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Abstract

A quasiperiod of a finite or infinite string is a word whose oc-
currences cover every part of the string. An infinite string is re-
ferred to as quasiperiodic if it has a quasiperiod.

We present a characterisation of the set of infinite strings hav-
ing a certain word q as quasiperiod via a finite language Pq con-
sisting of prefixes of the quasiperiod q. It turns out its star root
∗√Pq is a suffix code having a bounded delay of decipherability.

This allows us to calculate the maximal subword (or factor)
complexity of quasiperiodic infinite strings having quasiperiod q
and further to derive that maximally complex quasiperiodic infi-
nite strings have quasiperiods aba or aabaa.
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1 Introduction
Around 2000 Solomon Marcus presented some tutorials dealing with
language-theoretic properties of infinite words [MP94, Mar02, Mar04].
One topic of interest was their subword complexity (or factor complexity
[CN10]). Besides the asymptotic behaviour of the factor complexity,
also known as their topological entropy [CN10, Section 4.2.2] Marcus
was also interested in the behaviour of the complexity function f (ξ,n)
assigning to a natural number n ∈ IN the number of subwords of the
infinite word (ω-word) ξ.

In his tutorial [Mar04] Solomon Marcus provided some initial facts
on quasiperiodic infinite words. Here he was also concerned with re-
currences in ω-words and their influence to subword complexity. A
well-known fact established by Grillenberger is that the asymptotic
subword complexity (or topological entropy) of an almost periodic (or
uniformly recurrent) ω-word can be arbitrarily close (but not equal) to
the maximal subword complexity (see [CN10, Theorem 4.4.4]).

In [Mar04] Marcus posed several questions on the complexity of
quasiperiodic infinite words. The papers [LR04, LR07] studied in more
detail quasiperiodic infinite words generated by morphisms and their
relation to Sturmian words. Their results concern mainly infinite words
of low complexity. This fits into the line pursued in the tutorial [BK03]
or the book [AS03] where also mainly infinite words of low (polyno-
mial) complexity were considered. Some results on high (exponential)
subword complexity were derived in [Sta12] or concerning the relation
between subword and Kolmogorov complexities in [Sta93, Section 5].

The investigations of the present paper are related to Question 2 in
Marcus’ tutorial [Mar04] and to the question posed in [LR04] of finding
the maximally possible complexity functions for those words. As com-
plexity here and in the cited above papers one considers the (subword)
complexity function f (ξ,n).

As a final result we deduce that the maximally possible complexity
functions for quasiperiodic infinite words ξ are bounded from above
by a function of the form f (ξ,n) ≤ c · tn

P,n ≥ nξ, where nξ is a number
depending on ξ and tP is the smallest Pisot-Vijayaraghavan number,
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that is, the unique real root tP of the cubic polynomial x3− x−1, which
is approximately equal to tP ≈ 1.324718. We show also that this bound
is tight, that is, there are ω-words ξ having f (ξ,n)≈ c · tn

P. Moreover, we
estimate the quasiperiods for which this bound can be achieved.

The paper is organised as follows. After introducing some notation
we derive in Section 3 a characterisation of quasiperiodic words and
ω-words having a certain quasiperiod q. Moreover, we use the finite
basis sets Pq and its dual Rq (L(q) and R (q) in [Mou00]) from which
the sets of quasiperiodic words or ω-words having quasiperiod q can be
constructed. In Section 4 it is then proved that the star root of Pq is a
suffix code having a bounded delay of decipherability and, dually, the
star root of Rq is a prefix code.

This much prerequisites allow us, in Section 5, to estimate the num-
ber of subwords of the language Qq of all quasiperiodic words having
quasiperiod q. It turns out that cq,1 ·λn

q≤ f (Qq,n)≤ cq,2 ·λn
q where f (Qq,n)

is the number of subwords of length n of words in Qq and 1 ≤ λq ≤ tP
depends on q. We construct, for every quasiperiod q, a quasiperiodic
ω-word ξq with quasiperiod q whose subword complexity f (ξq,n) is max-
imal. Finally, we estimate the quasiperiods q for which the subword
complexity of Qq is maximal.

Some of the results of this paper were presented at the conference
“Workshop on Descriptional Complexity of Formal Systems 2010” [PS10].

2 Notation
In this section we introduce the notation used throughout the paper.
By IN = {0,1,2, . . .} we denote the set of natural numbers. Let X be an
alphabet of cardinality |X | = r ≥ 2. By X∗ we denote the set of finite
words on X , including the empty word e, and Xω is the set of infinite
strings (ω-words) over X . Subsets of X∗ will be referred to as languages
and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This con-
catenation product extends in an obvious way to subsets L ⊆ X∗ and
B⊆ X∗∪Xω. For a language L let L∗ :=

⋃
i∈IN Li, and by Lω := {w1 · · ·wi · · · :

wi ∈ L\{e}} we denote the set of infinite strings formed by concatenat-
ing words in L. Furthermore |w| is the length of the word w ∈ X∗ and
pref(B) is the set of all finite prefixes of strings in B⊆ X∗∪Xω. We shall
abbreviate w ∈ pref(η) (η ∈ X∗∪Xω) by wv η.

