that the acceptance does
not depend on the initial state – every state can be used as the initial
state. Intuitively, state-invariance expresses the fact that, when an en-
coded message is read after transmission through a noisy channel, the
decoder will find the code words regardless of intermediate incorrect
parts.

The results of Levenshtein and Romanov depend strongly on the
fact that the code is finite. In this paper we provide a general automa-
ton theoretic characterisation of arbitrary solid codes. Moreover, the
solid code is regular as a language if and only if the automaton used in
the characterisation can be reduced to an equivalent finite automaton.
Our characterisation does not involve decoders, but only acceptors. To
define decoders one would need to know how the encoding is done: for
a finite code L one can make the simple assumption that L encodes the
symbols in an alphabet of size |L|; for an infinite code L the encoding
would be specified by significantly more complicated transducer, the
choice of which depends very much on the technical circumstances.

We use ideas from the constructions of Levenshtein and Romanov.
Intuitively, though not quite truly, the acceptors involved are state-
invariant. The concept of a decoded output being issued exactly at the
end of reading a code word is modelled by accepting a word only if no
accepting state was entered before the end of the word.

The main results of this paper are as follows: Every acceptor de-
fines a solid code. For every solid code there is a fault-tolerant acceptor
defining the code. Such acceptors expose the decomposition of poten-
tially faulty received messages according to the code. For solid codes
which are regular as languages these acceptors can be chosen to be
finite while preserving all important combinatorial properties.

Our paper is structured as follows: In Section 2 we introduce the no-
tation and some basic notions. Properties of solid codes are reviewed in
Section 4. In Section 5 we define state-invariant decoders without look-
ahead for finite solid codes and summarise the corresponding results
of Levenshtein and Romanov. We introduce the main tool for our con-



6 H. Jürgensen, L. Staiger

struction, the Levenshtein-Romanov mapping, in Section 6. We prove
several of its properties under various assumptions. This leads to new
characterisations of several classes of codes in s Section 7. In Section 8
we show that every acceptor defines a solid code and that every solid
code defines a fault-tolerant acceptor. However, the fault-tolerant ac-
ceptors defined by solid codes are usually infinite, even when the solid
code is a regular language. In Section 9 we show how to construct a
reduced fault-tolerant acceptor for a solid code.

2 Notation and Basic Notions
We introduce some notation and review several notions and facts needed
in this paper. As general references we use: the “Handbook of For-
mal Languages” [RS97a, RS97b] for the theories of formal languages
and automata; the monographs “Abstrakte Automaten” (Abstract Au-
tomata) [Sta69] and “Algebraic Theory of Automata” [GP72] for founda-
tions of automaton theory; the monographs “Theory of Codes” [BP85],
“Codes and Automata” [BPR10], “Free Monoids and Languages” [Shy01],
“Languages and Codes” [Yu05] and the article “Codes” [JK97] for the
theory of codes.

By N and N0 we denote the sets of positive and non-negative inte-
gers, respectively. We use the common notation for operations on sets;
when there is no risk of confusion, we omit set brackets for singleton
sets.

Let X be a set, and let ∼= be an equivalence relation on X . For x ∈ X ,
[x]∼= is the equivalence class of x, and X/ ∼= is the factor set, that is the
set of equivalence classes of the elements of X . We write [x] instead
of [x]∼= when which equivalence relation is used is obvious from the
context.

An alphabet is a non-empty set. The elements of an alphabet are
called symbols. Finite sequences of symbols are called words.

Let X be an alphabet. The set of all words over X , including the
empty word ε, is denoted by X∗. To exclude the empty word we write X+,
that is, X+ = X∗ \ {ε}. With concatenation of words as multiplication,
the set X∗ is a monoid. A language over X is a subset of X∗. For a
language L⊆ X∗ and a word u ∈ X∗, the set

uco[−1]L = {w|w ∈ X∗,uw ∈ L}

is the left quotient of L by u. Given a language L, two words u,v ∈ X∗

are said to be Nerode equivalent with respect to L, u≡L v, if and only if



Automata for Solid Codes 7

u[−1]L = v[−1]L. Then [u]L denotes the Nerode equivalence class of u.
In our context, the case when the alphabet X is a singleton set usu-

ally leads to trivial and clumsy exceptions. In the sequel we assume,
unless stated otherwise, that an alphabet contains at least two distinct
symbols and these will include a and b or other ones as needed without
special mention.

For a word w ∈ X∗,

Pref(w) = {u|u ∈ X∗,w ∈ uX∗}

is the set of prefixes of w. The set of proper prefixes of w is

Pref+(w) = Pref(w)\{ε,w}.

For L⊆ X∗, let

Pref(L) =
⋃

w∈L

Pref(w) and Pref+(L) =
⋃

w∈L

Pref+(w).

Note that ε /∈ Pref+(L), but that L∩Pref+(L) = /0 is possible. One defines
suffixes and infixes of words analogously. Thus

Suff(w) = {u|u ∈ X∗,w ∈ X∗u}

is the set of suffixes of w, and

Inf(w) = {u|u ∈ X∗,w ∈ X∗uX∗}

is the set of infixes of w. The sets of proper suffixes and proper infixes
of w are

Suff+(w) = Suff(w)\{ε,w}

and
Inf+(w) = Inf(w)\{ε,w},

respectively. For r ∈ {Pref,Suff} and L⊆ X+, the r-root of L is the set

r
√

L = {w|w ∈ L,r(w)∩L = /0}.

As ε /∈ L, one has ε /∈ r
√

L.
Let u,v ∈ X∗. The shuffle product of u and v is the set

u v =


w ∈ X∗,∃n ∈ N∃u0, . . . ,un ∈ X∗

w ∃v1, . . . ,vn ∈ X∗ : u = u0u1 · · ·un,
v = v1v2 · · ·vn,w = u0v1u1v2u2 · · ·vnun





8 H. Jürgensen, L. Staiger

For languages L,L′ ⊆ X∗, the shuffle product of L and L′ is the set

L L′ =
⋃

u∈L,v∈L′
u v .

We consider the following classes of codes or languages L ⊆ X+ re-
lated to codes:

NAME DEFINITION CLASS
prefix code LX+∩L = /0 Lp
suffix code X+L∩L = /0 Ls
infix code Inf+(L)∩L = /0 Li
bifix code L ∈ Lp∩Ls Lb
overlap-free1 Pref+(L)∩Suff+(L) = /0 Lol
solid code L ∈ Li∩Lol Lsolid
p-infix code X∗LX+∩L = /0 Lpi
s-infix code X+LX∗∩L = /0 Lsi
comma-free code X+LX+∩L2 = /0 Lcomma−free
hypercode (L X+)∩L = /0 Lh

To keep statements simple, we allow for L to be empty in all these
cases. A language L⊆ X+ is a prefix code or a suffix code, if and only if
Pref
√

L = L or Suff
√

L = L, respectively. For details about the classes of lan-
guages, see [JK97]. We summarise the relations between these classes:

• Lsolid = Li∩Lol ⊂ Lcomma−free ⊂ Li = Lpi∩Lsi;

• Li ⊂ Lpi ⊂ Lp;

• Li ⊂ Lsi ⊂ Ls;

• Li ⊂ Lb = Lp∩Ls;

• Lh∩Lsolid ⊂ Lh ⊂ Li.

The containments are shown in Fig. 1.
Most of the usual classes of codes can be described conveniently as

independent sets for various types of dependence systems on X∗ or as
sets of incomparable words with respect to certain n-ary relations on
X∗. For details we refer to [JK97] and the literature cited there. In this
paper we refer to only a small number of such relations, all binary, and
all being partial orders on X∗. Their list is as follows for u,v ∈ X∗:

1Observe that overlap-free languages are not necessarily codes, e.g. {a,ab,aab}.



Automata for Solid Codes 9

tLp tLs

HH
HH

H
HH

��
��

�
��

tLpi t
Lb
tLsi

HH
HH

H
HH

��
��

�
��

tLi
tLol

��
��

�
��

tLh tLcomma−free

HH
H
HH

HH

�
�
�
�
�
�
�

tLsolid

@
@

@
@
@

@
@

��
�
��

��

tLh∩Lsolid

Figure 1: Relations between the language or code classes considered.

RELATION DEFINITION INDEPENDENT LANGUAGES
u≤p v v ∈ uX∗ prefix codes
u≤s v v ∈ X∗u suffix codes
u≤i v v ∈ X∗uX∗ infix codes

The strict versions of these partial orders require that u 6= v. Thus,
for example, one has u<p v if and only if v∈ uX+. We also use the length-
lexicographical order ≤ll on X∗. To define this order one assumes an
arbitrary, but fixed total order ≤alph on X , which, in turn, defines the
lexicographical order ≤lex on X∗. Then the length-lexicographical order
is defined by the following conditions: u≤ll v if and only if

1. either |u|< |v|

2. or |u|= |v| and u≤lex v.

The length-lexicographical order is not interesting from the point of
view of codes. Its sets of incomparable words are singleton sets. It is,
however, useful for the enumeration of words in X∗.

We now turn to basic definitions in automaton theory. We do not
make any assumptions about finiteness or computability. Such as-
sumptions are introduced only when needed.

Definition 1 A deterministic semi-automaton is a construct A=(Q,X ,δ)
such that

1. Q is a non-empty set, the set of states;



10 H. Jürgensen, L. Staiger

2. X is a finite alphabet, the input alphabet;

3. δ : Q×X → Q is the transition function.

We permit the set of states to be infinite; we also permit the transition
function to be non-computable. The input alphabet is always assumed
to be finite. As we do not consider non-deterministic semi-automata
in this paper, we omit the word ‘deterministic’ in the sequel. A semi-
automaton is said to be finite if its set of states is finite. The definition
of δ is extended to Q×X∗→ Q by sequentiality as usual.

Definition 2 A deterministic acceptor is a construct A = (Q,X ,δ,q0,F)
such that

1. (Q,X ,δ) is a deterministic semi-automaton;

2. q0 ∈ Q is the initial state;

3. F ⊆ Q is the set of accepting states.

The language accepted by an acceptor A as above is the set

L(A) = {w|w ∈ X∗,δ(q0,w) ∈ F}.

A language is regular (or rational) if and only if it is accepted by a finite
acceptor. Occasionally we also need to consider further classes in the
language hierarchy; for those we refer to the general references listed
above.

