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Abstract

It is shown that, for every length l ≥ 3, a quasiperiod of the form
anban (or anbban if l is even) generates the largest language Q of
words having this word as quasiperiod. As a means of comparison we
use the growth of the function which counts the number of words of
length l in the language Q.

Moreover, we give the exact ordering of the lengths l with respect
to the largest language Q generated by a quasiperiod of length l.
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1 Introduction

Informally, a word q is a quasiperiod of another word w if q is a prefix and a
suffix of w and every position of w is covered by q.

In this paper we investigate the languages Qq of words w having q as
quasiperiod. We are interested in the question of which quasiperiods q gen-
erate large languages Qq. Since different quasiperiods may have incompa-
rable w.r.t. set inclusion languages Qq, we compare the languages Qq by
their functions sq : IN → IN which count the number of words of length n in
Qq. As a means of comparison we use their asymptotical growth. It turns
out that the languages Qq are essentially regular star-languages, therefore
their function sq satisfies sq(n)≈ const. ·λn

q, where the value λq ≥ 1 depends
on the quasiperiod q.

The aim of this paper is to estimate, for every length n ≥ 3 the words
q which have the largest value λq. To this end we consider along with
language-theoretical properties of Qq some combinatorial properties of quasi-
periods. Moreover, we need to consider a special class of integer polynomials
related to quasiperiods.

The paper is organised as follows. After some preliminaries we deal with
combinatorial properties of quasiperiods and the generated languages. The
asymptotic growth of Qq is the subject of Section 4. Then we deal with
basic properties of polynomials related to quasiperiods. In these sections
we mainly report results of the papers [PS10] and [Sta18]. The following
Sections 6 and 7 deal with the proof of the main theorem. Here we derive
also the complete ordering of the values λn =max{λq : |q| = n}.

2 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN= {0,1,2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet. Usually by
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a,b ∈ X we mean two different letters. X∗ is the set (monoid) of words on X ,
including the empty word e.

For w,v ∈ X∗ let w ·v be their concatenation. This concatenation product
extends in an obvious way to subsets W ,L ⊆ X∗. For a language W let W∗ :=⋃

i∈IN W i be the submonoid of X∗ generated by W . The smallest subset of a
language W which generates W∗ is called its star root ∗pW [Brz67]. It holds

∗pW = (W \{e})\ (W \{e})2 ·W∗ .

Furthermore |w| is the length of the word w ∈ X∗, and by w v v we denote
the fact that w is a prefix of v.

A word w ∈ X∗\{e} is called primitive if w = vn implies n = 1, that is, w is
not the power of a shorter word.

As usual a language L ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · ·vk
for w1, . . . ,wl , v1, . . . ,vk ∈ L implies l = k and wi = vi. A code L is said to be a
suffix code provided no codeword is a suffix of another codeword.

Finally, we define the language Qq of words having q ∈ X∗ \{e} as quasi-
period.

(0) e ∈Qq , and
(1) w∈Qq , if and only if w ∈ X∗ · q and

there is a w′ @ w,w′ ∈Qq, with w v w′ · q .

3 Quasiperiodic Words
In this part we consider the finite language Pq (L (q) in [Mou00]) which is
tightly related to Qq. Most of the results are contained in [Mou00, PS10]
and [Sta18].

We set
Pq := {v : e @ v v q @ v · q} . (1)

We have the following property.

Qq \{e}= P∗
q · q ⊆ P∗

q ∩ q · X∗ . (2)

3.1 Combinatorial properties of Pq

We investigate basic properties of Pq using simple facts from combinatorics
on words (see [BP85, Lot97, Shy01]).

Proposition 1 v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ @ v such
that q = vk · v̄ for k = b|q|/|v|c.
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Corollary 1 v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ IN such that
q v vk′

.

Now set q0 := minv Pq. Then in view of Proposition 1 and Corollary 1 we
have the following canonical representation.

q = qk
0 · q̄ where k = b|q|/|q0|c and q̄ @ q0 . (3)

We will refer to q0 as the repeated prefix and to k as the repetition factor. If
|q0| > |q|/2, that is, if k = 1 we will refer to q as irreducible.1

Corollary 2 Every word v ∈ ∗√Pq is primitive.

