
CDMTCS
Research
Report
Series

On the incomputability of
computable dimension

Ludwig Staiger
Martin-Luther-Universität
Halle-Wittenberg

CDMTCS-535
May 2019
revised February 2020

Centre for Discrete Mathematics and
Theoretical Computer Science



On the incomputability of computable
dimension

Ludwig Staiger*

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
von-Seckendorff-Platz 1

D–06099 Halle (Saale), Germany

Abstract

Using an iterative tree construction we show that for simple com-
putable subsets of the Cantor space Hausdorff, constructive and com-
putable dimensions might be incomputable.

Contents
1 Notation 2

2 Gales and Martingales 3

3 Iterative Tree Construction 4
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Tree construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 The infinite tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Monotone families (qi)i∈N . . . . . . . . . . . . . . . . . . . . . . . 9

4 Incomputable dimensions 9
4.1 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Computable dimension . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Comparison of gales and martingales . . . . . . . . . . . . . . . . 12

5 Concluding remark 13

*email: staiger@informatik.uni-halle.de



2 Ludwig Staiger

Computable dimension along with constructive dimension was introduced
by Lutz [Lut03a, Lut03b] as a means for measuring the complexity of sets
of infinite strings (ω-words). Since then and prior to this constructive and
computable dimension were investigated in connection with Hausdorff di-
mension (for a detailed account see [DH10, Section 13]). The results of
[Hit05, Sta93, Sta07] show that the Hausdorff, constructive and comput-
able dimensions of automaton definable sets of infinite strings (regular ω-
languages) are computable. In contrast to this Ko [Ko98] derived examples
of computable ω-languages with an incomputable Hausdorff dimension.

In this paper we derive examples of computable ω-languages of a simple
structure which have not only incomputable Hausdorff dimension but also
incomputable computable dimension. To this end we use an iteration of fi-
nite trees which resembles the tree construction of Furstenberg [Fur70] (see
also [MSS18])

Lutz [Lut03a, Lut03b] defines computable and constructive dimension
via σ-(super)gales. Terwijn [Ter04, CST06] observed that this can also be
done using Schnorr’s concept of combining martingales with (exponential)
order functions [Sch71, Section 17]. For the computable ω-languages con-
structed in this paper we can show that Schnorr’s concept is in some details
more precise than Lutz’s approach.

1 Notation
In this section we introduce the notation used throughout the paper. By
N= {0,1,2, . . .} we denote the set of natural numbers, by Q the set of rational
numbers, and R are the real numbers.

Let X be an alphabet of cardinality |X | ≥ 2. By X∗ we denote the set of
finite words on X , including the empty word e, and Xω is the set of infinite
strings (ω-words) over X . Subsets of X∗ will be referred to as languages and
subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w·η be their concatenation. This concaten-
ation product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗∪Xω.
We denote by |w| the length of the word w ∈ X∗ and pref(B) is the set of all
finite prefixes of strings in B ⊆ X∗∪ Xω.

It is sometimes convenient to regard Xω as Cantor space, that is, as the
product space of the (discrete space) X . Here open sets in Xω are those of the
form W ·Xω with W ⊆ X∗. Closed are sets F ⊆ Xω which satisfy the condition
F = {ξ : pref(ξ)⊆pref(F)}.

For a computable domain D, such as N, Q or X∗, we refer to a function
f : D → R as left-computable (or approximable from below) provided the set
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{(d, q) : d ∈ D ∧ q ∈ Q∧ q < f (d)} is computably enumerable. Accordingly, a
function f : D → R is called right-computable (or approximable from above)
if the set {(d, q) : d ∈ D ∧ q ∈ Q∧ q > f (d)} is computably enumerable, and
f is computable if f is right- and left-computable. If we refer to a function
f : D →Q as computable we usually mean that it maps the domain D to the
domain Q, that is, it returns the exact value f (d) ∈Q. If D =N we write f as
a sequence (qi)i∈N.