An acceptor is (initially) connected if, for every state q ∈ Q, there is
an input word w ∈ X∗ such that δ(q0,w) = q. It is strongly connected
if, for any two states q,q′ ∈ Q, there is an input word w ∈ X∗ such that
δ(q,w) = q. A state q ∈ Q is said to be useless if, for every word w ∈ X∗,
δ(q,w) /∈ F .

There are several instances when we need to change the initial state
of an acceptor. To indicate the fact that q0 has been replaced by state
q as the initial state we write Aq. If q is a useless state, then L(Aq) =
/0. An acceptor, which is initially connected and has no useless states,
need not be strongly connected. On the other hand, if A is strongly
connected and F 6= /0, then A has no useless states and is, a fortiori,
initially connected.

Occasionally we need to consider an acceptor, the transition func-
tion of which is only a partial function. Such an acceptor is said to
be partial; we sometimes emphasise the fact that the acceptor is not
partial by saying that it is a total acceptor.



Automata for Solid Codes 11

Let A = (Q,X ,δ,q0,F) and A′ = (Q′,X ,δ′,q′0,F
′) be two partial or total

acceptors. A is said to be a (partial) subacceptor of A if the following
four conditions are satisfied:

1. Q′ ⊆ Q;

2. q′0 = q0;

3. F ′ = Q′∩F ;

4. for all q ∈ Q′ and all x ∈ X , if δ′(q,x) is defined, then also δ(q,x) is
defined and δ′(q,x) = δ(q,x).

In such a case we write A′ � A.

Definition 3 Let A= (Q,X ,δ,q0,F) be an acceptor, and let i∈N. A word
w ∈ X+ is accepted by A at stage i if the following conditions are met:

1. δ(q0,w) ∈ F ;

2. there are exactly i− 1 distinct prefixes w1,w2, ...,wi−1 ∈ Pref+(w)
such that δ(q0,w j) ∈ F for j = 1,2, ..., i−1.

We denote by Li(A) the set of words which are accepted by A at stage i.
We list a few immediate consequences of this definition:

1. L1(A) is the set of all non-empty words w such that δ(q0,w) ∈ F
with δ(q0,u) /∈ F for every proper prefix u of w. In particular, when
q0 ∈ F , this excludes the empty word. See Fig. 2.

2. Li(A)∩L j(A) = /0 for i 6= j.

3. The set
⋃

∞
i=1 Li(A) is the set of all non-empty words accepted by A,

that is,
⋃

∞
i=1 Li(A) = L(A)\{ε}.

Remark 1 The definition of Li(A) does not depend on the acceptor A.
Consider a non-empty language L ⊆ X+. For i ∈ N, let Li be the set of
words in L which have exactly i− 1 proper prefixes in L. Let A be any
deterministic acceptor2 for L, that is, L = L(A). Then Li(A) = Li.

Recall that an equivalence relation ∼= on the set Q of states of an
acceptor A = (Q,X ,δ,q0,F) is a congruence if and only if the following
conditions are satisfied for all q,q′ ∈ Q and all x ∈ X :

2Such an acceptor always exists. It can, for instance, be obtained by the Nerode
construction defined further below.



12 H. Jürgensen, L. Staiger

&%
'$

&%
'$
"!
# 

-

��
?

��
?

y

z

e f

a b
b

a

Figure 2: An automaton illustrating the acceptance at stages. There is
only one accepting state, f . One has L1(Ae) = a∗b and L1(A f ) = {b} ∪
a+b = a∗b. In general, for i > 0, Li(Ae) = Li(A f ) = (a∗b)i.

1. If q′ ∼= q then q′ and q are either both in F or both in Q\F .

2. If q′ ∼= q then δ(q′,x)∼= δ(q,x).

Given a congruence ∼=, the factor acceptor is defined as

A/∼== (Q/∼=,X ,δ∼=, [q0]∼=,F/∼=)

where
δ∼=([q]∼=,x) = [δ(q,x)]∼=.

The following remark is used several times in the sequel.

Remark 2 Let A be an acceptor and let ∼= be a congruence on A. One
has L(A) = L(A/∼=). Moreover, using Remark 1, one has Li(A) = Li(A/∼=)
for all i ∈ N.

Each acceptor has a unique maximal congruence ∼=max, often referred
to as state equivalence: q′,q ∈ Q are equivalent, q′ ∼=max q, if and only
if L(Aq′) = L(Aq). The acceptor A/∼=max is the reduced acceptor for A. If
A/∼=max is finite, then it has the smallest number of states among all
acceptors for the language L(A). See [Sta69, GP72] or other advanced
textbooks on automata for details.

Given a language L⊆ X∗, the reduced acceptor (unique up to isomor-
phisms) can be built using the equivalence classes of words in X∗ with
respect to the Nerode equivalence. The set of states is the set of equiv-
alence classes [w]L with w ∈ X∗. This set is finite if and only if L is a reg-
ular language. The initial state is the class [ε]L. The set F of accepting



Automata for Solid Codes 13

states consists of exactly those classes [w]L for which w ∈ L. The tran-
sition function under input x ∈ X leads from [w]L to [wx]L. These defini-
tions do not depend on the representatives of the equivalence classes.
We refer to this construction as the Nerode construction3

We also need to consider equivalence of states of different accep-
tors and equivalence of different acceptors. This is most conveniently
expressed for automata with outputs [Sta69], but can be re-phrased
for acceptors as follows: Consider two acceptors A = (Q,X ,δ,q0,F) and
A′ = (Q,X ,δ,q0,F). States q ∈ Q and q′ ∈ Q′ are equivalent, q∼= q′, if and
only if L(Aq) = L(A′q′). The acceptor A is said to simulate A′ if and only
if, for every state q′ ∈Q′ there is a state q ∈Q with q′ ∼= q. The acceptors
A and A′ are said to be universally equivalent4, A ∼= A′, if and only if A
and A′ simulate each other.

Remark 3 Let A and A′ be universally equivalent acceptors, and let
q and q′ be equivalent states of A and A′, respectively. Then, for all
i ∈ N,Li(Aq) = Li(A′q′).

We state an automaton theoretic characterisation of prefix codes, well-
known in coding theory (see, for example, [BP85, JK97]), adapted to
the present terminology. To make the presentation self-contained, we
include a proof.

Proposition 1 Let A = (Q,X ,δ,q0,F) be an acceptor with q0 /∈ F . Then
L1(A) = Pref

√
L(A) is a prefix code. Conversely, if L ⊆ X+ is a non-empty

prefix code then there is an acceptor A such that L = L1(A).

Proof. If |L1(A)| ≤ 1, nothing needs to be proved. Assume, therefore,
that L1(A) contains at least two distinct words u and w. If L1(A) is
not a prefix code such words exist with u a proper prefix of w, that is,
w = uv for some v ∈ X+. But then w ∈ Li(A) with i≥ 2, hence w /∈ L1(A), a
contradiction!

For the converse, consider the acceptor A = (Q,X ,δ,q0,F) defined as
follows: Let Q = (Pref(L)\L)∪{s} with q0 = ε, and s is a new symbol; let

3The Nerode construction works for any type of language, but need not be com-
putable. It is computable if the Nerode equivalence is decidable

4Acceptors A and A′ are equivalent in the usual sense if L(A) = L(A′). Universal
equivalence is a far stronger requirement.



14 H. Jürgensen, L. Staiger

F = {ε} and, for q ∈ Q and x ∈ X , let

δ(q,x) =


qx, if qx ∈ Pref(L)\L,
ε, if qx ∈ L,
s, if q = s or qx /∈ Pref(L), and
δ(ε,x), if q ∈ L.

In essence, the transition function defines the tree of code words; how-
ever, the leaves are combined into the initial state ε which is also the
only final state; the state s serves as a sink state. A word w is accepted
if and only if δ(ε,w) = ε. Thus L(A) = L∗.

As L is a prefix code, we have L = L1(A). o

Consider a property P of words in X+ according to which words in X∗

can be decomposed into factors. For example, if L is a prefix code, then
every word in L+ can be decomposed uniquely into a product of words
in L, and every word in X∗ can be decomposed into a product of words
which are in L or which have no infix, which is in L. In this case,
P would be defined as follows: A word w ∈ X+ satisfies P if and only if
w∈ L. In general, a word may have any finite number of decompositions
according to P. This idea is captured in the following definition.

Definition 4 Let P be a property of words in X+. A P-decomposition of
a word w ∈ X∗ is a construct w = (n,~u,~v) with the following properties:

1. n ∈ N0.

2. ~u = (u1,u2, ...,un) with u1,u2, ...,un ∈ X+, each satisfying P.

3. ~v = (v0,v1, ...,vn) with v0,v1, ...,vn ∈ X∗ such that no vi has an infix
satisfying P.

4. w = v0u1v1u2v2 · · ·unvn.

Such P-decompositions are required, for instance, for the decoding of
encoded messages received over a noisy channel. The decoder will
attempt to determine a decomposition of the received messages into
words possibly related to code words, and then attempt to invert the
encoding, possibly correcting errors. The first part of this process is
modelled by an acceptor as follows.

Definition 5 Let A be an acceptor, let P be a property of words in X+,
let w ∈ X+, and let ~w = (n,~u,~v) be a P-decomposition of w. Let

PrefP(~w) = {v0u1v1u2v2 · · ·ui|i = 1,2, . . . ,n}.



Automata for Solid Codes 15

The acceptor A exposes the P-decomposition ~w if and only of the follow-
ing conditions are satisfied

1. t ∈ L(A) for all t ∈ PrefP(~w).

2. t /∈ L(A) for all t ∈ Pref(w)\PrefP(~w).

Let A, P, w and ~w be as in Definition 5. If n = 0, then ~u is the empty
sequence and PrefP(~w) = /0. If n > 0, then the word v0u1v1u2v2 · · ·ui is
accepted at stage i. The ends, but not the beginnings, of the infixes
listed in ~u are recognised in the given order.

3 Restricted Infix Codes
In this section we provide new characterisations of p-infix and p-suffix
codes. These characterisations may turn out to be interesting beyond
the scope of the present paper. They resemble the fact that L,ε /∈ L, is a
prefix (suffix) code if and only if L = Pref

√
LX∗

(
L = Suff

√
X∗L

)
.

Theorem 1 Let L⊆ X+ and ε /∈ L.

1. L is a p-infix code if and only if L⊆ Pref
√

X∗L.

2. L is a s-infix code if and only if L⊆ Suff
√

LX∗.

Proof. We only prove the first statement. The second one follows by
duality.

Suppose that L is a p-infix code, that is, L∩X∗LX+ = /0. Then L ⊆
X∗L\X∗LX+ = Pref

√
X∗L.