Proof. Assume v = vl
1 for some v ∈ ∗√Pq and l > 1. Then q v vk′ = vl·k′

1 ,
and, according to Corollary 1 v1 ∈ Pq contradicting v ∈ ∗√Pq. o

Proposition 2 Let q ∈ X∗, q 6= e, q0 =minv Pq, q = qk
0 · q̄ and v ∈ P∗

q \{e}.

(1) If w v q then v ·w v q or q v v ·w.

(2) If w ·v v q then w ∈ {q0}∗.

(3) If |v| ≤ |q|− |q0| then v ∈ {q0}∗.

Corollary 3 If q ∉ {q0}∗ then q0 is not a suffix of q.

Proof. Let q = w · q0. Then according to Proposition 2.2 w ∈ {q0}∗. o

Next we derive a slight improvement of Proposition 2.3. To this end, we use
the Theorem of Fine and Wilf.

Theorem 1 ([FW65]) Let v,w ∈ X∗. Suppose vm and wn, for some m,n ∈ IN,
have a common prefix of length |v| + |w| − gcd(|v|, |w|). Then v and w are
powers of a common word u ∈ X∗ of length |u| = gcd(|v|, |w|).2

Proposition 3 Let q ∈ X∗, q 6= e, q0 = minv Pq, q = qk
0 · q̄ and v ∈ Pq. If

|v| ≤ |q|− |q0|+gcd(|v|, |q0|) then v ∈ {q0}∗.

Proof. q0,v ∈ Pq imply that q is a common prefix of qk+1
0 and vk′

for some
k′ ∈ IN. In view of |v| ≤ |q|−|q0|+gcd(|v|, |q0|) Theorem 1 implies that q0 and
v are powers of a common word, that is, v ∈ {q0}∗. o

1Superprimitive in the sense of [AFI91, Mou00] quasiperiods are irreducible but not vice
versa (see [Sta18, Section 2.3.4]).

2Here gcd(k, l) denotes the greatest common divisor of two numbers k, l ∈ IN.
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3.2 The reduced quasiperiod q̂

Next we investigate the relation between a quasiperiod q = qk
0 · q̄ where q0 =

minv Pq and q̄ @ q0 and its reduced quasiperiod q̂ := q0 · q̄. Since q ∈Q q̂, we
have Q q̂ ⊇Qq.

We continue with a relation between Pq and Pq̂. It is obvious that qi
0 ∈ Pq

for every i = 1, . . . ,k. Then Proposition 3 shows that

∗√Pq ⊆ {q0}∪ {v′ : v′ v q∧|v′| > |q|− |q0|+gcd(|v′|, |q0|)} . (4)

Lemma 1 ([Sta18, Lemma 2.2]) Let q ∈ X∗, q 6= e, q0 = minv Pq, q = qk
0 · q̄

and q̂ = q0 · q̄ the reduced quasiperiod of q. Then

Pq = {qi
0 : i = 1, . . . ,k−1}∪ {qk−1

0 ·v : v ∈ Pq̂} .

This implies ∗√Pq ⊆ {q0}∪ qk−1
0 · (Pq̂ \{q0}) , and (5)

Pq̂ ⊆ {v : q̂0 v v v q̂} (6)

Moreover, we have the following.

Lemma 2 Let q = qk
0 · q̄ with k ≥ 2, q̄ @ q0 and q̂ = q0 · q̄.

If q̂0 6= q0 for the repeated prefix of q̂0 then q̄ @ q̂0 @ q0 and |q̂0| > |q̄| +
gcd(|q0|, |q̂0|). Moreover, then there is a nonempty suffix v 6= e of q0 such that
v@ q̂0 and v · q̄ @ q̂2

0.

Proof. We have q̄ v q0 and, since q0 ∈ Pq̂, also q̂0 v q0. Moreover, q̂ v q2
0

and q̂ v q̂k′
0 for some k′ ∈ IN. Since q0 6= q̂0 and both prefixes are primitive

words, Theorem 1 shows that the common prefix q̂ = q0 · q̄ has to satisfy
|q̂| < |q0|+|q̂0|−gcd(|q0|, |q̂0|), that is, |q̂0| > |q̄|+gcd(|q0|, |q̂0|). The assertion
q̄ @ q̂0 @ q0 now follows from a comparison of the lengths of q̄, q̂0 v q0.