A real number α ∈ R is left-computable, right computable or computable
provided the constant function cα(t)=α is left-computable, right-computable
or computable, respectively. α ∈R is referred to as computably approximable
if α = limi→∞ qi for a computable sequence (qi)i∈N of rationals. It is well-
known (see e.g. [ZW01]) that there are left-computable which are not right-
computable and vice versa, and that there are computably approximable
reals which are neither left-computable nor right-computable.

The following approximation property is easily verified.

Property 1.1 Let (qi)i∈N be a computable family of rationals converging to
α and let (q′

i)i∈N, q′
i > 0, be a computable family of rationals converging to

0. If α is not right-computable then there are infinitely many i ∈N such that
α− qi > q′

i. o

For, otherwise, α as the limit of (qi + q′
i)i∈N would be right-computable.

2 Gales and Martingales
Hausdorff [Hau18] introduced a notion of dimension of a subset Y of a met-
ric space which is now known as its Hausdorff dimension, dimY ; Falconer
[Fal03] provides an overview and introduction to this subject. In the case
of the Cantor space Xω, Lutz [Lut03b] (see also [DH10, Section 13.2]) has
found an equivalent definition of Hausdorff dimension via generalisations of
martingales.

Following Lutz a mapping d : X∗ → [0,∞) will be called an σ-supergale
provided

∀w(w ∈ X∗ →|X |σ ·d(w)≥ ∑
x∈X

d(wx)) . (1)

A σ-supergale d is called an σ-gale if, for all w ∈ X∗, Eq. (1) is satisfied with
equality. (Super)Martingales are 1-(super)gales.

From Eq. (1) one easily infers that if d,V : X∗ → [0,∞) satisfy

∀w(w ∈ X∗ → V (w)
|X |(1−σ)·|w| = d(w)) (2)
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then d is a σ-(super)gale if and only if V is a (super)martingale. Thus (su-
per)gales can be viewed as a combination of (super)martingales with expo-
nential order functions in the sense of Schnorr [Sch71, Section 17] (see also
[Ter04, CST06] or [DH10, Section 13.3]).

Following Lutz [Lut03b] we define as follows.

Definition 2.1 Let F ⊆ Xω. Then α is the Hausdorff dimension dimF of F
provided

1. for all σ>α there is a σ-supergale d such that
∀ξ(ξ ∈ F → limsup

w→ξ

d(w)=∞), and1

2. for all σ<α and all σ-supergales d it holds
∃ξ(ξ ∈ F ∧ limsup

w→ξ

d(w)<∞).

If the ω-language F ⊆ Xω is closed in Cantor space and satisfies a certain bal-
ance condition Theorem 4 of [Sta89] shows that the calculation of its Haus-
dorff dimension can be simplified. For the purposes of our investigations the
following special case will suffice.

Proposition 2.2 Let F ⊆ Xω be non-empty and satisfy the conditions

1. F = {ξ : pref(ξ)⊆pref(F)} and

2. |pref(F)∩w·X k| = |pref(F)∩v·X k| for all k ∈N and w,v ∈pref(F) with
|w| = |v|.

Then dimF = liminf
n→∞

log|X | |pref(F)∩ X n|
n

. o

3 Iterative Tree Construction

The aim of this section is, given a sequence of rationals (qi)i∈N,0 < qi <
1, to construct an ω-language F ⊆ Xω with Hausdorff dimension dimF =
liminfi→∞ qi satisfying the conditions 1 and 2 of Proposition 2.2.

1Here limsup
w→ξ

d(w) is an abbreviation for lim
n→∞sup{d(w) : w ∈pref(ξ)∧|w| ≥ n}.
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3.1 Preliminaries

As a preparation we show how to find sequences of natural numbers (ki)i∈N
and (`i)i∈N with appropriate properties such that qi = ki/`i.