We denote by B/w := {η : w ·η ∈ B} the left derivative of the set B ⊆
X∗∪Xω. As usual, a language L ⊆ X∗ is regular provided it is accepted
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by a finite automaton. An equivalent condition is that its set of left
derivatives {L/w : w ∈ X∗} is finite.

The sets of infixes of B or η are infix(B) :=
⋃

w∈X∗ pref(B/w) and infix(η) :=⋃
w∈X∗ pref({η}/w), respectively. In the sequel we assume the reader to

be familiar with basic facts of language theory.
A word w ∈ X∗ \ {e} is called primitive if w = vn implies n = 1, that

is, w is not the power of a shorter word. The following facts are known
(e.g. [BP85, Shy01])

Claim 1 Every word w ∈ X∗ \ {e} has a unique representation w = vn

where v is primitive.

Claim 2 If w · v = v ·w, w,v ∈ X∗ the w,v are powers of a common (primi-
tive) word.

As usual a language L ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · ·vk
for w1, . . . ,wl, v1, . . . ,vk ∈ L implies l = k and wi = vi. A code L is said to
be a prefix code (suffix code) provided no codeword is a prefix (suffix) of
another codeword.

3 Quasiperidicity

3.1 General properties
A finite or infinite word η ∈ X∗∪Xω is referred to as quasiperiodic with
quasiperiod q ∈ X∗ \ {e} provided for every j < |η| ∈ IN∪{∞} there is a
prefix u j v η of length j− |q| < |u j| ≤ j such that u j · q v η, that is, for
every w v η the relation u|w| @ w v u|w| · q is valid. Informally, η has
quasiperiod q if every position of η occurs within some occurrence of q
in η [AFI91, Mou00].

Let for q ∈ X∗ \{e}, Qq be the set of quasiperiodic words with quasi-
period q. Then {q}∗ ⊆ Qq = Q∗q and Qq \ {e} ⊆ X∗ · q∩ q ·X∗. In order to
describe the set of quasiperiodic strings having a certain quasiperiod
q ∈ X∗ \{e} the following definition is helpful.

Definition 1 A family
(
wi
)`

i=1, ` ∈ IN∪ {∞}, of words wi ∈ X∗ · q is re-
ferred to as a q-chain provided w1 = q, wi @ wi+1 and |wi+1|− |wi| ≤ |q|.

It holds the following.

Lemma 1
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(1) w∈Qq\{e} if and only if there is a q-chain
(
wi
)`

i=1 such that w` =w.

(2) An ω-word ξ ∈ Xω is quasiperiodic with quasiperiod q if and only
if there is a q-chain

(
wi
)∞

i=1 such that wi @ ξ.

Proof. It suffices to show how a family
(
u j
)|η|−1

j=0 can be converted to

a q-chain
(
wi
)`

i=1 and vice versa.
Consider η ∈ X∗∪Xω and let

(
u j
)|η|−1

j=0 be a family such that u j ·qv η

and j−|q|< |u j| ≤ j for j < |η|.
Define w1 := q and wi+1 := u|wi| ·q as long as |wi|< |η|. Then wiv η and

|wi|< |wi+1|= |u|wi| ·q| ≤ |wi|+ |q|. Thus
(
wi
)`

i=1 is a q-chain with wi v η.
Conversely, let

(
wi
)`

i=1 be a q-chain such that wi v η and set

u j := maxv
{

w′ : ∃i(w′ ·q = wi∧|w′| ≤ j)
}

, for j < |η| .

By definition, u j ·q v η and |u j| ≤ j. Assume |u j| ≤ j−|q| and u j ·q = wi.
Then |wi| ≤ j < |η|. Consequently, in the q-chain there is a successor
wi+1, |wi+1| ≤ |wi|+ |q| ≤ j+ |q|. Let wi+1 =w′′ ·q. Then u j @w′′ and |w′′| ≤ j
which contradicts the maximality of u j. o

Lemma 1 yields the following consequences.

Corollary 1 Let u ∈ pref(Qq). Then there are words w,w′ ∈Qq such that
wv uv w′ and |u|− |w|, |w′|− |u| ≤ |q|.

Corollary 2 Let ξ ∈ Xω. Then the following are equivalent.

(1) ξ is quasiperiodic with quasiperiod q.

(2) pref(ξ)∩Qq is infinite.

(3) pref(ξ)⊆ pref(Qq).

3.2 Finite generators for quasiperiodic words
In this part we introduce finite languages Pq and Rq which generate the
set of quasiperiodic words as well as the set of quasiperiodic ω-words
having quasiperiod q.