Now, let v be the suffix of q0 defined by q̂k′
0 · v = q0 @ q̂k′+1

0 . Then v @ q̂0
and v · q̄ @ (q̂0)2. o

4 Asymptotic Growth
In this section we use the fact that ∗√Pq is a suffix code to estimate the
exponential growth of the family (|Qq ∩ X n|)n∈IN. In view of the identity
Qq \{e}= P∗

q · q we have |Qq ∩ X n+|q|| = |P∗
q ∩ X n|. So we may use P∗

q instead
of Qq.

First we mention that ∗√Pq is a suffix code. This generalises Proposi-
tion 7 of [Mou00].
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Proposition 4 ([PS10, Sta18]) ∗√Pq is a suffix code.

In order to derive the announced exponential growth we refer to Corollary 4
of [Sta85] which shows that for every regular language L ⊆ X∗ there are
constants c1, c2 > 0 and a λ≥ 1 such that

c1 ·λn ≤i.o. |L∗∩ X n| ≤ c2 ·λn . (7)

In the remainder of this section we use, without explicit reference, known
results from the theory of formal power series, in particular about generat-
ing functions of languages and codes which can be found in the literature,
e.g. in [BP85, BR88] or [SS78].

As P∗
q is a regular language the value λq for L = Pq in Eq. (7) is

λq = limsupn→∞ n
√
|P∗

q ∩ X n| which is the inverse of the convergence radius
of the power series s∗q(t) :=∑

n∈IN |P∗
q ∩X n| · tn. The series s∗q is also known as

the structure generating function of the language P∗
q .

Since ∗√Pq is a code, we have s∗q(t) = 1
1−sq(t) where sq(t) :=∑

v∈ ∗pPq
t|v| is

the structure generating function of the finite language ∗√Pq. Thus λ−1
q is

the smallest root of 1−sq(t). Hence λq is the largest root of the polynomial
pq(t) := t|q|−∑

v∈ ∗pPq
t|q|−|v|.

Summarising our observations we obtain the following.

Lemma 3 Let q ∈ X∗ \{e}. Then there are constants cq,1, cq,2 > 0 such that

cq,1 ·λn
q ≤i.o. |P∗

q ∩ X n| ≤ cq,2 ·λn
q

where λq is the largest (positive) root of the polynomial pq(t).

5 Polynomials
Before proceeding to the proof of our main theorem we derive some prop-
erties of polynomials of the form p(t) = tn −∑

i∈M ti, M ⊆ {i : i ∈ IN∧ i < n}.
We are mainly interested in results which are useful for comparing their
maximal roots.

The polynomials p(t) ∈ P̂ := {tn −∑
i∈M ti : ; 6= M ⊆ {0, . . . ,n−1}} have the

following easily verified properties.

p(0)≤ 0, p(1)≤ 0, p(2)≥ 1 and p(t)< 0 for 0< t < 1 . (8)

If ε> 0 and p(t′)≥ 0 for some t′ > 0 then p((1+ε) · t′)> 0 . (9)
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Since p(1) ≤ 0 and p(2) ≥ 1 for p(t) ∈ P̂ , Eq. (9) shows that once p(t′) ≥
0, t′ ≥ 1, the polynomial p(t) has no further root in the interval (t′,∞) and
p(t) ∈ P̂ has exactly one root in the interval [1,2). This yields the following
fundamental property. If t0 is the positive root of the polynomial p(t) ∈ P̂

in [1,2) and 1 ≤ t′ < 2 then p(t′) ≤ 0 if and only if t′ ≤ t0. For the roots of
maximal modulus we have the following theorem.

Theorem 2 (Cauchy) Let p(t) = ∑n
i=0 ai · ti be a complex polynomial. Then

every root t′ of p(t) satisfies |t′| ≤ t0 where t0 is the maximal root of the poly-
nomial |an| · tn −∑n−1

i=0 |ai| · ti.