Lemma 3.1 Let (qi)i∈N, 0< qi < 1, qi 6= qi+1, be a family of positive rationals.
Then there are families of natural numbers (ki)i∈N, (`i)i∈N, (κi)i∈N, (pi)i∈N
and (r i)i∈N, such that

qi = ki/`i and qi+1 = r i ·ki +κi ·`i

r i ·`i + pi ·`i
where κi =

{
0, if qi > qi+1 and
pi, if qi < qi+1.

Moreover, for 0≤ t ≤ pi ·`i we have

qi ≥ r i ·ki

r i ·`i + t
≥ qi+1, if qi > qi+1 and (3)

qi ≤ r i ·ki + t
r i ·`i + t

≤ qi+1, if qi < qi+1. (4)

Proof . Let qi = ki/`i and qi+1 = a/b ·qi = a ·ki

b ·`i
, with a,b ∈N\{0},a 6= b. Since

1> qi+1 we have b ·`i −a ·ki = a · qi
qi+1

· (1− qi+1) ·`i > 0.
Assume qi > qi+1. Then b > a and the equation

r i ·ki +κi ·`i

r i ·`i + pi ·`i
= a ·ki

b ·`i
(5)

has the solutions r i = a, and pi = (b−a)= a · ( qi
qi+1

−1) and κi = 0.

If qi < qi+1 then a > b and r i := b ·`i−a ·ki = a ·( qi
qi+1

·`i−ki)= a ·qi ·( 1
qi+1

−
1) ·`i and pi = κi := (a−b) ·ki = a · qi · (1− qi

qi+1
) ·`i are solutions of Eq. (5).

In view of κi = 0 Eq. (3) is obvious. Eq. (4) follows inductively from k+1
`+1 ≥

k
`

whenever 0≤ k < `. o

If the family (qi)i∈N is a computable one then the families in Lemma 3.1
can be chosen to be computable. In addition, the values `i and `i+1/`i can be
made arbitrarily large.

3.2 Tree construction

The ω-language F will be the limit of the following sequence of finite trees
Ti. These trees have a property similar to the one in Proposition 2.2.2 which
is referred to as spherical symmetry in [Fur70].
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We define the following auxiliary languages Ti ⊆ X`i and Ui ⊆ X pi ·`i .
Let T0 := X k0 ·0`0−k0 or T0 := 0`0−k0 · X k0 and set

Ti+1 := Tr i
i ·Ui with Ui :=

{
X pi ·`i , if qi+1 ≥ qi and
{ui}, otherwise (6)

where ui ∈ X pi is a fixed word. Then `i+1 = (r i + pi) ·`i. Thus Ti+1 consists
of a concatenation of r i copies of Ti plus an appendix Ui of length pi · `i.
The values r i and pi are referred to as repetition or prolongation factors,
respectively.

By induction one proves

|Ti| = |X |qi ·`i . (7)

Property 3.2 The trees Ti have the following properties. Let `≤ `i.

1. Prefix property: pref(Ti+1)=⋃r i−1
j=0 T j

i ·pref(Ti)∪Tr i
i ·pref(Ui),

2. Extension property: pref(Ti)∩ X` =pref(Ti+1)∩ X`, and

3. Spherical symmetry: pref(Ti)∩ X` = (
pref(Ti)∩ X`−1) · X or∣∣pref(Ti)∩ X`

∣∣= ∣∣pref(Ti)∩ X`−1
∣∣ . o

3.3 The infinite tree
We define our ω-language F having the properties mentioned in Proposi-
tion 2.2 as F :=⋂

i∈NTi · Xω where the family (Ti)i∈N satisfies Eq. (6).
Before we proceed to further properties of (Ti)i∈N and F we mention a

general property.

Lemma 3.3 Let Ti ⊆ X∗, Ti+1 ⊆ Ti · X · X∗, Ti ⊆ pref(Ti+1) and
F := ⋂

i∈N
Ti · Xω. Then pref(F)= ⋃

i∈N
pref(Ti).

If, moreover, all Ti are finite then F := {ξ : ξ ∈ Xω∧pref(ξ)⊆ ⋃
i∈N

pref(Ti)}.