We set
Pq := {v : e @ vv q @ v ·q} . (1)

Then we have the following properties.
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Proposition 1
Qq = P∗q ·q∪{e} ⊆ P∗q , (2)

pref(Qq) = pref(P∗q ) = P∗q ·pref(q) (3)

Proof. In order to prove Qq ⊆ P∗q ·q∪{e} we show that wi ∈ P∗q ·q for
every q-chain

(
wi
)`

i=1. This is certainly true for w1 = q. Now proceed by
induction on i. Let wi = w′i ·q∈ P∗q ·q and wi+1 = w′i+1 ·q. Then w′i ·vi = w′i+1.
Now from wi @ wi+1 we obtain e @ vi v q @ vi ·q, that is, vi ∈ Pq.

Conversely, let vi ∈ Pq and consider v1 · · ·v` · q. Since q v vi · q the
family (v1 · · ·v j ·q)`j=0 is a q-chain. This shows P∗q ·q∪{e} ⊆ Qq.

Eq. (3) is an immediate consequence of Eq. (2). o

Proposition 1 implies the following characterisation of ω-words having
quasiperiod q.

{ξ : ξ ∈ Xω∧ξ has quasiperiod q}= Pω
q (4)

Proof. Since Pq is finite, Pω
q = {ξ : ξ ∈ Xω∧pref(ξ)⊆ pref(P∗q )}. o

A dual generator of Qq is obtained by the right-to-left duality of
reading words using the suffix relation ≤s instead of the prefix rela-
tion v.

Rq := {v : e <s v≤s q <s v ·q} . (5)

Analogously to Proposition 1 we obtain

Proposition 2
Qq = q ·R∗q∪{e} ⊆ R∗q , (6)

pref(Qq) = pref(q)∪q ·pref(R∗q) (7)

The proof is similar to the proof of Proposition 1 using the reversed ver-
sion of q-chain. A slight difference appears with an analogy to Eq. (4).

{ξ : ξ ∈ Xω∧ξ has quasiperiod q}= q ·Rω
q (8)

An alternative derivation of the languages Pq and Rq can be found in
Definition 2 of [Mou00]. Here the borders, that is, prefixes which are
simultaneously suffixes of the quasiperiod q, are used:

Pq = {v : ∃w(w @ q∧w <s q∧q = v ·w)} , and
Rq = {v : ∃w(w @ q∧w <s q∧q = w · v)} .

In the subsequent sections we focus on the investigation of Pq due
to the left-to-right direction of ω-words.
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3.3 Combinatorial properties of Pq

We investigate basic properties of Pq using simple facts from combina-
torics on words (see [BP85, Shy01]).

Proposition 3 v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ @ v
such that q = vk · v̄ for k =

⌊
|q|/|v|

⌋
.

Proof. Sufficiency is clear. Let now v ∈ Pq. Then v v q @ v · q. This
implies vl v q @ vl ·q as long as l ≤ k and, finally, q @ vk+1. o

Corollary 3 v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ IN such that
qv vk′.

Now set q0 := minvPq. Then in view of Proposition 3 and Corollary 3 we
have the following.

q = qk
0 · q̄ for k =

⌊
|q|/|q0|

⌋
and some q̄ @ q0 . (9)

Corollary 4 The word q0 is primitive.

Proof. Assume q0 = ql
1 for some l > 1. Then q̄ = q j

1 · q̄1 where q̄1 @ q1,
and, consequently, q@ qk·l+ j+1

1 contradicting the fact that q0 is the short-
est word in Pq. o

Proposition 4 Let q ∈ X∗,q 6= e, q0 = minvPq, q = qk
0 · q̄ and v ∈ P∗q \{e}.

(1) If wv q then v ·wv q or qv v ·w.

(2) If w · vv q then w ∈ {q0}∗.

(3) If |v| ≤ |q|− |q0| then v = qm
0 for some m ∈ IN.

Proof. The first assertion follows from q @ v · q and v ·w v v · q by
induction.

Since q0v v, it suffices to prove the second assertion for q0. First one
observes that, wv q and |w| ≤ |q|− |q0|. Thus wv qk−1

0 · q̄. Therefore, we
have w ·q0 v q and q0 ·wv q which implies w ·q0 = q0 ·w and, according to
Claim 2, w and q0 are powers of a common word. The assertion follows
because q0 is primitive.
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The third assertion follows from the second one as v ·q0 v q for v∈ P∗q
with |v| ≤ |q|− |q0|. o

Next we investigate the relation between a quasiperiod q = qk
0 · q̄ where

q0 = minvPq and q̄ @ q0 and its shortening q̂ := q0 · q̄. Since q ∈ Qq̂, we
have Qq̂ ⊇ Qq.

We continue with a relation between Pq and Pq̂. It is obvious that
qi

0 ∈ Pq for every i = 1, . . . ,k. Then Proposition 4.(3) shows that1

{qi
0 : i = 1, . . . ,k} ⊆ Pq

⊆ {qi
0 : i = 1, . . . ,k−1}∪{v′ : v′ v q∧|v′|> |q|− |q0|} .