This implies the following property of polynomials p(t) ∈ P̂ .

If p(t)= 0 then |t| ≤ t0 . (10)

From Property 5 we derive the following criterion to compare the maximal
roots of polynomials in P̂ .

Criterion 1 Let p1(t), p2(t) ∈ P̂ have maximal roots t1 and t2, respectively.
Then p2(t1)> 0 if and only if t1 > t2. In particular, p2(t1)> 0 implies t1 > t2.

We conclude this section with a bound on the maximal root of certain poly-
nomials in P̂ .

Lemma 4 Let p(t) = tn −∑m
i=0 ti,n > m ≥ 1. Then p(t) > 0 for n−mpm+1 ≤ t

and p(t)< 0 for 1≤ t ≤ 2n−m
√

(m+1)2 .

Proof. The assertion follows from the inequality tn − (m+1) · tm < p(t) <
tn − (m+1) · tm/2 when t > 1. The first part uses the arithmetic-geometric-
means inequality

∑m
i=0 ti > (m+1) · m+1

√∏m
i=0 ti = (m+1) · tm/2, and the second

holds for t ≥ 1. o

The following special case is needed below.

Corollary 4 If p(t)= tn −∑n−3
i=0 ti,n ≥ 4, then p(t)< 0 for 1≤ t ≤ n+3

√
(n−2)2.

The subsequent sections are devoted to the proof of our main theorem.

6 Irreducible Quasiperiods
We start with irreducible quasiperiods. As quasiperiods q, |q| ≤ 2, have triv-
ially P∗

q = {q}∗, in the subsequent sections. we confine our considerations to
quasiperiods q of length |q| ≥ 3.
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6.1 Extremal polynomials

The polynomials pq(t) of irreducible quasiperiods have non-zero coefficients
only for |q| and i < |q|

2 . Therefore we investigate the set

P := {tn −∑
i∈M ti : n ≥ 1∧; 6= M ⊆ { j : j ≤ n−1

2 }} .

Let pn(t) := tn −∑b n−1
2 c

i=0 ti ∈ P . Let p(t) ∈ P a polynomial of degree n. Then
pn(t) ≤ p(t) for t ∈ [1,2], and pn(t) has the largest positive root among all
polynomials of degree n in P .

Proof. This follows from tn −∑b n−1
2 c

i=0 ti ≤ p(t) for p(t) ∈ P when 1 < t ≤ 2
and Criterion 1. o

Observe that, for n ≥ 1,

p2n+1(t)= t2n+1 −∑n
i=0 ti and p2n+2(t)= t2n+2 −∑n

i=0 ti .

Moreover, anban and anwan,w ∈ {xb,bx}, x ∈ X are quasiperiods correspond-
ing to the extremal polynomials p2n+1(t) ∈P and p2n+2(t) ∈P , respectively.

Let Qmax := {anban : n ≥ 1}∪ {anwan : w ∈ X ·b∪b · X ,n ≥ 1}.
In what follows we will always assume that the first letter of a quasi-

period q is a. Then Qmax is the set of quasiperiods corresponding to the
extremal polynomials.

Lemma 5 Qmax := {q : q ∈ X∗∧|q| ≥ 3∧ pq(t)= p|q|(t)}

Proof. If q ∈ Qmax then obviously pq(t) = p|q|(t). Conversely, if pq(t) =
t|q|−∑

v∈ ∗pPq
t|q|−|v| = p|q|(t) then ∗√Pq = {v : v v q∧ |v| > |q|

2 }. Then, in view

of q v v · q, every prefix w v q of length |w| < |q|
2 is also a suffix of q. This is

possible only for q ∈Qmax or q ∈ {a}∗. o

In the sequel the positive root of pn(t) is denoted by λn. From Criterion 1 we
obtain immediately.

Criterion 2 Let t ≥ 1. We have t <λn if and only if pn(t)< 0.

Then Property 6.1 implies the following.