For the converse, assume that L is not a p-infix code. Let u ∈ L∩
X∗LX+. Then there are words w ∈ L and v ∈ X∗ such that vw <p u. Then
u is in L, but not in Pref

√
X∗L. o

4 Solid Codes
Solid codes were introduced in [Lev64a] as strongly regular codes; they
are called codes without overlap in [Lev70]. The term solid codes seems
to appear in [SY90] for the first time. A combinatorial characterisation
of solid codes is provided in [JY90]. Many properties of solid codes are
summarised in [JK97].



16 H. Jürgensen, L. Staiger

There are two definitions of solid codes, reflecting two different ways
of interpreting the same situation: one purely combinatorial; a second
one implying error-resistance properties.

The first and earlier definition is purely combinatorial; it defines
“strongly regular codes” in the sense of [Lev64a] or “codes without over-
lap” in the sense of [Lev70].

Definition 6 A solid code over X is a language L ⊆ X+ which is an
overlap-free infix code.

For the second definition we need the following auxiliary notion. For
a language L ⊆ X+ and a word w ∈ X∗, an L-decomposition of w is a
construct ~w = (n,~u,~v) with n ∈ N0,~u = (u1,u2, ...,un) and v = (v0,v1, . . . ,vn)
of words in X∗, such that

v0u1v1u2v2 · · ·unvn = w,

u1,u2, . . . ,un ∈ L and, for i = 0,1, . . . ,n, Inf(vi)∩L = /0. An L-decomposition
is a special kind of P-decomposition according to Definition 4. For every
L⊆ X+, every word in X∗ has at least one L-decomposition.

Definition 7 A solid code over X is a language L⊆ X+ such that every
word in X∗ has a unique L-decomposition.

Theorem 2 ([JY90]) Solid codes as defined in Definitions 6 and 7 are
the same.

There is a subtle difference between the two definitions of solid codes
which becomes apparent when one attempts to relatives the concept
in the following sense: The properties are no longer required to hold
for all words in X∗, but only for words in a given language M ⊆ X∗.
Intuitively, for Definition 6, L would behave as an overlap-free infix
code only for words in M; similarly, for Definition 7, only the words
in M would need to have unique L-decompositions. These ideas are
explored in [DJKM12, Hea00, Jür09, Jür11].

By the standard relativisation technique proposed in [DJKM12],
the relativised versions of the two definitions are not equivalent in gen-
eral.

Within the hierarchy of classes of codes, the solid codes form a
proper subclass of the comma-free codes. They are incomparable to
the hypercodes. Solid hypercodes have superb error-detection and syn-
chronisation capabilities.



Automata for Solid Codes 17

For a constructively given linear language L, it is undecidable wheth-
er it is a solid code (see [JK97], Table 9.1 and Theorem 9.5). On the
other hand, if L is regular (constructively given), then it is decidable
whether L is a solid code (see [JY90] and [JK97], Table 9.1).

These results are extended and refined in [HS11]: For regular lan-
guages given by finite non-deterministic acceptors, polynomial time
bounds, in terms of the number of states and the number of transi-
tions, are derived for deciding the properties of being overlap-free or
solid. For linear languages the property of being overlap-free is un-
decidable in general. From [JK97], Theorem 9.5, it is known that the
property of being an infix code is undecidable for linear languages.

For further general information regarding various aspects of solid
codes see [JY90, JK97, SY90, Yu05]. Specific properties of solid codes
are discussed in the following publications: information rate of solid
codes [JKL04, JK05, Lev70, Lev04]; maximality of solid codes [JKK01,
Lâm01, Lâm03, KY10, JK06]; relativised solid codes [Hea00, DJKM12,
Jür09, Jür11]; involution solid codes in the context of DNA computing
[JKM06, KM06, JKM08]; information transmission [Bal02]; applica-
tion to pattern matching [HW06]5.

5 State-Invariant Decoders for Finite Solid
Codes

For finite solid codes a characterisation in terms of transducers is given
in [Rom66]. This work is presented in more general terms in Chapter
11 of [JK97]. Here we provide a brief summary of these results.

Definition 8 A finite deterministic transducer is a construct A=(Q,X ,Y,d,m)
with the following properties and interpretation:

1. Q is a finite non-empty set of states;

2. X is the input alphabet and Y is the output alphabet; X and Y are
finite and non-empty;

5In the paper [HW06] it seems to be assumed that the languages under considera-
tion are infix codes. Otherwise some of the statements about overlap-free languages
would be incorrect. Moreover, in that paper a language is defined to be overlap-free if
and only no two distinct words overlap (Definition 1), thus allowing for the presence
of words which overlap themselves. The presence of such words is probably not in-
tended as it would invalidate several results of that paper. This is readily corrected
if one uses the standard definition of overlap-free languages, hence solid codes.



18 H. Jürgensen, L. Staiger

3. d : Q×X → Q is the transition function;

4. m : Q×X → Y ∗ is the output function.

The behaviour of a transducer on input words is defined by sequential-
ity as usual:

d(q,w) =
{

q, if w = ε,
d(d(q,x),w0), if w = xw0 with x ∈ X

and

m(q,w) =
{

ε, if w = ε,
m(q,x)m(d(q,x),w0), if w = xw0 with x ∈ X .

Definition 9 Let X and Y be alphabets and L ⊆ Y+ with |L| = |X |. Let
f be a bijection of X onto L. A state-invariant decoder for f without
look-ahead is a finite deterministic transducer A = (Q,X ,Y,d,m) with
the following properties:

1. For all q ∈ Q and all v ∈ L,m(q,v) = f−1(v).

2. For all q ∈ Q, all v ∈ L and all u ∈ Pref+(v),m(q,u) = ε.

A state-invariant transducer without look-ahead for f produces exactly
the decodings of the words in L; these are produced regardless of the
initial state of the transducer and precisely at the time when the last
symbol of a word in L has been read. If such a transducer reads an
arbitrary word w ∈Y+, the output is the concatenation of the decodings
of those words in L, which it encounters as disjoint infixes of w. This
establishes an intuitive connection with Definition 7.

Theorem 3 ([Rom66]) Let X and Y be alphabets and L⊆Y+ with |L|=
|X |. Let f be a bijection of X onto L. Then L is solid code if and only if
there is a state-invariant decoder without look-ahead for f .

A detailed proof of this theorem is given in [JK97]. The main construc-
tion, due to Levenshtein [Lev64a] and Romanov [Rom66] is described
in the next sections of this paper. There we also point out connections
to related ideas in combinatorics on words or stringology.



Automata for Solid Codes 19

6 Levenshtein-Romanov Mapping
In our construction of acceptors for solid codes, the following mapping,
due to Levenshtein [Lev64a] and Romanov [Rom66], is essential.

Definition 10 Let X be an alphabet and let L ⊆ X+ with L 6= /0. The
mapping σL : X∗→ X∗ defined by

σL(w) = max
≤s

(Suff(w)∩Pref(L))

is called the Levenshtein-Romanov mapping for L.

When σL is used in the sequel we assume, without special mention,
that L is non-empty and that L does not contain the empty word.

Proposition 2 Let L⊆X+ with L 6= /0 and let w,w′ ∈X∗. The Levenshtein-
Romanov mapping σL has the following properties:

1. σL(w)≤s w, and if w′ ∈ Pref(L) and w′ ≤s w then w′ ≤s σL(w).

2. If w′ ≤s w then σL(w′)≤s σL(w); in particular, σL(ε) = ε.

3. w ∈ Pref(L) if and only if σL(w) = w.

4. σL(w) = σL(σL(w)).

5. If σL(w)≤s w′ ≤s w then σL(w) = σL(w′).

6. σL(ww′) = σL(σL(w)w′).

7. σL(w) ∈ X∗L if and only if w ∈ X∗L.

Proof.

1. This follows from w′,σL(w) ∈ Suff(w)∩Pref(L).

2. Also obvious by the definition of σL.

3. If w ∈ Pref(L) then w ∈ Suff(w)∩ Pref(L), hence σL(w) = w. Con-
versely, as w = max≤s(Suff(w)), σL(w) = w implies w ∈ Pref(L).

4. As σL(w) ∈ Pref(L), σL(w) = σL(σL(w)) by (3).

5. We have
σL(σL(w))≤s σL(w′)≤s σL(w)

by (2). By (4), σL(σL(w)) = σL(w). Thus σL(w) = σL(w′).



20 H. Jürgensen, L. Staiger

6. First we prove that σL(ww′) ≤s σL(w)w′. Assume the contrary. As
σL(ww′) ≤s ww′ and σL(w)w′ ≤s ww′, there is a word u ∈ X+ such
that σL(ww′) = uσL(w)w′ ≤s ww′. As σL(ww′) ∈ Pref(L), also uσL(w) ∈
Pref(L). Moreover, uσL(w) ≤s w. As σL(w) is the longest suffix of w
which is a prefix of L, one has σL(w)≤s uσL(w), but u 6= ε, a contra-
diction! As a consequence one has

σL(ww′)≤s σL(w)w′ ≤s ww′.

Using (5) this proves that σL(ww′) = σL(σL(w)w′).

7. Let w= uv where v∈ L. Then v=σL(v)≤s σL(w), that is σL(w)∈X∗L.
The other direction follows from σL(w)≤s w.

o

The statements of Proposition 2 can be interpreted as follows: The
Levenshtein-Romanov mapping σL maps X∗ onto Pref(L); it is the iden-
tity exactly on Pref(L). With respect to ≤s, the mapping is monotone.
By the sixth statement, it is sequential. The fifth property can be un-
derstood to express some kind of continuity.

The following statement is a direct consequence of the definition of
σL.

Lemma 1 Let L⊆ X+,L 6= /0. Then σL(w) ∈ Pref(L)∩X∗L for all w ∈ X∗L.

In connection with Proposition 2 the question arises whether σL(w) ∈ L
for all w ∈ X∗L. We answer this in the following.

Proposition 3 Let L ⊆ X+ with L 6= /0. The following conditions are
equivalent.

1. Pref(L)∩X∗L = L.

2. σL(w) ∈ L for all w ∈ X∗L.

Proof. Let v∈ (Pref(L)∩X∗L)\L. Since v∈ Pref(L), we have σL(v) = v /∈ L.
Assume σL(w) /∈ L for some w ∈ X∗L. Then σL(w) ∈ X∗L by Lemma 1.