(10)

Lemma 2 Let q ∈ X∗,q 6= e, q0 = minvPq, and q = qk
0 · q̄ and q̂ = q0 · q̄ the

shortening of q. Then

Pq = {qi
0 : i = 1, . . . ,k−1}∪{qk−1

0 · v : v ∈ Pq̂} .

Proof. Let v ∈ Pq̂, that is, v v q0q̄ @ v · q0q̄. Then qk−1
0 · v v qk

0 · q̄ @
qk−1

0 · v ·q0q̄ @ qk−1
0 · v ·qk

0 · q̄, that is, qk−1
0 · v ∈ Pq.

Conversely, let v′ ∈ Pq and v′ /∈ {qi
0 : i = 1, . . . ,k− 1}. Then, according

to Proposition 4.(3) there is a unique v 6= e such that v′ = qk−1
0 · v. Now

v′ = qk−1
0 · v v q = qk

0 · q̄ @ v′ · q = qk−1
0 · v · qk

0 · q̄ implies v v q0 · q̄ @ v · qk
0 · q̄.

Since |v| ≤ |q0 · q̄| and q0 · q̄v qk
0 · q̄, we have vv q0 · q̄ @ v ·q0 · q̄. o

As a particular result we obtain from Lemma 2 and Eq. (10) that Pq0q̄ ⊆
{v : q̄ @ vv q0q̄}. This result can be generalised as follows.

Lemma 3 If q is primitive, q̄ @ q and v ∈ Pqq̄ then q̄ @ v.

Proof. Assume v v q̄ and v ∈ Pqq̄. Then v v qq̄ @ vqq̄ implies vq v qq̄.
On the other hand qv v qq̄. Thus qv = vq, and |v| < |q| contradicts the
fact that q is primitive. o

3.4 Primitivity and Superprimitivity
In this section we consider the inclusion relations between the lan-
guages Pq,q 6= e. These languages are generators for the set of quasi-
periodic words Qq in the sense of Eq. (2). As we can see from Lemma 2

1Observe that qk
0 v q and |qk

0|> |q|− |q0|.



Quasiperiods of Infinite Words 9

and Eq. (2) the language Pq is not always the smallest one which gen-
erates Qq. In order to obtain the smallest one we consider the star root
of languages. Define now the star-root of a language L⊆ X∗ as usual as
the smallest language L′ satisfying (L′)∗ = L∗:

∗√L :=
(
L\{e}

)
\
(
L\{e}

)2 ·L∗

From Lemma 2 we obtain immediately.

Lemma 4 Let q ∈ X∗,q 6= e and q0 = minvPq. Then Pq = ∗
√

Pq if and only
if |q0|> |q|/2.

Proof. It is obvious that q0 ∈ ∗
√

Pq and qm
0 6= ∗

√
Pq if m≥ 2. It suffices

to show that v ∈ Pq \{q0}∗ belongs to ∗
√

Pq. To this end observe that in
view of Proposition 4 (3), for v′ ∈ Pq, the product v · v′ is longer than q.
Thus v ∈ ∗

√
Pq. o

Cast into the language of borders, it holds ∗
√

Pq = Pq if and only if the
longest proper border of q has length < |q|/2.

Corollary 5

∗√Pq =
(
Pq \{q0}∗

)
∪{q0}

Analogously to the primitivity of words in [AFI91, Mou00] a word was
referred to as superprimitive if it is not covered by a shorter one. This
leads to the following definition.

Definition 2 (superprimitive) A non-empty word q ∈ X∗ \ {e} is su-
perprimitive if and only in Qq is maximal w.r.t. “⊆” in the family {Qq :
q ∈ X∗ \{e}}.

The next proposition relates Lemma 4 to superprimitivity.

Proposition 5 If q ∈ X∗ \ {e} is superprimitive then |minvPq| > |q|/2,
and if |minvPq|> |q|/2 then q is primitive.

Proof. If q0 = minvPq and |q0| ≤ |q|/2 then q = qk
0 · q̄ for some q̄ @ q0.

Thus q ∈ Qq0q̄ and q0q̄ /∈ Qq.
As q = q′m with m > 1 implies |q0| ≤ |q′| ≤ |q|/2, the other assertion

follows. o

The converse of Proposition 5 is not valid.
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Example 1 Let q= abaabaababaab. Then Pq = {abaabaabab,abaabaababa,q},
and |minvPq|= 8 > 13/2 but as abaabaababaab ∈ Qabaab the word q is not
superprimitive.

The word q = ababa is primitive but q0 = ab has |q0| ≤ |q|/2. o

Lemma 5 Let q′ be the longest word in Pq \{q}. Then Pq′ ⊇ Pq \{q}.
Moreover, if q = qk

0 for q0 = minvPq and some k ≥ 2 then P∗q′ ⊇ P∗q .