Theorem 3 If q ∈ X∗, |q| ≥ 3, is an irreducible quasiperiod then λq ≤ λ|q|,
and λq =λ|q| if and only if q ∈Qmax.
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6.2 The ordering of the maximal roots λn

Before we proceed to the case of reducible quasiperiods we determine the
ordering of the maximal roots λn. This will not only be interesting for itself
but also useful for proving λq <λ|q| when q is reducible (see Eq. (21) below).

The extremal polynomials pn(t) satisfy the following general relations. 3

t · p2n−2(t)−1 = p2n−1(t) , (11)
p2n(t)− t2 · p2n−2(t) = tn − t−1, (12)

tn−2 · p2n+1(t)− (tn +1) · p2n−1(t) = ∑n−3
i=0 ti, and (13)

tn−2 · p2n+3(t)− (tn+1 +1) · p2n(t) = −tn +∑n−3
i=0 ti (14)

Lemma 6 The polynomials t3 − t−1 and t5 − t2 − t−1 = (t2 +1) · (t3 − t−1)
have largest positive roots λ3 = λ5 among all polynomials in P , λ5 > λ4 and
λ2n−1 >λ2n+1 >λ2n for n ≥ 3.

Proof. From Eq. (11) we have p2n+1(λ2n) = −1 < 0 and, therefore, λ2n <
λ2n+1 when n ≥ 1.

Similarly, Eq. (13) yields p2n+1(λ2n−1)=λ−(n−2)
2n−1 ·∑n−3

i=0 λ
i
2n−1 > 0 which im-

plies λ2n+1 <λ2n−1 for n ≥ 3 and λ3 =λ5 when n = 2. o

So far we have ordered the ‘odd’ roots: λ3 = λ5 > λ7 > λ9 > ·· · . Next we are
going to investigate the ordering of the ‘even’ roots λ2n, n ≥ 2.

To this end we derive the following bounds.

Lemma 7 (1) 3n+1pn2 ≤λ2n ≤ n+1pn and 3n−1pn2 ≤λ2n−1 ≤ npn for n ≥ 2.

(2) Let n ≥ 5. Then λ2n ≥ n−1p2.

Proof. 1. follows from Lemma 4.
2. We calculate p2n( n−1p2) = 4 · n−1p4−∑n−1

i=0
n−1p2i ≤ 4 · 4p4− (2+ (n−1)) =

4 ·p2− (n+1)< 0 if n ≥ 5 and the assertion follows with Property 5. o

Remark 1 The lower bound of Lemma 7.2 does not exceed the lower bound
in Lemma 7.1. However, the latter is more convenient for the purposes of
the subsequent Lemma 8.

Lemma 8 If n ≥ 5 then λ2n−2 >λ2n and λ2n >λ2n+3.
3By convention,

∑m
i=k ai = 0 if k > m.
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Proof. If t ≥ n−1p2 then tn− t−1≥ t−1> 0. Consequently, Eq. (12) implies
p2n(λ2n−2)> 0 whence λ2n <λ2n−2.

Eq. (14), Corollary 4 and the inequality λ2n ≤ n+1pn ≤ n+3
√

(n−2)2 when
n ≥ 5 imply λ2n · p2n+3(λ2n) = −(λn

2n −∑n−3
i=0 λ

i
2n) > 0 whence λ2n > λ2n+3 for

n ≥ 5. o

Since p8( 3p2)> 0, the proof of Lemma 8 cannot be applied to lower values of
n. Thus it remains to establish the order of the λi for i ≤ 13. To this end, we
consider some special identities and use Criterion 2 and Lemma 8.

p12(t)− (t8 + t5 + t4 + t2 + t) · p4(t) = t2 −1 and (15)
p13(t)− t · (t8 + t5 + t4 + t2 + t) · p4(t) = t3 − t−1= p3(t) . (16)

Lemma 9 λ8 >λ10 >λ13 >λ4 >λ12

Proof. Lemma 8 shows λ8 > λ10 > λ13. Eq. (15) yields p12(λ4) = λ2
4 −1 > 0

whence λ4 > λ12, and Eq. (16) yields p13(λ4) = p3(λ4) < 0, that is λ13 > λ4.
This shows our assertion. o