By definition σL(w) ∈ Pref(L). Thus σL(w) ∈ (Pref(L)∩X∗L)\L.
o

The condition of Pref(L)∩X∗L = L in Proposition 3 leads to new in-
sights into the structure of certain kinds of prefix or suffix codes as
discussed in the sequel.



Automata for Solid Codes 21

The Levenshtein-Romanov mapping was introduced in 1964; it is
essential for the construction of state-invariant decoders without look-
ahead for finite solid codes. It was re-introduced 10 years later by
Aho and Corasick as the failure function in their algorithm for string
matching [AC75]. Various versions of this algorithm are presented and
analysed in [BPR10, CH97]. In this part of the literature the resulting
automaton for a finite set of “patterns” is known as the Aho-Corasick
automaton, the string-matching automaton, the dictionary-matching
automaton, the dictionary automaton or the pattern-matching machine.
Related constructs are used in [CH85, Hof84] to formulate algorithms
for deciding the unique decipherability of a given finite language used
as a code. Aho-Corasick automata have the same underlying transi-
tion structure as the state-invariant transducers without look-ahead
for finite solid codes. The underlying ideas of Aho-Corasick automata
are also found in Levenshtein’s 1964 paper on properties of coding
and self-adjusting automata [Lev64b]. Some parts of Proposition 2 are
proved implicitly in [Lev64a, Rom66, JK97] or explicitly as Lemma 5.1
of [CH97].

7 The Condition Pref(L)∩X∗L=L and Its Dual
The conditions that Pref(L)∩X∗L = L or its dual Suff(L)∩LX∗ = L have
unexpected consequences, some of which are explored in the present
section.

Lemma 2 Let L⊆ X+,L 6= /0. The following statements hold true:

1. If X+LX+∩L = /0 then Pref(L)∩X∗L = L.

2. If L is a prefix code then Pref(L)∩X∗L = L implies X∗LX+∩L = /0.

3. If L is a suffix code then Pref(L)∩X∗L = L implies X+LX∗∩L = /0.

Proof. (1) Clearly L⊆Pref(L)∩X∗L. Consider u∈Pref(L)∩X∗L with u /∈ L.
Then there is w ∈ X+ such that uw ∈ L. As u ∈ X∗L \L, one has u = v′v
with v ∈ L and v′ ∈ X+. Thus uw = v′vw ∈ X+LX+∩L, a contradiction.

(2) Let L be a prefix code and consider u ∈ X∗LX+∩L. Then u = v′vw
with v′ ∈ X∗,v ∈ L and w ∈ X+. If v′ = ε, then u = vw with u,v ∈ L, and
w ∈ X+, contradicting the fact that L is a prefix code. Hence v′ 6= ε and
v′v /∈ L as u ∈ L. Therefore, v′v ∈ (Pref(L)∩X∗L)\L, a contradiction.



22 H. Jürgensen, L. Staiger

(3) Let L be a suffix code and consider u ∈ X+LX∗∩L. Then u = v′vw
with v′ ∈ X+,v ∈ L, and w ∈ X∗. As L is a suffix code v′v /∈ L. Therefore,
v′v ∈ (Pref(L)∩X∗L)\L. o

Each of the conditions X∗LX+∩L = /0 and X+LX∗∩L = /0 implies that L is
uniquely decodable, that is, a code. In contrast, the condition X+LX+∩
L = /0 does not imply this: The language L = {ab,abab} over X = {a,b}
satisfies the condition, but is not a code.

The converse of Lemma 2 (1) is not true in general, not even for
codes. Consider L = {ab,abc,b} with X = {a,b,c}. The language L is a
code. One has Pref(L)= {a,ab,abc,b,ε}. Hence Pref(L)∩X∗L= {ab,abc,b}=
L. But abc∈ X+LX+∩L. This same example shows also that Statements
(2) and (3) of the same lemma do not hold true for arbitrary codes.
Corollary 1 below shows, that the implications are actually equiva-
lences.

By left-right duality one obtains the following results.

Lemma 3 Let L ∈ X∗. The following statements hold true:

1. If X+LX+∩L = /0 then Suff(L)∩LX∗ = L.

2. If L is a suffix code then Suff(L)∩LX∗ = L implies X+LX∗∩L = /0.

3. If L is a prefix code then Suff(L)∩LX∗ = L implies X∗LX+∩L = /0.

Corollary 1 Let L⊆ X+ with L 6= /0.

1. L is a p-infix code if and only if L is a prefix code and Pref(L)∩X∗L=
L.

2. L is a p-infix code if and only if L is a prefix code and Suff(L)∩LX∗=
L.

3. L is an s-infix code if and only if L is a suffix code and Pref(L)∩
X∗L = L.

4. L is an s-infix code if and only if L is a suffix code and Suff(L)∩
LX∗ = L.

Proof. We prove only the first statement. The remaining ones follow
by duality.

Let L be a p-infix code, that is, L∩X∗LX+ = /0. Then L∩X+LX+ = /0,
hence Pref(L)∩X∗L = L by Lemma 2 (1).



Automata for Solid Codes 23

Conversely, let L be a prefix code and Pref(L)∩X∗L=L. Then X∗LX+∩
L = /0, that is, L is a p-infix code. o

These results lead to new characterisations of s-infix codes and overlap-
free prefix codes as follows.

Theorem 4 Let L ⊆ X+ with L 6= /0. L is an s-infix code if and only if
σL(uv) = v for all u ∈ X∗ and v ∈ L.

Proof. Let L be an s-infix code. Then L is a suffix code and Pref(L)∩
X∗L = L by Corollary 1 (3). Let u ∈ X∗ and v ∈ L. Then uv ∈ X∗L, hence
σL(uv)∈ L by Proposition 3. As v∈ L one has v≤s σL(uv). Thus v = σL(uv)
as L is a suffix code.

For the converse, assume that σL(uv) = v for all u ∈ X∗ and v ∈ L.
Suppose that uv ∈ L. Then σL(uv) = uv by Proposition 2. Hence u = ε,
that is, L is a suffix code. To prove that L is an s-infix code, we need to
show that Pref(L)∩X∗L = L. The inclusion L ⊆ Pref(L)∩X∗L is true by
definition. For the converse inclusion consider w ∈ Pref(L)∩X∗L. Then
w = uv for some u ∈ X∗ and v ∈ L. Hence σL(w) = σL(uv) = v. On the other
hand, by the definition of σL,uv = w ∈ Pref(L) implies σL(w) = w = uv.
Thus w = uv = v ∈ L. o

Theorem 5 Let L ⊆ X+ with L 6= /0. L is an overlap-free prefix code if
and only if σL(uv) = σL(v) for all u ∈ L and v ∈ X+.

Proof. Let L be an overlap-free prefix code. Consider u ∈ L and v ∈ X+.
Thus σL(v)≤s v <s uv. By Proposition 2 one has σL(v)≤s σL(uv)≤s uv.

We now prove that σL(uv) ≤s v. Assume the contrary, that is, v <s
σL(uv). As L is a prefix code, it follows from u ∈ L,v ∈ X+ and σL(uv) ∈
Pref(L) that σL(uv) 6= uv. Thus uv = u′σL(uv) for some u′ ∈ X+ with u′ <p u.
Hence there is a word w ∈ L with σL(uv)≤p w such that u and w overlap,
contradicting the assumption that L is overlap-free.

Thus σL(v) ≤s σL(uv) ≤s v. By Proposition 2 this implies σL(v) =
σL(uv).

Conversely, assume that σL(uv) = σL(v) for all u ∈ L and all v ∈ X+.
Suppose that L not a prefix code or not overlap-free.

If L is not a prefix code, then there are u ∈ L and v ∈ X+ such that
uv ∈ L. Thus σL(v) = σL(uv) = uv, hence uv = u, a contradiction.

If L is not overlap-free, there are non-empty words u,v,w such that
uv ∈ L and vw ∈ L. Thus w <s vw <s uvw. Hence σL(uvw) = σL(w)≤s w and
vw≤s σL(vw) = vw, again a contradiction! o

In the sequel we use a combination of the premises of Theorems 4 and
5. We consider languages, which are both s-infix codes and overlap-free



24 H. Jürgensen, L. Staiger

prefix codes. Such languages are precisely the solid codes.

8 Fault-Tolerant Acceptors for Solid Codes
We now consider fault-tolerant acceptors for solid codes. The underly-
ing idea is derived from Definition 9, Theorem 3 and the proof of that
theorem. Those constructions rely on the assumption that the solid
codes under consideration are finite, allowing one to consider a specific
natural encoding. We drop this assumption. Consequently, without any
knowledge about the encoding, we cannot expect to obtain a decoder,
but only an acceptor. In general, this acceptor can be infinite. For finite
solid codes the acceptor is similar to a finite state-invariant transducer
without look-ahead. For arbitrary solid codes we expect to obtain an
acceptor with special properties which correspond to state-invariance
and the lack of look-ahead. Moreover, we expect these properties to be
preserved when the acceptor is reduced. This would guarantee that a
solid code, which is regular (or rational) as a language, is accepted by
a finite acceptor with these special properties.

We follow the structure of Proposition 1, the characterisation of pre-
fix codes by acceptors: In Theorem 6 we state that every acceptor A
defines a solid code: this code is the suffix root of the language consist-
ing of all those words which are accepted by A regardless of the initial
state. In Theorem 8 we state that every solid code L defines an acceptor
A such that the solid code L′ defined by A coincides with L.

Theorem 6 Let A = (Q,X ,δ,q0,F) be a deterministic acceptor. The fol-
lowing statements hold true:

1. The language ⋂
q∈Q

L1(Aq)

is an overlap-free p-infix code.

2. The language
Suff

√⋂
q∈Q

L1(Aq)

is a solid code.

Proof. Let
L′ =

⋂
q∈Q

L1(Aq) and L =
Suff
√

L′

We need to prove that L′ is a p-infix code and overlap-free.



Automata for Solid Codes 25

By Proposition 1, the languages L1(Aq) are prefix codes for all q ∈Q.
Hence, also their intersection L′ is a prefix code.

Suppose that L′ is not a p-infix code. Then there are words v,w ∈ L′

and u1,u2 ∈ X+ such that w = u1vu2. As v,w ∈ L′, one has δ(q,v) ∈ F and
δ(q,w) ∈ F for all q ∈ Q. Therefore, also δ(q,u1v) = δ(δ(q,u1),v) ∈ F . The
fact that u1v <p w implies that w /∈ L1(Aq), a contradiction!