Proof. Let v ∈ Pq \{q}. Then e @ v @ q @ v ·q. Since 0 < |v| ≤ |q′| and
q′ @ q, we obtain the required relation v @ q′ @ v ·q′.

If q = qk
0 then Pq′ ⊇ Pq \{qk

0} and q0 ∈ Pq′. o

In Lemma 5 equality as well as proper inclusion are possible.

Example 2 Let q = abaaba. Then Pq = {aba,abaab,q} and Pabaab =
{aba,abaab}= Pq \{q}. o

Example 3 Let q= abaaabaa. Then Pq2 = {abaa,abaaaba,q} and Pabaaaba =
{abaa,abaaab,abaaaba} ⊃ Pq \{q}. o

In contrast to the fact that the word q0 = minvPq is always primitive, it
need not satisfy |minvPq0 |> |q0|/2 let alone be superprimitive..

Example 4 q= aabaaabaaaa has Pq = {aabaaabaa,q}, that is q0 = aabaaabaa
which, in turn has Pq0 = {aaba,aabaaaba,q0} with |aaba|= 4 < |q0|/2. o

4 Pq and Rq as Codes
In this section we investigate in more detail the properties of the star
root of Pq. It turns out that ∗

√
Pq is a suffix code which, additionally,

has a bounded delay of decipherability. This delay is closely related to
the largest power of q0 being a prefix of q.

According to [BP85, Sta86, BWZ90, FRS07] a subset C⊆X∗ is a code
of a delay of decipherability m∈ IN if and only if for all v,v′,w1, . . . ,wm ∈C
and u ∈ C∗ the relation v ·w1 · · ·wm v v′ · u implies v = v′. Observe that
C ⊆ X∗ \{e} is a prefix code if and only if C has delay 0.

First we show that ∗
√

Pq is a suffix code. This generalises Proposi-
tion 7 of [Mou00].
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Proposition 6 ∗√Pq is a suffix code.

Proof. Assume u = w · v for some u,v ∈ ∗
√

Pq ,u 6= v. Then u v q and
Proposition 4 (2) proves w ∈ {q0}∗ \ {e}. Consequently, |v| ≤ |q| − |q0|.
Now Proposition 4 (3) implies v ∈ {q0}∗ and hence u ∈ {q0}∗. Since
u,v ∈ Pq, we obtain u = v = q0 contradicting u 6= v. o

Using the duality of Pq and Rq one shows in an analogous manner that
Rq is a prefix code.

We conclude this part by investigating the delay of decipherability
of ∗
√

Pq. We prove that the delay depends on the relation between the
quasiperiod q and the minimal w.r.t. v word q0 ∈ Pq.

Theorem 1 Let q ∈ X∗ \{e}, q0 = minvPq, qm
0 @ qv qm+1

0 and | ∗
√

Pq|> 1.
Then ∗

√
Pq is a code having a delay of decipherability of m or m+1.

Proof. We have q0,q ∈ ∗
√

Pq if q @ qm+1
0 or, as | ∗

√
Pq| > 1, in view

of Proposition 4 (3) we have q0,q′ ∈ ∗
√

Pq where qm
0 @ q′ @ qm+1

0 . In both
cases, q0 · qm−1

0 @ q′ for q0 ∈ ∗
√

Pq and some q′ ∈ ∗
√

Pq implies that the
delay of decipherability is at least m.

Next we show that it cannot exceed m+ 1. Assume v ·w1 · · ·wm+1 v
v′ · u for v,v′,w1, . . . ,wm+1 ∈ ∗

√
Pq and u ∈ P∗q . From Proposition 4 (1) we

obtain uv q or qv u and, since |wi| ≥ |q0|, also qv w1 · · ·wm+1. Moreover,
v1,v2 ∈ Pq implies |v1|+ |q| ≥ |v2|+ |q0|.

If v @ v′, in view of the inequality |v|+ |q| ≥ |v′|+ |q0| our assumption
yields v′ ·q0 v v ·q. Therefore, w ·q0 v q for the word w 6= e with v ·w = v′

and, according to Proposition 4 (2) w ∈ {q0}∗. This contradicts the fact
that ∗

√
Pq is a suffix code.

If v′ @ v, then |u| > |w1 · · ·wm+1| ≥ |q|, and via |v′|+ |q| ≥ |v|+ |q0| we
obtain v · q0 v v′ · q from our assumption. This yields the same contra-
diction as in the case when v @ v′. o

Thus, if qm
0 @ q v qm+1

0 and | ∗
√

Pq| > 1 the code ∗
√

Pq may have a mini-
mum delay of decipherability of m or m+ 1. We provide examples that
both cases are possible.

Example 5 Let q := aabaaaaba. Then q0 = aabaa, m = 1 and ∗
√

Pq = Pq =
{q0,aabaaaab,q } which is a code having a delay of decipherability 2.