Proof . In view of Ti+1 ⊆ Ti ·X ·X∗ we have Ti+1 ·Xω ⊆ Ti ·Xω and also |w| ≥ i
for w ∈ Ti.

If w ∈ pref(F) then w ∈ pref(ξ) where ξ ∈ F ⊆ Ti · Xω for i > |w|. Con-
sequently, w ∈pref(Ti).

Using the condition Ti ⊆pref(Ti+1), by induction we obtain that for every
w ∈pref(Ti) there is an infinite chain (w j) j≥i such that w j ∈ T j and w v wi @
wi+1 @ · · ·. Thus there is a ξ ∈ F with w@ ξ.
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If the languages Ti are finite the ω-language F =⋂
i∈NTi ·Xω is closed in

the product topology of the space Xω which implies F := {ξ : ξ ∈ Xω∧pref(ξ)⊆
pref(F)}. o

Lemma 3.3 shows that F := {ξ : ξ ∈ Xω∧pref(ξ) ⊆ ⋃
i∈Npref(Ti)} for the

family (Ti)i∈N defined in Section 3.2.
From the spherical symmetry of Ti (see Property 3.2.3) the ω-language

F =⋂
i∈NTi · Xω inherits the balance property of Proposition 2.2.2.

Lemma 3.4 Let F = ⋂
i∈N

Ti · Xω where the Ti are defined by Eq. (6). Then for

all k ∈N and w,v ∈pref(F) with |w| = |v| we have

|w · X k ∩pref(F)| = |v · X k ∩pref(F)| .

Proof . We proceed by induction on k. Let k = 1. Then for all w,v ∈ pref(F)
with |w| = |v| either pref(F)∩X |u|+1 = (pref(F)∩X |u|)·X or |pref(F)∩X |u|+1| =
|pref(F)∩ X |u|| (u ∈ {w,v}).

In the first case we have |w · X ∩pref(F)| = |X | = |v · X ∩pref(F)| and in
the second |w · X ∩pref(F)| = 1= |v · X ∩pref(F)|.

Let the assertion be proved for k and all pairs u,u′ ∈pref(F) of the same
length. Let w,v ∈ pref(F) with |w| = |v| and consider words w′,v′ ∈ X k such
that w·w′,v·v′ ∈pref(F). Then from the spherical symmetry we obtain either
pref(F)∩ X |u|+1 = (pref(F)∩ X |u|) · X or |pref(F)∩ X |u|+1| = |pref(F)∩ X |u||
for u ∈ {w ·w′,v ·v′} and we proceed as above.

Since, by our assumption |{w′ : |w′| = k ∧ w · w′ ∈ pref(F)}| = |{v′ : |v′| =
k∧v ·v′ ∈pref(F)}|, the assertion follows. o

As a consequence of Lemmas 3.3, 3.4 and Proposition 2.2 we obtain the
following.

Corollary 3.5 Let F = ⋂
i∈N

Ti · Xω where the Ti are defined by Eq. (6). Then

dimF = liminf
n→∞

log|X | |pref(F)∩X n|
n . o

Next we investigate in more detail the structure function sF : N → N

where sF (`) := |pref(F)∩ X`|. First, Lemma 3.3 implies

pref(F)∩ X` =pref(Ti)∩ X` whenever `≤ `i . (8)

From Eqs. (6) and (7) and the properties of the tree family (Ti)i∈N we obtain
for the intervals `i ≤ `≤ `i+1:
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Lemma 3.6 Let F = ⋂
i∈NTi · Xω where the Ti are defined by Eq. (6). Then

the structure function sF :N→N satisfies the following relations.

1. In the interval [ j ·`i, ( j+1) ·`i] where j < r i:

sF ( j ·`i + t)= sF (`i) j · sF (t) for 0≤ t ≤ `i, and

2. in the subinterval [ j ·`i + j′ ·`i−1, j ·`i + ( j′+1) ·`i−1] where j′ < r i−1:

sF ( j ·`i + j′ ·`i−1 + t)= sF (`i) j · sF (`i−1) j′ · sF (t) for 0≤ t < `i−1.