Now suppose that L′ is not overlap-free. Then there are words v,w ∈
L′, not necessarily distinct, which overlap. Without loss of generality,
we assume there are words u1,u2,u ∈ X+ such that w = u1u and v = uu2.
As v,w ∈ L′, one has

δ(q,w) = δ(δ(q,u1),u) ∈ F and δ(δ(q,u1),v) ∈ F

for all q ∈ Q. The fact that u <p v implies that v /∈ L1(Aδ(q,u1)), a contra-
diction!

This proves, that L′ is an overlap-free p-infix code. As L ⊆ L′, also
L is an overlap-free p-infix code. By definition, L is also a suffix code.
Hence, L is a solid code. o

In Theorem 6 we include the situation when L1(Aq) = /0 = L(Aq). This is
not very useful, but also means that such states q should be discarded.

Definition 11 Let A=(Q,X ,δ,q0,F) be a deterministic acceptor. Define

Lol−pi(A) =
⋂

q∈Q
L1(Aq)

and
Lsolid(A) = Suff

√
Lol−pi(A)

Theorem 7 Let A and A′ be universally equivalent acceptors. Then
Lol−pi(A) = Lol−pi(A′) and Lsolid(A) = Lsolid(A).

Proof. The first statement follows from Remark 3. The second state-
ment is an immediate consequence. o

In the statements of Theorem 6 the intersection expresses a kind of
state invariance; taking the suffix root can be interpreted as avoiding
look-ahead.

The following example shows that taking the suffix root is essential.

Example 1 Let A = ({e, f},{a,b},δ,e,{ f}) where δ(q,a) = e and δ(q,b) =
f for q∈{e, f}. Then

⋂
q∈{e, f}L1(Aq)= a∗b which is an overlap-free p-infix



26 H. Jürgensen, L. Staiger

code but not a suffix code, hence not a solid code. The suffix root of the
intersection is the singleton language {b}, a trivial solid code over the
alphabet {a,b}. The corresponding automaton is shown in Fig. 2. o

By Theorem 6, every deterministic acceptor, finite or infinite, describes
a solid code as the suffix root of the language accepted regardless of
the initial state. We now show that every solid code, regardless of its
cardinality, is defined by an acceptor in this fashion. To our knowl-
edge, this construction was first proposed in [Lev64a, Rom66], but only
for finite solid codes; for those the acceptor can be converted into a
state-invariant decoder without look-ahead in the sense of Theorem 3.
For arbitrary finite languages the resulting finite acceptor is essen-
tially the Aho-Corasick automaton (or string-matching automaton, dic-
tionary automaton or pattern matching machine, etc.). In the sequel,
in considering a language L over X , we only assume that L ⊆ X+ and
L 6= /0. We do not assume that L is finite or has any simple computa-
tional structure; not even that L is recursively enumerable. Certainly,
to perform concrete constructions one would have to make additional
assumptions about L.

Definition 12 Let L ⊆ X+ with L 6= /0. The Levenshtein-Romanov ac-
ceptor for L is the acceptor A = (Q,X ,δ,q0,F) defined as follows:

1. Q = Pref(L);

2. q0 = ε;

3. F = L;

4. δ(q,x) = σL(qx) for q ∈ Q and x ∈ X .

The language L(A) accepted by the Levenshtein-Romanov acceptor A
for a language L is usually not equal to L. The difference will be ex-
plained further below. The reduced acceptor obtained from A is called
the reduced Levenshtein-Romanov acceptor for L.

Example 2 Let X = {a,b} and L = a∗b. The reduced acceptor for L has
three states. The Levenshtein-Romanov acceptor for L has infinitely
many states. These acceptors are shown in Fig. 3. The languages
of these acceptors are L and X∗L, respectively. The discussion below
clarifies, why these languages are different. The reduced Levenshtein-
Romanov acceptor for L is shown in Fig. 4. o



Automata for Solid Codes 27

&%
'$

&%
'$

&%
'$

"!
# 

-

��
?

��
?

- -ε b ba

a a,b

b a,b

Reduced acceptor for a∗b

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

"!
# 

"!
# 

"!
# 

"!
# 

-

��6

�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@R

?

- -

? ?@
@

@
@
@

@
@@I

�
�
�

�
�

�
��	

HH
H
HH

HH
HH

H
HH

H
HH

HHY

���
���

���
���

���
���

�

�

�

b

ε ab a2b a3b

a a2 a3

. . .

. . .

b

b b bb

a

. . .

a aa a b

Levenshtein-Romanov acceptor for a∗b

Figure 3: The reduced acceptor and the Levenshtein-Romanov accep-
tor for the language a∗b of Example 2; heavy circles indicate accepting
states.



28 H. Jürgensen, L. Staiger

&%
'$

&%
'$
"!
# 

-

��
?

��
?

y

z

[ε] [b]

a b
b

a

Figure 4: Reduced Levenshtein-Romanov acceptor for the language a∗b
of Example 2.

The language accepted by the Levenshtein-Romanov acceptor for L
with /0 6= L ⊆ X+ turns out to be a subset of X∗L. The details are as
follows:

Proposition 4 Let L ⊆ X+ with L 6= /0. Let A = (Q,X ,δ,q0,F) be the
Levenshtein-Romanov acceptor for L.

1. For all q ∈ Q and all w ∈ X∗, one has δ(q,w) = σL(qw).

2. L⊆ L(A)⊆ X∗L.

3. Pref(L)∩X∗L = L if and only if L(A) = X∗L.

4. If X+LX+∩L = /0 then L(A) = X∗L.

Proof.

1. As q ∈ Pref(L), one has σL(q) = q by Proposition 2. For w = ε, one
has

δ(q,w) = q = σL(q) = σL(qw).

Consider w = vx with v ∈ X+ and x ∈ X and assume that δ(q,v) =
σL(qv). Then

δ(q,w) = δ(q,vx) = δ(δ(q,v),x) = σL(σL(qv)x) = σL(qvx) = σL(qw)

by Proposition 2.

2. For w ∈ L one has σL(w) = w, hence w ∈ L(A). If w ∈ L(A) then
δ(ε,w) = σL(w) ∈ F = L, hence w ∈ X∗L, again by Proposition 2.



Automata for Solid Codes 29

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

"!
# 

"!
# 

-

��6

?

6

-

-

�
�

�
�

�
�
��	

y

z

y
b ba bab

aε

a

a

b ab

b

a

b

b

Figure 5: The Levenshtein-Romanov acceptor for the language L of
Example 3.

3. One has w ∈ L(A) if and only if σL(w) ∈ L by the definition of A. If
L(A) = X∗L then w ∈ X∗L implies σL(w) ∈ L, hence Pref(L)∩X∗L = L
by Proposition 3. Conversely, if Pref(L)∩X∗L = L, then σL(w) ∈ L
for all w ∈ X∗L by Proposition 3. This implies w ∈ L(A).

4. This follows from Lemma 2.1 and 3.
o

Example 3 Consider the language L = {a,bab} over the alphabet X =
{a,b}. The reduced Levenshtein-Romanov acceptor A for L is shown in
Fig. 5. One has Pref(L)∩X∗L = {a,ba,bab}. As this differs from L, one
has L(A) 6= X∗L. For example, ba ∈ X∗L\L(A).

Consider L′ = {a,ba,bab} instead. The Levenshtein-Romanov ac-
ceptor A′ for L′ is obtained from A by making also the state ba ac-
cepting. Now Pref(L′)∩ X∗L′ = L′ and, hence L(A′) = X∗L′. However,
X+L′X+∩L′ = {bab}. This shows that the converse of Proposition 4 (4)
is not true in general. o

Lemma 4 Let L⊆X+ with L 6= /0, and let A=(Pref(L),ε,δ,L) be its Leven-
shtein-Romanov acceptor. Then the following statements hold true:

1. A is initially connected and has no useless states.

2. A is strongly connected, if and only if for every word u ∈ L there is
a word v ∈ X+ such that Suff(uv)∩Pref(L) = {ε}.



30 H. Jürgensen, L. Staiger

3. If Pref(L)⊇ X then A is not strongly connected.

4. If L is finite and Pref(L) 6⊇ X then A is strongly connected.

5. If L is an overlap-free prefix code with X 6⊆Pref(L), then A is strongly
connected.

Proof.

1. The statement is a direct consequence of Definition 12.

2. By Proposition 4 (1), one has δ(u,v) = σL(uv). Hence, σL(uv) = ε if
Suff(uv)∩Pref(L) = {ε}. By (1) the acceptor A is initially connected.
Therefore, it is strongly connected. Otherwise, one cannot return
to the state ε.

3. Since Pref(L)⊇X , we have Suff(uv)∩Pref(L)∩X 6= /0 for every v∈X+.

4. Let y ∈ X \ Pref(L) and let m = max{|w| : w ∈ L}. Then Pref(L)∩
Suff(X∗ · ym+1) = /0. Thus σL(u · ym+1) = ε for every u ∈ X∗.

5. Let y ∈ X \Pref(L) and consider u ∈ Pref(L). Then there is a v ∈ X∗

such that uv ∈ L. Now Theorem 5 implies σL(uvy) = σL(y) = ε, that
is, δ(u,vy) = ε.

o

From Lemma 3 one concludes that the Levenshtein-Romanov accep-
tor for a non-empty language L ∈ Lx ∩Lol with x ∈ {p,pi, i} is strongly
connected if and only if Pref(L) 6⊇ X . This holds, in particular, for a
non-empty solid code L.

The language L = a∗b over X = {a,b} of Example 2 is an overlap-free
prefix code containing b. Note that the word b has no proper prefixes
or suffixes, hence does not overlap any word in the language including
itself. As {a,b} ⊆ Pref(L) its Levenshtein-Romanov acceptor, shown in
Fig. 3, is not strongly connected. The reduced acceptor shown in Fig. 4,
however, is strongly connected.

Corollary 2 Let L⊆X+ with L 6= /0, and let A be the Levenshtein-Romanov
acceptor for L. For x ∈ {pi,si, i,solid}, if L ∈ Lx then L(A) = X∗L.

Proof. In each case X+LX+∩L = /0. o

Corollary 3 Let L⊆X+ with L 6= /0, and let A be the Levenshtein-Romanov
acceptor for L. If Pref(L)∩X∗L = L and L is regular then also L(A) is reg-
ular.