Indeed aabaaaabaa = q0 ·q0 v q ·q0 or
aabaaaabaa = q0 ·q0 v aabaaaab ·q0 . o
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Moreover, in Example 5, q ·q0 /∈ Qq. Thus our example shows also that
q ·P∗q need not be contained in Qq.

Example 6 Let q := aba. Then m = 1 and Pq = {ab,aba} is a code having
a delay of decipherability 1. o

5 Subword Complexity
In this section we investigate upper bounds on the the subword com-
plexity function f (ξ,n) for quasiperiodic ω-words. If ξ ∈ Xω is quasi-
periodic with quasiperiod q then Proposition 3 and Corollary 3 show
infix(ξ)⊆ infix(P∗q ). Thus

f (ξ,n)≤ |infix(P∗q )∩Xn| for ξ ∈ Pω
q . (11)

Similar to [Sta93, Proposition 5.5] let ξq := ∏v∈P∗q \{e} v. This implies
infix(ξq) = infix(P∗q ). Consequently, the tight upper bound on the sub-
word complexity of quasiperiodic ω-words having a certain quasiperiod q
is fq(n) := |infix(P∗q )∩Xn|. Observe that in view of Propositions 1 and 2
the identity

infix(P∗q ) = infix(R∗q) = infix(Qq) (12)

holds.
The asymptotic upper bound on the subword complexity fq(n) is ob-

tained from
λq = limsup

n→∞

n
√
|infix(P∗q )∩Xn| , (13)

that is, for large n, fq(n)≤ λ̂n whenever λ̂ > λq.
The following facts are known from the theory of formal power se-

ries (cf. [BR88, SS78]). As infix(P∗q ) is a regular language the power
series ∑n∈IN fq(n) · tn is a rational series and, therefore, fq satisfies a re-
currence relation

fq(n+ k) = ∑
k−1
i=0 ai · fq(n+ i)

with integer coefficients ai ∈ Z. Thus fq(n) = ∑
k′−1
i=0 gi(n) · tn

i where k′ ≤ k,
ti are pairwise distinct roots of the polynomial tn−∑

k−1
i=0 ai · t i and gi are

polynomials of degree not larger than k.
In the subsequent parts we estimate values characterising the expo-

nential growth of the family
(
|infix(P∗q )∩Xn|

)
n∈IN. This growth mainly

depends on the root of largest modulus among the ti and the corre-
sponding polynomial gi.
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First we show that, independently of the quasiperiod q the polyno-
mial gi is constant. Then we show that, for every quasiperiod q, a root of
largest modulus is always positive and we estimate those quasiperiods
for which this root is maximal.

In the remainder of this section we use, without explicit reference,
known results from the theory of formal power series, in particular
about generating functions of languages and codes which can be found
in the literature, e.g. in [BP85, BR88] or [SS78].

5.1 The subword complexity of a regular star lan-
guage

The language P∗q is a regular star-language of special shape. Here we
show that, generally, the number of subwords of regular star-languages
grows only exponentially without a polynomial factor. We start with
some easily derived relations between the number of words in a regular
language and the number of its subwords.

Lemma 6 If L ⊆ X∗ is a regular language then there is a k ∈ IN such
that

|L∩Xn| ≤ |infix(L)∩Xn| ≤ ∑
k
i=0 |L∩Xn+i| (14)

If the finite automaton accepting L has k states then for every w ∈
infix(L) there are words u,v of length ≤ k such that u ·w ·v ∈ L. Thus as a
suitable k one may choose twice the number of states of an automaton
accepting the language L⊆ X∗.

A first consequence of Lemma 6 is that the identity

limsup
n→∞

n
√
|L∩Xn|= limsup

n→∞

n
√
|infix(L)∩Xn| (15)

holds for regular languages L⊆ X∗.
In order to derive the announced exponential growth we use Corol-

lary 4 of [Sta85] which shows that for every regular language L ⊆ X∗

there are constants c1,c2 > 0 and a λ≥ 1 such that

c1 ·λn ≤ |pref(L∗)∩Xn| ≤ c2 ·λn . (16)

A consequence of Lemma 6 is that Eq. (16) holds also (with a different
constant c2) for infix(L∗).
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5.2 The subword complexity of Qq

In this part we estimate the value λq of Eq. (13). In view of Eqs. (12) and
(16) the value λq satisfies the inequality c1 ·λn

q ≤ |infix(P∗q )∩Xn| ≤ c2 ·λn
q.

As P∗q is a regular language Eqs. (13) and (15) show that

λq = limsupn→∞
n
√
|P∗q ∩Xn|

which is the inverse of the convergence radius rads∗q of the power series
s∗q(t) := ∑n∈IN |P∗q ∩Xn| · tn. The series s∗q is also known as the structure
generating function of the language P∗q .