For the remaining part we consider the identities

t2 · p11(t)− (t5 +1) · p8(t) = −t4 + t+1=−p4(t) (17)
p11(t)− (t5 +1) · p6(t) = t3 · p4(t) and (18)

t · p9(t)− (t4 +1) · p6(t) = −t3 +1 . (19)

Lemma 10 λ9 >λ6 >λ11 >λ8

Proof. We use Eqs. (17) to (19). Then p11(λ8) =−p4(λ8) < 0 implies λ11 >
λ8, p11(λ6)=λ3

6 · p4(λ6)> 0 implies λ6 >λ11, and, finally, λ6 · p9(λ6)=−λ3
6+1

implies λ9 >λ6. o

Now Lemmata 6, 8, 9 and 10 yield the complete ordering of the values λn.

Theorem 4 Let λn,n ≥ 3, be the maximal root of the polynomial pn(t). Then
the overall ordering of the values λn starts with

λ3 =λ5 >λ7 >λ9 >λ6 >λ11 >λ8 >λ10 >λ13 >λ4 >λ12

and continues as follows λ2n+1 >λ2n >λ2n+3,n ≥ 7.

From Lemma 7.1 we obtain immediately.

Corollary 5 Let M ⊆ IN\{0,1,2} be infinite. Then inf{λi : i ∈ M}= 1.
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7 Reducible Quasiperiods
Reducible quasiperiods q have a repeated prefix q0 = minv Pq with |q0| ≤
|q|/2 and a repetition factor k ≥ 2 such that q = qk

0 · q̄ where q̄ @ q0. Moreover
|q̄| < |q0| ≤ |q|/2. Observe that q0 is primitive.

We shall consider three cases depending on the relation between the
lengths n = |q|, ` = |q0|, the length of the suffix |q̄| < |q0| and the repetition
factor k ≥ 2.

7.1 The case |q̄|+ |q0| ≤ 2

The case |q̄| + |q0| ≤ 2 is the simplest one. Here, in view of q̄ @ q0 we have
necessarily q̄ = e and q ∈ a∗∪ {ab}∗, a,b ∈ X ,a 6= b and, therefore, λq = 1 for
q ∈ a∗∪ {ab}∗.

The remaining cases are divided according to the additional requirement
|q|−2|q0| ≥ 3 and its complementary one |q|−2|q0| ≤ 2.

7.2 The case |q|−2|q0| ≥ 3∧|q̄|+ |q0| ≥ 3

Under the additional requirements |q̄|+ |q0| ≥ 3 and |q̄| < |q0| this condition
is equivalent to the fact that |q̄| ≥ 3 or the repetition factor k ≥ 3. Moreover,
then |q| = 7 (where q = (ab)3a) or |q| ≥ 9.

From Eq. (4) we have

∗√Pq ⊆ {q0}∪ {v : v v q∧|v| > |q|− |q0|} (20)

This implies that for |q0| ≤ |q|/2 the polynomials pq(t) have non-zero coeffi-
cients only for |q| = n, |q|− |q0| = n−` and i < |q0|., that is, are of the form
pq(t)= tn− tn−`−∑

i∈Mq ti where Mq ⊆ {i : i < `}.4 Therefore, in the sequel we
consider the positive roots of polynomials in

Pred := {tn − tn−`− ∑
i∈M

ti : n ≥ 1∧`≤ n
2
∧M ⊆ {i : i < `}}

Let pn,`(t) := tn − tn−`−∑`−1
i=0 ti ∈ Pred and λn,` be its maximal root. Similar

to Property 6.1, Criterion 2 and Theorem 3 we have the following. Let n ≥
3,` ≤ n

2 and p(t) ∈ Pred. Then p(t) ≥ pn,`(t) for t ∈ [1,2], and pn,`(t) has the
largest positive root among all polynomials of degree n and parameter ` in
Pred.

4Eq. (4) shows that even Mq ⊆ {i : i < `−1}. For the Eq. (21) below this stronger version
is not needed.
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Lemma 11 If q, |q| = n, is a quasiperiod with |q0| = ` ≤ n/2 then pq(t) ≥
pn,`(t) for t ≥ 1, in particular, λq ≤λn,`.