Automata for Solid Codes 31

Proof. The assumption implies that L(A) = X∗L. With L also X∗L is
regular. o

The Levenshtein-Romanov acceptor A for a language L is finite if and
only if Pref(L) is finite, hence, if and only if L is finite. Thus, when L is
an infinite regular language satisfying the condition Pref(L)∩X∗L = L,
the acceptor A is infinite, but L(A) = X∗L is regular. As we want to char-
acterise fault-tolerant acceptors for solid codes we have to investigate
how the special properties of the Levenshtein-Romanov acceptor are
translated into properties of the equivalent reduced acceptor.

Remark 4 The condition Pref(L)∩X∗L = L does not imply that L is a
code.

Consider the language L = {ab,abab} which is not a code. Then
Pref(L) = {ε,a,ab,aba,abab}, and, consequently, Pref(L)∩X∗L = L. The
same language also satisfies X+LX+∩L = /0.

Proposition 5 Let L⊆ X+ be a non-empty overlap-free prefix code. Let
A be the Levenshtein-Romanov acceptor for L. Then,

Li(Aw) = Li(A) and L(Aw)\{ε}= L(A)

for all w ∈ L and all i ∈ N.

Proof. Consider w ∈ L and i ∈ N. By Theorem 5, one has

δ(ε,v) = σL(v) = σL(wv) = δ(w,v)

for all v ∈ X+. Thus,

v ∈ Li(A) if and only if v ∈ Li(Aw)

and
v ∈ L(A) if and only if v ∈ L(Aw).

This proves the statements taking into account that ε /∈ L(A), but ε ∈
L(Aw). o

Thus the accepting states of the Levenshtein-Romanov acceptor A for
an overlap-free prefix code essentially reset the acceptor to the initial
state. When a long word is read, once an accepting state is reached
a corresponding output can be generated, and the reading continues
with the rest of the input starting again in the initial state ε.

Proposition 6 Let L ⊆ X+ with L 6= /0, and let A be the Levenshtein-
Romanov acceptor for L. The following statements hold true:



32 H. Jürgensen, L. Staiger

1. If L is an s-infix code, then L⊆ L(Aq) for all q ∈ Pref(L) = Q.

2. If L is a solid code, then L⊆ L1(Aq) for all q ∈ Pref(L) = Q.

Proof. Let w ∈ L.

1. For q = ε, one has L(Aq) = L, hence, trivially w ∈ L(Aq). Let L be an
s-infix code. Assume that q 6= ε. Then

δ(q,w) = σL(qw) = w

by Theorem 4 as L is an s-infix code. This proves that w ∈ L(Aq).

2. Let L be a solid code. Then L is a prefix code. Thus, L⊆ L1(A). We
show that σL(qv) /∈ L for all v ∈ Pref+(w). This would prove that
w ∈ L1(Aq).

Suppose otherwise. Then w = vu for some u,v ∈ X+. Consider
δ(q,v) = σL(qv). By assumption σL(qv) ∈ L. There are two cases:

(a) σL(qv)≤s v: Then σL(qv) is an infix of vu=w, contradicting the
fact that L is an infix code.

(b) v <s σL(qv): Then σL(qv) and vu = w overlap, contradicting the
fact that L is a solid code.

o

By combining the statements of Propositions 5 and 6 one obtains the
following property of the Levenshtein-Romanov construction.

Theorem 8 Let L ⊆ X+ be a non-empty solid code, and let A be the
Levenshtein-Romanov acceptor for L. Then

L = Suff

√ ⋂
q∈Pref(L)

L1(Aq).

Proof. One has L(A) = X∗L by Corollary 2. By Proposition 5, L⊆ L1(Aq)
for all q ∈ Q = Pref(L). Hence

L⊆ Suff

√ ⋂
q∈Pref(L)

L1(Aq).

The intersection is a subset of L1(A), hence of L(A) = X∗L. As L is also a
suffix code, Suff

√
L(A) = L. This proves the equality as claimed. o

From Propositions 6 and 8 we obtain a characterisation of solid codes
by their fault-tolerant decoders.



Automata for Solid Codes 33

Corollary 4 A language L ⊆ X+ is a non-empty solid code if and only
if there is an acceptor A = (Q,X ,δ,q0,F) such that

L = Suff

√⋂
q∈Q

L1(Aq).

If, in addition, L is a regular language, then there is a finite acceptor
with this property. Moreover, if Pref(L) 6⊇ X , the acceptor can be chosen
to be strongly connected.

Proof. The statement follows from Propositions 6 and 8, Corollary 3,
Remark 2 and Lemma 3. o

Example 4 Let X = {a,b} and L = {abaib2|i ∈ N}. The language L is
regular and a maximal solid code (see [JY90, Yu05]). The states and
transitions of the Levenshtein-Romanov acceptor for L are summarised
in the following table:

Transition
State a b

ε a ε

a a ab
ab aba ε

abai, i ∈ N abai+1 abaib
abaib, i ∈ N aba abaib2

abaib2, i ∈ N a ε

Accepting states are {abaib2|i ∈ N}. Reduction results in the following
six states:

[ε], [a], [ab], [aba], [abab] and [abab2].

The reduced acceptor is shown in Fig. 6. o

Theorem 9 Let L ⊆ X+ be a non-empty solid code. For every word w ∈
X+, the Levenshtein-Romanov acceptor for L exposes the L-decomposition
of w.

Proof. Let ~w = (n,~u,~v) be the L-decomposition of w, where

u = (u1,u2, . . . ,un) and v = (v0,v1, . . . ,vn).



34 H. Jürgensen, L. Staiger

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

"!
# 

-

��6

?

- -

� �

�
�

�
�

�
�
��	 @

@
@
@

@
@
@@I �

�

[a] [ab] [aba]

[ε] [abab2] [abab]

b

b b

a a

b

a

a

ab

Figure 6: The reduced Levenshtein-Romanov acceptor for the solid code
{abaib2|i ∈ N} of Example 4.

For n = 0, no prefix of w = v0 is accepted. Let n > 0. Then v0u1 ∈ L1(A)
and σL(v0u1) = u1 ∈ L. Assume now, that v0u1v1 · · ·ui ∈ Li(A) for i with
1≤ i < n. As ui ∈ L, one has

σL(v0u1v1 · · ·ui) = ui,

hence
σL(v0u1v1 · · ·uiz) = σL(z)

for all z ∈ X+ by Proposition 2. Using the properties of the decomposi-
tion,

σL(v0u1v1 · · ·uiz) = σL(z) /∈ L

for every z <p viui+1 and

σL(v0u1v1 · · ·uiviui+1) = σL(viui+1) = ui+1 ∈ L.

Thus
v0u1v1 · · ·uiviui+1 ∈ Li+1(A).

o

The construction of the state-invariant transducer without look-
ahead used in the proofs of Theorem 3 DIFFERS slightly from our
construction of the Levenshtein-Romanov acceptor as follows: There
the set of states is Pref+(L)∪{ε} instead of Pref(L). The transition from



Automata for Solid Codes 35

a state q upon input x leads to σL(qx) if σL(qx) /∈ L, and to ε otherwise.
Hence, in that construction, the state ε cannot be interpreted as an ac-
cepting state as it is reached by the empty word or a word which does
not end on a proper prefix of L or a word which ends on a word in L.
To distinguish these cases, for each state q and each input symbol x, a
Mealy output m(q,x) is issued, which is the empty word, if σL(qx) /∈ L,
and the decoding of qx otherwise. In our construction these situations
are separated. Hence we could attach Moore outputs to the states, not
the transitions, as follows: For an accepting state q, that is, q ∈ L, the
output is the decoding of q; otherwise the output is the empty word.
With this modification, the Levenshtein-Romanov acceptor for a finite
solid code can be considered as a decoder. On the other hand, the older
construction also exposes the L-decomposition of every word by issuing
non-empty outputs at the ends of the words in L.

9 Reduced Fault-Tolerant Acceptors for Solid
Codes

The Examples 2 and 4 lead to the assumption that for regular solid
codes L the reduced Levenshtein-Romanov acceptors are finite. The
results of this section show that this is indeed the case. To this end we
prove in Theorem 10 a certain converse to Theorem 6.

We start with a property of left quotients of codes.

Lemma 5 Let L⊂ X+,L 6= /0.

1. L is an overlap-free prefix code if and only if u[−1]L∩Pref+(L) = /0

for all u ∈ X∗.

2. L is a suffix code if and only if u[−1]L∩X∗L = /0 for all u 6= ε.

Proof.

1. Assume v ∈ u[−1]L∩Pref+(L). Then uv ∈ L, and ε <p v <p v′ for some
v′ ∈ L. If u = ε then v,v′ ∈ L, hence L is no prefix code. If u 6= ε then
uv ∈ L and v′ ∈ L overlap.

Conversely, if L is no prefix code then u[−1]L∩Pref+(L) 6= /0 for u = ε.
If L is not overlap-free then (uv)w = u(vw) with u,v,w ∈ X+ and
uv,vw ∈ L. Consequently, v ∈ u[−1]L∩Pref+(L).



36 H. Jürgensen, L. Staiger

2. Assume v ∈ u[−1]L∩X∗L. Then uv ∈ L and there is a v′ ∈ X∗ such
that v = v′v′′ with v′′ ∈ L. This implies v′′ <s uv contradicting the
assumption that L is a suffix code.
If L is not a suffix code then v <s uv for some u ∈ X+ and v,uv ∈ L,
that is, v ∈ u[−1]L∩X∗L. o

Theorem 10 Let L be a non-empty subset of X+, and let A be an initially
connected acceptor with L(A) = X∗L. The following statements hold true:

1. A has no useless states.

2. If L is an overlap-free p-infix code then

L⊆ Lol−pi(A)⊆ Pref
√

X∗L.

3. If L is a solid code then Lsolid(A) = L.

Proof. Let A=(Q,X ,δ,q0,F). First we prove that A has no useless states.
Consider a state q of A. As A is initially connected, there is a word w
such that δ(q0,w) = q. For v ∈ L one has wv ∈ X∗L, hence δ(q0,wv) =
δ(q,v) ∈ F . Therefore, q is not useless.

For any word w ∈ X∗, let

Mw =
⋃

u∈Suff(w),u6=ε

u[−1]L.

If q = δ(q0,w), one has

L(Aq) = w[−1](X∗L) = X∗L∪Mw = L(A)∪Mw.

Now assume that L is an overlap-free p-infix code. We show that
L ⊆ L1(Aq) for q ∈ Q. Let δ(q0,w) = q and assume that v ∈ L \ L1(Aq).
Then there is a v′ ∈ L1(Aq) = X∗L∪Mw such that ε <p v′ <p v, that is, v′ ∈
Pref+(L). By Lemma 5.1 v′ /∈Mw. Thus v′ = uv′′ where u ∈ X∗ and v′′ ∈ L
and we obtain uv′′u′ = v for some u′ ∈ X+, a contradiction to X∗LX+∩L =
/0.