Since ∗
√

Pq is a code, we have s∗q(t) =
1

1−sq(t)
where sq(t) := ∑v∈ ∗

√
Pq

t |v|

is the structure generating function of the finite language ∗
√

Pq. As s∗q
has non-negative coefficients Pringsheim’s theorem shows that rads∗q =
λ−1

q is a singular point of s∗q. Thus λ−1
q is the smallest root of 1− sq(t).

Hence λq is the largest positive root of the polynomial pq(t) := t |q| −
∑v∈ ∗
√

Pq
t |q|−|v|.

Remark 1 If the length of q0 = minv ∗
√

Pq does not divide |q| then pq(t)
is the reversed polynomial of 1− sq(t), that is, has as roots exactly the
the inverses of the roots of 1− sq(t).

If |q0| divides |q| then q /∈ ∗
√

Pq (cf. Lemma 4) and pq(t) has addition-
ally the root 0 with multiplicity |q|− |q′| where q′ is the longest word in
∗√Pq.

Summarising our observations we obtain the following.

Lemma 7 Let q ∈ X∗ \ {e}. Then there are constants cq,1,cq,2 > 0 such
that the structure function of the language infix(P∗q ) satisfies

cq,1 ·λn
q ≤ |infix(P∗q )∩Xn| ≤ cq,2 ·λn

q

where λq is the largest (positive) root of the polynomial pq(t).

Remark 2 One could prove Lemma 7 by showing that, for each poly-
nomial pq(t), its largest (positive) root has multiplicity 1. Referring to
Corollary 4 of [Sta85] (see Eq. (16)) we avoided these more detailed con-
siderations of a particular class of polynomials.

5.3 Quasiperiods of maximum subword complexity
In this concluding part we are looking for those quasiperiods q which
yield the largest value of λq among all quasiperiods thus answering



Quasiperiods of Infinite Words 15

Question 2 of [Mar04]. All polynomials pq(t) are of the form p(t) =
tn−∑i∈M t i where /0 6= M ⊆ {0, . . . ,n−1}.

We start with a general property of those polynomials.

Proposition 7 Suppose p(t) = tn−∑i∈M t i where /0 6= M ⊆ {0, . . . ,n− 1}.
Then

(1) p(0)≤ 0, p(1)≤ 0, p(2)> 0 and p(t ′)< 0 for 0 < t ′ < 1.

(2) If p(t ′)≥ 0 for some t ′ > 0 then p(t)> 0 for t > t ′.

(3) Let tmax be the largest positive root of p(t). If p(t ′) = 0 then |t ′| ≤ tmax.

Proof. The first assertion is obvious.
For the proof of the second one, let t = (1+ ε) · t ′ where ε > 0 and

observe that p((1+ ε) · t ′)> (1+ ε)n · p(t ′).
The first assertion shows that 1≤ tmax < 2. Then third assertion fol-

lows via p(|t ′|) = |t ′|n−∑i∈M |t ′|i ≥ |t ′|n−|∑i∈M t ′i|= 0 from the second one.
o

This yields the following fundamental property.

Corollary 6 If tmax is the largest positive root of a polynomial p(t) =
tn−∑i∈M t i with /0 6= M ⊆ {0, . . . ,n− 1} then tmax ∈ [1,2), and p(t ′) ≤ 0 if
and only if t ′ ≤ tmax, for 1≤ t ′ < 2.

Recall that infix(P∗q ) = infix(Qq). Moreover, Qq ⊆ Qq̂ for some shorter
quasiperiod q̂ whenever q is not superprimitive. As Proposition 5 shows
the latter is always the case if q0 is not longer that |q|/2.

For quasiperiods q where q0 is not longer that |q|/2 we have the fol-
lowing property. Consider the successive shortenings (see Section 3.3)
q(i) of the quasiperiod q, that is q(0) := q and q(i+1) := q̂(i). This sequence
trivially ends at least after |q| steps with a shortening q̃ = q(n) for which
|minvPq̃|> |q̃ |/2. Moreover Qq(1) ⊆ . . .⊆Qq̃ and its predecessor q(n−1) has

|q(n−1)
0 | ≤ |q(n−1)|/2. In this situation we have the following.

Proposition 8 Let q ∈ X∗ \ {e} be such that q = qk
0 · q̄ where q̄ @ q0 and

k ≥ 2. If |minvPq̂|> |q̂|/2 for q̂ := q0 · q̄ then λq̂ > λq or P∗q = {q0}∗.

Proof. Lemma 4 shows that Pq̂ = ∗
√

Pq̂. Then pq̂(t)= t |q̂|−∑v∈Pq̂ t |q̂|−|v|=
t |q̂|− t(|q̂|−|q0|)−∑v∈Pq̂\{q0} t(|q̂|−|v|).
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Via Lemma 2 and Corollary 5 we obtain the following relation be-
tween ∗

√
Pq̂ and ∗

√
Pq

∗√Pq =
{

q0
}
∪
{

qk−1
0 · v : v ∈ Pq̂ \{q0}

}
.