3. In the interval [r i ·`i,`i+1]:

sF (r i ·`i + t)=
{

sF (`i)r i , if |Ui| = 1 and
sF (`i)r i · |X |t, if Ui = X pi ·`i

for 0≤ t ≤ pi ·`i. o

This yields the following connection to the values qi. In order to con-
nect our considerations to the application of Proposition 2.2 we consider the
values of log|X | sF (n)

n instead of sF (n).
From Eqs. (8) and (7) we obtain

log|X | sF ( j ·`i)
j ·`i

= qi . (9)

Now we use the identities of Lemma 3.6 and Eqs. (3) and (4) to bound
log|X | sF (`)

`
in the range `i ≤ `≤ `i+1 = r i ·`i +ni ·`i.

For `i ≤ ` < r i ·`i we have ` = j ·`i + j′ ·`i−1 + t where 0 ≤ t < `i−1, and
Lemma 3.6.1 and 2 yield

log|X | sF (`)
`

≥ j ·`i

`
· qi + j′ ·`i−1

`
· qi−1

≥ j ·`i + j′ ·`i−1

`
·min{qi−1, qi} (10)

≥ (1− `i−1

`i
) ·min{qi−1, qi}

If r i ·`i ≤ ` ≤ `i+1, that is, for ` = r i ·`i + t where t ≤ `i+1 − r i ·`i, following
Eqs. (3) and (4), respectively, we have according to Lemma 3.6 (3)

qi ≥ log|X | sF (`)
`

= log|X | sF (r i ·`i)
r i ·`i + t

≥ qi+1 if qi > qi+1 (11)

qi ≤ log|X | sF (`)
`

= log|X | sF (r i ·`i)+ t
r i ·`i + t

≤ qi+1 if qi < qi+1 (12)
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The considerations in Eqs. (9), (10), (11) and (12) show the following.

Lemma 3.7 If the sequence (`i)i∈N is chosen in such a way that liminf
i→∞

`i−1
`i

= 0

then

liminf
`→∞

log|X | sF (`)
`

= liminf
i→∞

qi .

Proof . In view of Eq. (9) the limit cannot exceed liminf
i→∞

qi.

On the other hand, by Eqs. (10), (11) and (12), for `i ≤ `≤ `i+1, the inter-
mediate values satisfy log|X | sF (`)

`
≥ (1− `i−1

`i
) ·min{qi−1, qi, qi+1}. o

3.4 Monotone families (q i)i∈N
If the sequence (qi)i∈N is monotone we can simplify the above considerations
of Eq. (10).

Proposition 3.8 Let the sequence (qi)i∈N be monotone and limi→∞ qi =α.

1. If (qi)i∈N is decreasing and T0 = X k0 ·0`0−k0 then sF (`) ≥ |X |α·`, for all
` ∈N.

2. If (qi)i∈N is increasing and T0 = 0`0−k0 · X k0 then sF (`) ≤ |X |α·`, for all
` ∈N.

Proof . If (qi)i∈N is decreasing we start with T0 = X k0 · 0`0−k0 and have
sF (`) ≥ |X |q0·` ≥ |X |α·` for ` ≤ `0. Then we use Eqs. (8) and (6) and proceed
by induction.

sF ( j ·`i+t)= sF ( j ·`i)·sF (t)≥ |X |qi ·`i ·|X |α·t ≥ |X |α·` for j < r i. In the range
r i ·`i ≤ `≤ `i+1 we have according to Eq. (11) sF (`)≥ |X |qi+1·` ≥ |X |α·`.