We have the following relation between the polynomials pn(t) and pn,`(t).

pn(t)− t` · pn−2`(t)= pn,`(t), for n−2`≥ 3 (21)

This yields

Corollary 6 Let n−2 ·`≥ 3. If λn <λn−2` then λn,` <λn.

Proof. If λn < λn−2` then pn−2`(λn) < pn−2`(λn−2`) = 0. Thus pn,`(λn) =
λ`n · pn−2`(λn)> 0, that is, λn >λn,`. o

Next we show the relation λq < λ|q| for all quasiperiods q having |q0| ≤ |q|/2
and |q0|+ |q̄| ≥ 3.

Lemma 12 Let |q|−2|q0| ≥ 3 and |q0|+ |q̄| ≥ 3. Then λq <λ|q|.

Proof. Above we have shown that |q|−2|q0| ≥ 3 and |q0|+ |q̄| ≥ 3 imply
|q| ≥ 7 or |q| ≥ 10 according to whether |q| is odd or even.

The ordering of Theorem 4 and Corollary 6 show λn > λn,` for all odd
values n ≥ 7 and for all even values n ≥ 12.

It remains to consider the exceptional case when |q| = 10. Here |q| −
2|q0| ≥ 3 and |q0|+ |q̄| ≥ 3 imply |q0| = 3. Then Eq. (4) shows ∗√Pq = {q0, q}
whence pq(t)= t10 − t7 −1= p10(t)− t2 · p5(t).

From λ5 > λ10 and p10(λ10) = 0 we have pq(λ10) =−λ2
10 · p5(λ10) > 0, that

is, λq <λ10. o

Remark 2 In the exceptional case when n = 10 and ` = 3 we have indeed
λ10,3 >λ10. This follows from p10(t)− p10,3(t)= t3 · p4(t) and λ4 <λ10.

7.3 The case |q|−2|q0| ≤ 2∧|q0|+ |q̄| ≥ 3

This amounts to |q| = 2 · |q0|+ |q̄| where |q̄| ∈ {0,1,2}.
Here we have to go into more detail and to take into consideration also

the reduced quasiperiod q̂ = q0 · q̄ of q and its repeated prefix q̂0 = minv Pq̂.
Observe that both repeated prefixes q0, q̂0 are primitive.

Taking into consideration the repeated prefix q̂0, for q = qk
0 · q̄,k ≥ 2, we

have from Eqs. (5) and (6)

pq(t) ∈ {t|q|− t|q|−|q0|−∑
i∈M ti : M ⊆ {0, . . . , |q̂|− |q̂0|}} .
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Observe that |q̂|− |q̂0| = |q0|− (|q̂0|− |q̄|)< |q0|.
Let P ′

red := {tn − t`−∑
i∈M ti : n > ` > j∧ M ⊆ {0, . . . ,`− j}} and pn,`, j(t) =

tn − t`−∑`− j
i=0 ti. Then similar to Property 7.2 and Lemma 11 we have Let

n,` ≥ 3,` ≤ n
2 ,` > j, and p(t) ∈ P ′

red. Then p(t) ≥ pn,`, j(t) for t ∈ [1,2], and
pn,`, j(t) has the largest positive root among all polynomials of degree n and
parameters ` and j in P ′

red.

Lemma 13 If q, |q| = n, is a quasiperiod with |q0| = `≤ n/2 and |q̂0|− |q̄| ≥ j
then pq(t)≥ pn,`, j(t) for t ≥ 1, in particular, λq ≤λn,`, j.

We consider the cases |q̄| ∈ {0,1,2} separately.

7.3.1 The case q = q2
0 ∧|q̄| = 0

In view of Section 7.1 we may consider only the case when |q0| ≥ 3. Here we
have the following relation between p2`(t) and p2`,`,3(t).

p2`(t)− p2`,`,3(t)= t`−2(t2 − t−1) (22)

Lemma 14 If q = q2
0 and |q0| = `≥ 3 then λq <λ|q|.