The inclusion
⋂

q∈Q L1(Aq)⊆L1(A) is obvious, and Proposition 1 yields
L1(A) =

Pref
√

X∗L.
Finally, if L is a solid code, it is not only an overlap-free p-infix code,

but also a suffix code, hence L = Suff
√

X∗L and, therefore, Item 2 yields

L⊆ Lsolid(A)⊆ Suff
√

X∗L = L.

o

The inclusions in Theorem 10.2 can be proper. We derive an exam-
ple.



Automata for Solid Codes 37

Example 5 Let L = {abc,bc} ⊆ {a,b,c}∗. Then L is an overlap-free p-
infix code. Let L(A) = {a,b,c}∗L = {a,b,c}∗bc. The equations in the proof
of Theorem 10 show L(A)⊆ L(Aq)⊆ L(A)∪{c} for all q ∈ Q. Thus a∗bc⊆
L1(Aq) for all q ∈Q. Moreover, ca∗bc⊆ L1(A) and c ∈ L1(Aq) if q = f (q0,b).
This yields L⊂

⋂
q∈Q

L1(Aq)⊂ L1(A) = Pref
√
{a,b,c}∗L.

Observe that the prefix code L′ := Pref
√
{a,b,c}∗L is p-infix but not

overlap-free. This follows from {a,b,c}∗bc∩Pref+(L′) = /0 and cbc ∈ L′. o

Note that the sets Mw as defined in the proof of Theorem 10 deter-
mine the states in the following sense.

Lemma 6 Let L ⊆ X+ be a non-empty suffix code. For w ∈ X∗ let Mw
as defined in the proof of Theorem 10. Then Mw ∩X∗L = /0. Hence, for
v,w ∈ X∗, one has v≡X∗L w if and only if Mv = Mw.

Proof. Suppose u ∈ Mw ∩ X∗L. Then u = rs with s ∈ L and tu ∈ L for
some suffix t ∈ X+ of w. Hence, s <s tu. Since L is a suffix code, this is
impossible. As v[−1](X∗L) = X∗L∪Mv and w[−1](X∗L) = X∗L∪Mw, one has
v≡X∗L w if and only if Mv = Mw. o

It is well known that, for any given language L, the reduced acceptor
A of L can be built incrementally based on the equivalence classes of
the Nerode equivalence with respect to L. To obtain the states and to
define the transitions of A, one enumerates the words in X∗ according
to the length-lexicographical order ∼=ll. The states are denoted by rep-
resentatives of the equivalence classes of words. When all words up to
and including w have been considered, one has an acceptor, partial or
total,

A(w) = (Q(w),X ,δ(w),qε,F(w)).

One starts with A(ε), where Q(ε) = {qε}, δ(ε) is nowhere defined, and
where F(ε) either contains qε or is empty depending on whether ε ∈ L or
not.

Assume that A(v) has been built. If A(v) is total, then the process
ends with A = A(v); moreover, let A(w) = A(v) for all w ∈ X∗ with v ∼=ll
w. Otherwise, the process continues with the word w following v in
the length-lexicographical order by building A(w) from A(v). Let w =
ux with x ∈ X . Then u ∼=ll v. If δ(v)(δ(v)(qε,u),) is defined then A(w) =
A(v). Otherwise, if w is equivalent to some r ∼=ll v then define Q(w) =



38 H. Jürgensen, L. Staiger

Q(v),F(w) = F(v) and

δ
(w)(q,y) =


δ(v)(qε,r), if q = δ(v)(qε,u) and y = x,
δ(v)(q,y), otherwise, when defined,
undefined, otherwise,

for all q ∈Q(w) and y ∈ X . If w is not equivalent to some such r, let qw be
a new state, Q(w) = Q(v)∪{qw},

F(w) =

{
F(v), if w /∈ L,
F(v)∪{qw}, if w ∈ L,

′

and

δ
(w)(q,y) =


qw, if q = δ(v)(qε,u) and y = x,
δ(v)(q,y), otherwise, when defined,
undefined, otherwise,

for all q ∈ Q(w) and y ∈ X . The construction is summarised as follows:

Proposition 7 For every language L, the procedure above converges to
the reduced acceptor A for L in the following sense:

1. If A(w) is total for some w ∈ X∗ then A = A(v) for every v ∈ X∗withw∼=ll
v.

2. For every w ∈ X∗, if A(w) is partial then the states in Q(w) represent
classes of the Nerode equivalence, δ(w) is defined by the multiplica-
tion of these classes by symbols on the right, and F(w) consists of
exactly those states in Q(w) which represent classes contained in L.
Moreover, for every word v ∈ X∗ with w <ll v, A(w) is partial subac-
ceptor of the partial or total acceptor A(v), and for some such v, this
inclusion is proper.

Moreover, assume that the following two properties are decidable for all
v,w ∈ X∗:

• Is w ∈ L?

• Is v[−1]L = w[−1]L?

Then the process is effective. In particular, if L is regular, then the finite
reduced acceptor for L is obtained in finitely many steps.



Automata for Solid Codes 39

This is, of course, well-known, but rarely stated in these terms. For the
present paper we use these ideas applied to the the special case when
the language under consideration has the form X∗L where L is a solid
code. Using Theorem 10 and Proposition 7, for any solid code L, one
can build a reduced acceptor equivalent to the Levenshtein-Romanov
acceptor for L.

Theorem 11 Let L⊆ X+ be a non-empty solid code. The reduced Leven-
shtein-Romanov acceptor for L is determined by the procedure above.
Moreover, if L is given constructively as a regular language6, then the
reduced Levenshtein-Romanov acceptor for L can be computed from the
description of L.

Proof. One builds the reduced acceptor for X∗L. When L is construc-
tively regular, the two properties above in Proposition 7 are decidable.

o

The construction of the reduced Levenshtein-Romanov acceptor for a
given regular solid code as outlined above is highly inefficient. For de-
tailed complexity analyses of similar algorithms and related ones we
refer to [BPR10, CR94, CH97, CHL01, CR02, Wat95] and literature
cited there. The construction outlined above can most likely be im-
proved. A simple upper bound on the time complexity of the task of
constructing the reduced Levenshtein-Romanov acceptor for a given
regular solid code can be obtained from Theorem 10 using well-known
automaton theoretic algorithms:

Remark 5 Let L ⊆ X+ be a non-empty solid code, given as an initially
connected deterministic finite acceptor A = (Q,X ,δ,q0,F) with L = L(A).
Construct the non-deterministic acceptor A′ = (Q,X ,δ′,q0,F) with

δ
′(q,x) =

{
{δ(q,x)}, if q 6= q0,
{δ(q,x)}∪{q0}, if q = q0,

where q ∈ Q and x ∈ X . Then L(A′) = X∗L. Next, build an initially con-
nected deterministic acceptor A′′ = (Q′′,X ,δ′′,q′′0,F

′′) such that L(A′′) =
L(A′) = X∗L. Finally, one reduces A′′. Let n = |Q| and m = |X |. Construct-
ing A′ takes O(m) steps. One has |Q′′| ≤ 2n, and building A′′ takes at
most O(m · 2n) steps. Reducing A′′ requires at most O(m · |Q′′| · log|Q′′|) ≤
O(m ·2n ·n) steps.

6This includes finite automata, regular expressions or one-sided linear grammars;
it excludes, for example, descriptions by means for which the regularity might be
undecidable or descriptions obtained by non-constructive existence proofs.



40 H. Jürgensen, L. Staiger

Thus, the reduced Levenshtein-Romanov acceptor for L can by ob-
tained in time7 O(m+m ·2n +m ·n ·2n) = O(m ·n ·2n).

As an acceptor A with L(A) a solid code has quite specific properties
[HS11] it seems likely that the bound stated in Remark 5 can be im-
proved significantly.

Acknowledgement
This research was supported in part by the Natural Sciences and En-
gineering Council of Canada.

References
[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string

matching: an aid to bibliographic search. Commun. ACM,
18:333–340, 1975.

[Bal02] Vladimir B. Balakirsky. Block codes for asynchronous
data transmission designed from binary trees. Comput. J.,
45(2):243–248, 2002.

[BP85] Jean Berstel and Dominique Perrin. Theory of codes, vol-
ume 117 of Pure and Applied Mathematics. Academic
Press, Orlando, 1985.

[BPR10] Jean Berstel, Dominique Perrin, and Christophe
Reutenauer. Codes and automata, volume 129 of En-
cyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 2010.

[CH85] Renato M. Capocelli and Christoph M. Hoffmann. Algo-
rithms for factorizing and testing subsemigroups. In Al-
berto Apostolico and Zvi Galil, editors, Combinatorial algo-
rithms on words. (Proceedings of the NATO Advanced Re-
search Workshop on Combinatorial Algorithms on Words
held at Maratea, Italy, June 18-22, 1984)., pages 59–81,
Berlin, 1985. Springer-Verlag.

7We assume that the cost for all operations including storage, retrieval, compar-
isons and so on is independent of n and m.



Automata for Solid Codes 41

[CH97] Maxime Crochemore and Christophe Hancart. Automata
for matching patterns. In Handbook of Formal Languages,
volume 2, pages 399–462. Springer-Verlag, 1997.

[CHL01] Maxime Crochemore, Christophe Hancart, and Thierry
Lecroq. Algorithmique du texte. Vuibert, Paris, 2001. En-
glish translation: Algorithms on strings, Cambridge Uni-
versity Press, Cambridge, 2007.

[CR94] Maxime Crochemore and Wojciech Rytter. Text algorithms.
Oxford Univ. Press, Oxford, 1994.

[CR02] Maxime Crochemore and Wojciech Rytter. Jewels of
stringology. World Scientific, Singapore, 2002.

[DJKM12] Mark Daley, Helmut Jürgensen, Lila Kari, and Kalpana
Mahalingam. Relativized codes. Theor. Comput. Sci.,
429:54–64, 2012.

[FRS07] Henning Fernau, Klaus Reinhardt, and Ludwig Staiger.
Decidability of code properties. Theor. Inform. Appl.,
41(3):243–259, 2007.

[Gle61] Yuri V. Glebskii. Coding by means of finite automata. Dokl.
Akad. Nauk. SSSR, 141:1054–1057, 1961. in Russian. En-
glish translation: Soviet Physics Dokl. 6 (1992), 1037–1039.