If (qi)i∈N is increasing we start with T0 = 0`0−k0 · X k0 and have sF (`) ≥
|X |q0·` ≤ |X |α·` for ` ≤ `0. Again we use Eqs. (8) and (6) and proceed by
induction.

sF ( j ·`i+t)= sF ( j ·`i)·sF (t)≤ |X |qi ·`i ·|X |α·t ≤ |X |α·` for j < r i. In the range
r i ·`i ≤ `≤ `i+1 we have according to Eq. (12) sF (`)≤ |X |qi+1·` ≤ |X |α·`. o

4 Incomputable dimensions

4.1 Hausdorff dimension
In this section we provide the announced examples. First we have the fol-
lowing.



10 Ludwig Staiger

Lemma 4.1 If the sequence (qi)i∈N of rationals 0 < qi < 1, qi 6= qi+1, is com-
putable then one can construct an ω-language F ⊆ Xω according to the tree
construction such that pref(F) is a computable language.

Proof . Construct from (qi)i∈N the numerator and denominator sequences
(ki)i∈N and (`i)i∈N and the corresponding sequences for the repetition and
prolongation factors (r i)i∈N and (pi)i∈N. Then in view of Eq. (6) the assertion
is obvious. o

Our lemma shows that the ω-language F ⊆ Xω has a very simple com-
putable structure (compare with [Sta07, Section 4.2]).

Next we show that the Hausdorff dimension of a computable ω-language
F ⊆ Xω as in Lemma 4.1 may be incomputable.

Theorem 4.2 If the sequence (qi)i∈N of rationals 0< qi < 1, qi 6= qi+1, is com-
putable and α= liminfi→∞ qi then there is an ω-language F ⊆ Xω such that
pref(F) is a computable language and dimF =α.

Proof . Construct from (qi)i∈N the numerator and denominator sequences
(ki)i∈N and (`i)i∈N such that liminfi→∞ `i

`i+1
= 0. Then the assertion follows

from Lemmas 3.7, 4.1 and Corollary 3.5. o

Theorem 3.4 of [Ko98] proves a similar result where the achieved Haus-
dorff dimension α is a computably approximable number. In [ZW01] it is
shown that there are reals which are not computably approximable of the
form liminfi→∞ qi where (qi)i∈N is a computable sequence.

4.2 Computable dimension
If we require the supergales in Definition 2.1 to be computable mappings we
obtain the definition of computable dimension dimcomp F of [Hit05, Lut03b].
In view of Eq. (2) we may, as in Section 13.15 of [DH10], define the comput-
able dimension of an ω-language E ⊆ Xω via martingales.

Definition 4.3 Let F ⊆ Xω. Then α is the computable dimension of F provided

1. for all σ>α there is a computable martingale V such that
∀ξ(ξ ∈ F → limsup

w→ξ

V (w)
|X |(1−σ)·|w| =∞), and

2. for all σ<α and all computable martingales V it holds
∃ξ(ξ ∈ F ∧ limsup

w→ξ

V (w)
|X |(1−σ)·|w| <∞).

The inequality dimF ≤ dimcomp F is immediate.
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We associate with every non-empty ω-language E ⊆ Xω a martingale VE
in the following way.

Definition 4.4 VE(e) := 1

VE(wx) :=


|X |

|pref(E)∩w·X | ·VE(w), if x ∈ X and
wx ∈pref(E), and

0, otherwise.

If pref(E) is computable then sE and VE are computable mappings. In
view of the spherical symmetry, for F ⊆ Xω defined as in Section 3.3, we
obtain

VF (w)= |X ||w|/sF (|w|), if w ∈pref(F) . (13)

Theorem 4.5 If the sequence (qi)i∈N of rationals 0< qi < 1, qi 6= qi+1, is com-
putable and α= liminfi→∞ qi then there is an ω-language F ⊆ Xω such that
pref(F) is a computable language and dimF = dimcomp F =α.

Proof . We use the ω-language F defined in the proof of Theorem 4.2 and the
associated computable martingale VF .