Proof. First we suppose |q̂0| ≥ 3. Then |q̂0|− |q̄| ≥ 3 and Property 7.3 and
Lemma 13 yield pq(t) ≥ p2`,`,3(t) for t ∈ [1,2]. Now Eq. (22) shows pq(λ2`) ≥
p2`,`,3(λ2`) = −λ`−2

2` (λ2
2` −λ2` − 1). Since t2 − t− 1 < 0 and pq(t) ≥ p2`,`,3(t)

for 1 ≤ t ≤ λ3 = max{λn : n ∈ IN} and λ2` < λ3, it follows pq(λ2`) > 0, that is
λq <λ2`.

It remains to consider 1 ≤ |q̂0| ≤ 2. If q̂0 ∈ a∗ then q0 = a` which is not
primitive. Thus q̂0 = ab and, since q0 is primitive, q0 = (ab)ma, m ≥ 1, and
q = q2

0 = (ab)ma · (ab)ma. We obtain ∗√Pq = {(ab)ma · (ab)i : i = 0, . . . ,m} and,
consequently, pq(t) = t4m+2 −∑m

i=0 t2i+1. From pq(t) = t4m+2 −∑m
i=0 t2i+1 ≥

p4m+2(t)− t2m−2(t3 − t2 −1) and t3 − t2 −1 < 0 for 1 < t ≤ λ3, in the same way
as above, we obtain pq(λ4m+2)> 0. o

7.3.2 The case q = q2
0 · q̄∧|q̄| = 1

Here we have the following relation between p2`+1(t) and p2`+1,`,2(t).

p2`+1(t)− p2`+1,`,2(t)= t`−1(t2 − t−1) (23)
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Lemma 15 If q = q2
0 ·a,a ∈ X , then λq <λ|q|.

Proof. First we suppose |q̂0| − |q̄| ≥ 2. Then ` = |q0| ≥ |q̂0| ≥ 3, and
Property 7.3 and Eq. (23) yield pq(λ2`+1) ≥ p2`+1,`,2(λ2`+1) = p2`+1(λ2`+1)−
λ`−1

2`+1(λ2
2`+1 −λ2`+1 −1).

Since t2 − t−1 < 0 and pq(t) ≥ p2`+1,`,2(t) for 1 < t ≤ λ3 and λ2`+1 < λ3, it
follows pq(λ2`+1)> 0, that is λq <λ2`+1.

It remains to consider |q̂0| = 2. Then Lemma 2 implies q̂0 = q0 whence
q = ababa. Now, one easily verifies λababa <λ5 =λ3 o

7.3.3 The case q = q2
0 · q̄∧|q̄| = 2

Here we have the following relation between p2`+2(t) and p2`+2,`,2(t).

p2`+2(t)− p2`+2,`,2(t)= t`−1(t3 − t−1) (24)

Lemma 16 If q = q2
0 · q̄ with |q̄| = 2 then λq <λ|q|.

Proof. First we suppose |q̂0| ≥ 4. Then Property 7.3 and Eq. (24)
yield p2`+2(λ2`+2)−pq(λ2`+2)≤ p2`+2(λ2`+2)−p2`+2,`,2(λ2`+2)=λ`−1

2`+2(λ3
2`+2−

λ2`+2 −1).
Since t3− t−1< 0 and pq(t)≥ p2`+2,`,2(t) for 1< t ≤max{λ2n : n ∈ IN}<λ3

and λ2`+2 <λ3, it follows pq(λ2`+2)> 0, that is, λq <λ2`+2.
It remains to consider |q̂0| = 3. Again, Lemma 2 implies q̂0 = q0. Then

|q0| = 3 and |q| = 8, and Eq. (4) yields ∗√Pq ⊆ {q0,v, q} where v @ q and
|v| = |q|−1= 7 whence pq(t)≥ t8 − t5 − t−1= p8(t)− t2 · p3(t) for 1≤ t ≤λ3.

This shows pq(λ8)≥−λ2
8 · p3(λ8)> 0, that is, λq <λ8. o

Our main theorem then follows from Theorem 3 and the results of Section 7.

Theorem 5 If q ∈ X∗, |q| ≥ 3, is a quasiperiod then λq ≤ λ|q|, and λq = λ|q| if
and only if q ∈Qmax.
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