If Pq̂ = {q0} then ∗
√

Pq = {q0} and, consequently P∗q = {q0}∗.
Let Pq̂ ⊃ {q0}. This yields pq(t) = t |q|− t(|q|−|q0|)−∑v∈Pq̂\{q0} t(|q|−|q

k−1
0 v|).

Since λq̂ is a root of pq̂(t) we have, in view of q = qk−1
0 · q̂,

0 = λ
k−1
q̂ ·pq̂(λq̂) = λ

|q|
q̂ −λ

(|q|−|q0|)
q̂ − ∑

v∈Pq̂\{q0}
λ
(|q|−|v|)
q̂

< λ
|q|
q̂ −λ

(|q|−|qk−1
0 |)

q̂ − ∑
v∈Pq̂\{q0}

λ
(|q|−|qk−1

0 v|)
q̂ = pq(λq̂) .

The assertion λq̂ > λq follows with Corollary 6. o

Thus every quasiperiod q having |q0| not longer than |q|/2 has λq = 1 or
λq < λq̂, and we may confine the subsequent considerations to estimate
quasiperiods yielding maximal subword complexity to quasiperiods q
satisfying |q0| > |q|/2. In this case the corresponding polynomials pq(t)
are of the form tn−∑i∈M t i where /0 6= M ⊆ {0, . . . ,bn−1

2 c}.
Next we consider the positive roots of these polynomials. Define

pn(t) := tn−∑
b n−1

2 c
i=0 t i.

Corollary 7 For every n ≥ 1 the polynomial pn(t) has the largest posi-
tive root among all polynomials p(t) = tn−∑i∈M t i with /0 6= M ⊆ { j : j ≤
n−1

2 }.

Proof. This follows from t ′n−∑
b n−1

2 c
i=0 t ′i ≤ p(t ′) when 1 ≤ t ′ < 2 and

Corollary 6. o

Corollary 7 allows us to restrict the further considerations to the poly-
nomials pn(t).

Observe that p2n+1(t) = t2n+1−∑
n
i=0 t i and p2n+2(t) = t2n+2−∑

n
i=0 t i.

Remark 3 It holds
panban(t) = p2n+1(t) , and

panban+1(t) = p2n+2(t) .

In particular, pba(t) = t2−1 and pb(t) = t−1. So for all degrees ≥ 1 there
are polynomials of the form pq(t).
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In view of Remark 3 and Lemma 7 in the sequel the positive root tmax
of pi(t) is denoted by λi. The roots λi can be ordered as follows.

Proposition 9 Let λi be as above. Then

(1) λ2n−1 > λ2n+1 for n≥ 3, and

(2) λ2n+1 > λ2n for n≥ 1.

Proof. We have

tn−2 · p2n+1(t)− (tn +1) · p2n−1(t) =
n−3

∑
i=0

t i for n≥ 3 . (17)

Then λ
n−2
2n−1 · p2n+1(λ2n−1) = ∑

n−3
i=0 λi

2n−1 > 0 and Corollary 6 yields the first
assertion.

The second follows in a similar way from the identity t · p2n(t)−1 =
p2n+1(t). o

The polynomials p1(t) and p2(t) have λ1 = λ2 = 1.
If n = 2 the identity Eq. (17) obtains as p5(t) = (t2 + 1) · p3(t), that

is, λ3 = λ5. Together with the inequalities of Proposition 9 this yields
another proof of Lemma 18 in [PS10].

Lemma 8 The polynomials t3−t−1 and t5−t2−t−1=(t2+1) ·(t3−t−1)
have the largest positive roots among all polynomials pq(t), q ∈ X∗ \{e}.

The ω-words ξaba = ∏v∈P∗aba\{e} v and ξaabaa = ∏w∈P∗aabaa\{e}w are quasi-
periodic ω-words having maximum subword complexity.

We conclude with two remarks.

Remark 4

(1) The positive root tP of paba(t) (or of paabaa(t)) is known as the small-
est Pisot-Vijayaraghavan number, that is, a positive root > 1 of an
irreducible polynomial (here t3− t−1) with integer coefficients all
of whose conjugates have modulus smaller than 1.

(2) In [PS16] several connections between the ω-languages Pω
aba, Pω

aabaa
and the smallest Pisot number tP are derived. In particular, it was
shown that, for sufficiently large n, we have faba(n)= INT

(2·t2
P+3·tP+2
2·tP+3 ·

tn
P
)

and faabaa(n) = INT
(13·t2

P+16·tP+9
5·(2·tP+3) · t

n
P
)

where INT(α) is the integer
closest to the real number α.



18 L. Staiger

Here the coefficient 13·t2
P+16·tP+9

5·(2·tP+3) for aabaa is larger than the one for
aba. This shows that the subword complexity of ξaabaa exceeds the
one of ξaba.
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