[GP72] Ferenc Gécseg and Istvan Peák. Algebraic theory of au-
tomata. Akadémiai Kiadó, Budapest, 1972.

[HB98] W. Cary Huffman and Richard A. Brualdi. Handbook of
Coding Theory. Elsevier Science Inc., New York, NY, USA,
1998.

[Hea00] Tom Head. Relativized code concepts and multi-tube DNA
dictionaries. In Cristian Calude and Gheorghe Puaun, ed-
itors, Finite Versus Infinite, Discrete mathematics and the-
oretical computer science, pages 175–186. Springer, 2000.

[Hof84] Christoph M. Hoffmann. A note on unique decipherability.
In Michal Chytil and Václav Koubek, editors, Mathematical
Foundations of Computer Science 1984; Proceedings, 11th
Symposium; Praha, Czechoslovakia; September 3–7, 1984,
volume 176 of Lecture Notes in Computer Science, pages
50–63, Berlin, 1984. Springer-Verlag.



42 H. Jürgensen, L. Staiger

[HS11] Yo-Sub Han and Kai Salomaa. Overlap-free languages and
solid codes. Int. J. Found. Comput. Sci., 22(5):1197–1209,
2011.

[HW06] Yo-Sub Han and Derick Wood. Overlap-free regular lan-
guages. In Danny Z. Chen and Der-Tsai Lee, editors, Com-
puting and combinatorics. 12th annual international con-
ference, COCOON 2006, Taipei, Taiwan, August 15–18,
2006. Proceedings., volume 4112 of Lecture Notes in Com-
puter Science, pages 469–478, Berlin, 2006. Springer.

[IJST91] Masami Ito, Helmut Jürgensen, Huei-Jan Shyr, and
Gabriel Thierrin. Outfix and infix codes and related classes
of languages. J. Comput. System Sci., 43:484–508, 1991.

[JK97] Helmut Jürgensen and Stavros Konstantinidis. Codes. In
Rozenberg and Salomaa [RS97a], pages 511–607.

[JK05] Helmut Jürgensen and Stavros Konstantinidis. Worst case
redundancy of solid codes. In Do Long Van and Masami Ito,
editors, The Mathematical Foundation of Informatics, Pro-
ceedings of the Conference, Hanoi, Vietnam, 25–28 October
1999, pages 85–94, Singapore, 2005. World Scientific.

[JK06] Helmut Jürgensen and Stavros Konstantinidis.
(Near-)inverses of sequences. Int. J. Comput. Math.,
83(2):203–222, 2006.

[JKK01] Helmut Jürgensen, Masashi Katsura, and Stavros Kon-
stantinidis. Maximal solid codes. J. Autom. Lang. Comb.,
6(1):25–50, 2001.

[JKL04] Helmut Jürgensen, Stavros Konstantinidis, and
Nguyen Huong Lâm. Asymptotically optimal low-cost
solid codes. J. Autom. Lang. Comb., 9(1):81–102, 2004.

[JKM06] Natasa Jonoska, Lila Kari, and Kalpana Mahalingam. In-
volution solid and join codes. In Oscar H. Ibarra and
Zhe Dang, editors, Developments in Language Theory, 10th
International Conference, DLT 2006, Santa Barbara, CA,
USA, June 26-29, 2006, Proceedings, volume 4036 of Lec-
ture Notes in Computer Science, pages 192–202, Berlin,
2006. Springer-Verlag.



Automata for Solid Codes 43

[JKM08] Natasa Jonoska, Lila Kari, and Kalpana Mahalingam. In-
volution solid and join codes. Fundam. Inform., 86(1-
2):127–142, 2008.

[Jür99] Helmut Jürgensen. Syntactic monoids of codes. Acta Cy-
bernet., 14(1):117–133, 1999.

[Jür09] Helmut Jürgensen. Markers and deterministic acceptors
for non-deterministic languages. J. Autom. Lang. Comb.,
14(1):33–62, 2009.

[Jür11] Helmut Jürgensen. Marks of changes in sequences. In
George Venkov, Ralitza Kovacheva, and Vesela Pasheva,
editors, Applications of mathematics in engineering and
economics. Proceedings of the 37th international conference
(AMEE ’11), Sozopol, Bulgaria, June 8–13, 2011., pages
319–330, Melville, NY, 2011. American Institute of Physics
(AIP).

[Jür13] Helmut Jürgensen. Automata for codes. In Stavros Kon-
stantinidis, editor, Implementation and application of au-
tomata. 18th international conference, CIAA 2013, Halifax,
NS, Canada, July 16–19, 2013. Proceedings, pages 2–15,
Berlin, 2013. Berlin: Springer.

[Jür14] Helmut Jürgensen. Towards a systematic theory of codes.
Proceedings of ICRAM 2014, 2014.

[JY90] Helmut Jürgensen and Shyr-Shen Yu. Solid codes. J. Inf.
Process. Cybern., 26(10):563–574, 1990.

[KM06] Lila Kari and Kalpana Mahalingam. Involution solid codes.
In Junghuei Chen, Natasa Jonoska, and Grzegorz Rozen-
berg, editors, Nanotechnology: Science and Computation,
Natural Computing Series, pages 137–146. Springer, 2006.

[KY10] Stavros Konstantinidis and Joshua Young. f -words and
binary solid codes. Journal of Automata, Languages and
Combinatorics, 15(3/4):269–283, 2010.

[Lâm01] Nguyen Huong Lâm. Finite maximal solid codes. Theor.
Comput. Sci., 262(1-2):333–347, 2001.



44 H. Jürgensen, L. Staiger

[Lâm03] Nguyen Huong Lâm. Completing comma-free codes. Theor.
Comput. Sci., 301(1-3):399–415, 2003.

[Lev61] Vladimir I. Levenshtein. Self-adaptive automata for decod-
ing messages. Dokl. Akad. Nauk. SSSR, 141:1320–1323,
1961. in Russsian. English translation: Soviet Physics
Dokl. 6 (1961), 1042–1045.

[Lev62] Vladimir I. Levenshtein. The inversion of finite automata.
Dokl. Akad. Nauk. SSSR, 147:1300–1303, 1962. in Rus-
sian. English translation: Soviet Physics Dokl. 7 (1963),
1081–1084.

[Lev64a] Vladimir I. Levenshtein. Decoding automata, invariant
with respect to the initial state. Probl. Kibern., 12:125–136,
1964. in Russian.

[Lev64b] Vladimir I. Levenshtein. Some properties of coding and
self-adjusting automata for decoding messages. Probl.
Kibern., 11:63–121, 1964. in Russian.
An English translation is available from the Clearinghouse
for Federal Scientific and Technical Information, U. S. De-
partment of Commerce, under the title Problems of Cy-
bernetics, Part II, document AD 667 849; it was prepared
as document FTD-MT-24-126-67 by the Foreign Technology
Division, U. S. Air Force,
German translation: Über einige Eigenschaften von
Codierungen und von selbstkorrigierenden Automaten zur
Decodierung von Nachrichten, in [LKT66], pp. 96–163.

[Lev70] Vladimir I. Levenshtein. On the maximum number of
words in codes without overlaps. Problemy Peredachi Infor-
matsii, 6(4):88–90, 1970. in Russsian. English translation:
Problems Inform. Transmission 6 (1973) 4, 355–357.

[Lev04] Vladimir I. Levenshtein. Combinatorial problems moti-
vated by comma-free codes. J. Combin. Des., 12(3):184–196,
2004.

[LKT65] Aleksej A. Ljapunow, Wilhelm Kämmerer, and Helmut
Thiele, editors. Probleme der Kybernetik, volume 8.
Akademie-Verlag, Berlin, 1965.



Automata for Solid Codes 45

[LKT66] Aleksej A. Ljapunow, Wilhelm Kämmerer, and Helmut
Thiele, editors. Probleme der Kybernetik, volume 7.
Akademie-Verlag, Berlin, 1966.

[Mar62] Aleksandr A. Markov. Non-recurrent coding. Probl.
Kibern., 8:169–186, 1962. in Russian. German translation:
Nicht rekurrente Codierung in [LKT65], pp. 154–175.

[PT90] Mario Petrich and Gabriel Thierrin. The syntactic monoid
of an infix code. Proc. Amer. Math. Soc., 109:865–873, 1990.

[Rom66] O.T. Romanov. On invariant decoding automata without
look-ahead. Probl. Kibern., 17:233–236, 1966. in Russian.

[RS97a] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook
of Formal Languages, volume 1. Springer-Verlag, Berlin,
1997.

[RS97b] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook
of Formal Languages, volume 2. Springer-Verlag, Berlin,
1997.

[Shy01] Huei-Jan Shyr. Free Monoids and Languages. Hon Min
Book Company, Taichung, third edition, 2001.

[Sta69] Peter H. Starke. Abstrakte Automaten. Deutscher Ver-
lag der Wissenschaften, Berlin, 1969. in German. English
translation: Abstract Automata, North-Holland, Amster-
dam, 1972.

[SY90] Huei-Jan Shyr and Shyr-Shen Yu. Solid codes and disjunc-
tive domains. Semigroup Forum, 41:23–37, 1990.

[Thi73] Gabriel Thierrin. The syntactic monoid of a hypercode.
Semigroup Forum, 6:227–231, 1973.

[Thi81] Gabriel Thierrin. Hypercodes, right convex languages and
their syntactic monoids. Proc. Am. Math. Soc., 83:255–258,
1981.

[Val77] Erich Valkema. Syntaktische Monoide und Hypercodes.
Semigroup Forum, 13:119–126, 1976/77.



46 H. Jürgensen, L. Staiger

[Wat95] Bruce W. Watson. Taxonomies and Toolkits of Regular Lan-
guage Algorithms. Proefschrift (doctoral thesis),. PhD the-
sis, Technische Universiteit Eindhoven, Eindhoven, 1995.

[Yu05] Shyr-Shen Yu. Languages and Codes. Tsang Hai Book Pub-
lishing Co., Taichung, Taiwan, 2005.


	Automata for Codes
	Notation and Basic Notions
	Restricted Infix Codes
	Solid Codes
	State-Invariant Decoders for Finite Solid Codes
	Levenshtein-Romanov Mapping
	The Condition Pref(L)X*L = L and Its Dual
	Fault-Tolerant Acceptors for Solid Codes
	Reduced Fault-Tolerant Acceptors for Solid Codes