Let σ>α= liminfi→∞ qi. Then (σ− qi)> (σ−α)/2> 0 for infinitely many
i ∈ N. Since sF (`i) = |X |qi ·`i (see Eq. (9)), we have VF (w)

|X |(1−σ)·|w| = |X |(σ−qi) ≥
|X |(σ−α)/2 for w ∈pref(F)∩X`i . This shows limsup

w→ξ

VF (w)
|X |(1−σ)·|w| =∞ for all ξ ∈ F,

that is, dimcomp F ≤α.
The other inequality follows from dimF ≤ dimcomp F and Theorem 4.2. o

In certain cases we can achieve even the borderline value

limsup
w→ξ

VF (w)
|X |(1−dimF)·|w| = limsup

n→∞
|X |dimF·n

sF (n)
=∞ for all ξ ∈ F . (14)

Theorem 4.6 Let (qi)i∈N,0 < qi < 1, qi 6= qi+1, be a computable sequence of
rationals with liminfi→∞ qi = α. If α is not right-computable then there is
an ω-language F ⊆ Xω such that pref(F) is a computable language, dimF =
dimcomp F =α and Eq. (14) is satisfied.

Proof . We construct F as in the proof of Theorem 4.2 requiring addition-
ally that `i ≥ i2. Then pref(F) is computable and dimF = dimcomp F =
α. In view of Property 1.1 there are infinitely many i ∈ N with α− 1

i > qi
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and, consequently, sF (`i) = |X |qi ·`i ≤ |X |α·`i−`i /i. This shows limsup
n→∞

|X |α·n
sF (n) ≥

limsup
i→∞

|X |`i /i =∞. o

4.3 Comparison of gales and martingales
In this final part we compare the precision with which (super)gales and mar-
tingales achieve the value of computable dimension of a subset E ⊆ Xω. In
Theorem 4.6 we have seen that there are ω-languages F ⊆ Xω such that
dimcomp F = α and limsupw→ξVF (w)/|X |(1−α)·|w| =∞ for all ξ ∈ F, that is, the
computable martingale VF “matches” exactly the value of the computable di-
mension of F. The following theorem shows that this is, in some cases, not
possible for supergales.

First, observe that, for σ′ ≥ σ, any σ-supergale d : X∗ → [0,∞) is also a
σ′-supergale. Thus computable σ-supergales exist for all σ ∈ [0,1].

We define the cut point χd of a supergale d as the smallest value σ for
which d can be an σ-supergale.

χd := inf
{
σ :∀w

(|X |σ ·d(w)≥∑
x∈X d(wx)

)}
. (15)

If d is a computable mapping then χd as sup{q : q ∈ Q∧∃w(|X |q · d(w) <∑
x∈X d(wx))} is a left-computable real number. For computable σ-gales d

the cut point χd coincides with σ and is necessarily a computable real.

Theorem 4.7 Let (qi)i∈N,0 < qi < 1, qi 6= qi+1, be a computable sequence of
rationals with liminfi→∞ qi = α. If α is neither left- nor right-computable
then there is an ω-language F ⊆ Xω such that pref(F) is a computable lan-
guage, α= dimF = dimcomp F, Eq. (14) is satisfied but there is no computable
α-supergale with limsupw→ξd(w)=∞ for all ξ ∈ F.

Proof . In view of the preceding Theorems 4.2 and 4.6 it suffices to show that
under the additional assumption that α is not left-computable no comput-
able α-supergale satisfies limsupw→ξd(w)=∞ for all ξ ∈ F.

Assume the contrary. Since α is not left-computable, the cut point χd of
the computable α-supergale d cannot coincide with α. Hence α> χd, and we
have some rational number q,α > q > χd. Consequently, d is a q-supergale
with limsupw→ξd(w)=∞ for all ξ ∈ F. This contradicts q <α= dimcomp F o

Since there are computably approximable reals which are neither right-
not left-computable Theorem 4.7 shows that in some cases Schnorr’s [Sch71]
combination of martingales with (exponential) order functions can be more
precise than Lutz’s approach via supergales.
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5 Concluding remark
As the constructive dimension of subsets of Xω is sandwiched between the
computable and the Hausdorff dimension ([Lut03a, Lut03b, Hit05]) the res-
ult of Theorem 4.5 holds likewise for constructive dimension, too.
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