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Abstract

Using an iterative tree construction we show that for simple com-
putable subsets of the Cantor space Hausdorff, constructive and com-
putable dimensions might be incomputable.
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2 Ludwig Staiger

Computable dimension along with constructive dimension was introduced
by Lutz [ , ] as a means for measuring the complexity of sets
of infinite strings (w-words). Since then and prior to this constructive and
computable dimension were investigated in connection with Hausdorff di-
mension (for a detailed account see [ , Section 13]). The results of
[ , , ] show that the Hausdorff, constructive and comput-
able dimensions of automaton definable sets of infinite strings (regular w-
languages) are computable. In contrast to this Ko [ ] derived examples
of computable w-languages with an incomputable Hausdorff dimension.

In this paper we derive examples of computable w-languages of a simple
structure which have not only incomputable Hausdorff dimension but also
incomputable computable dimension. To this end we use an iteration of fi-
nite trees which resembles the tree construction of Furstenberg [ 1 (see
also [ )]

Lutz [ , ] defines computable and constructive dimension
via o-(super)gales. Terwijn [ , ] observed that this can also be
done using Schnorr’s concept of combining martingales with (exponential)
order functions [ , Section 17]. For the computable w-languages con-
structed in this paper we can show that Schnorr’s concept is in some details
more precise than Lutz’s approach.

1 Notation

In this section we introduce the notation used throughout the paper. By
N =1{0,1,2,...} we denote the set of natural numbers, by Q the set of rational
numbers, and R are the real numbers.

Let X be an alphabet of cardinality | X| = 2. By X* we denote the set of
finite words on X, including the empty word e, and X is the set of infinite
strings (w-words) over X. Subsets of X* will be referred to as languages and
subsets of X as w-languages.

For w e X* and ne€ X*uX? let w-n be their concatenation. This concaten-
ation product extends in an obvious way to subsets W< X* and B< X*uX®.
We denote by |w| the length of the word w € X* and pref(B) is the set of all
finite prefixes of strings in B X* uX“.

It is sometimes convenient to regard X“ as Cantor space, that is, as the
product space of the (discrete space) X. Here open sets in X are those of the
form W-X“ with W < X*. Closed are sets F < X which satisfy the condition
F ={ :pref(¢) < pref(F)}.

For a computable domain 2, such as N, Q or X*, we refer to a function
f:92 — R as left-computable (or approximable from below) provided the set
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{d,q):dePD2NrqgeQAnq < f(d)} is computably enumerable. Accordingly, a
function f : 2 — R is called right-computable (or approximable from above)
if the set {(d,q) :d € 2Aq e QAq > f(d)} is computably enumerable, and
f is computable if f is right- and left-computable. If we refer to a function
f:9 — Q as computable we usually mean that it maps the domain & to the
domain Q, that is, it returns the exact value f(d) € Q. If 2 =N we write f as
a sequence (q;);eN-

A real number a € R is left-computable, right computable or computable
provided the constant function c,(¢) = a is left-computable, right-computable
or computable, respectively. a € R is referred to as computably approximable
if @ =lim; .o, q; for a computable sequence (q;);en of rationals. It is well-
known (see e.g. [ 1) that there are left-computable which are not right-
computable and vice versa, and that there are computably approximable
reals which are neither left-computable nor right-computable.

The following approximation property is easily verified.

Property 1.1 Let (q;);en be a computable family of rationals converging to
a and let (q})ien,q) > 0, be a computable family of rationals converging to
0. If a is not right-computable then there are infinitely many i € N such that
a-qi>q. a

For, otherwise, a as the limit of (q; + q’i)ieN would be right-computable.

2 Gales and Martingales

Hausdorff [ ] introduced a notion of dimension of a subset Y of a met-
ric space which is now known as its Hausdorff dimension, dimY ; Falconer
[ ] provides an overview and introduction to this subject. In the case
of the Cantor space X, Lutz [ ] (see also [ , Section 13.2]) has
found an equivalent definition of Hausdorff dimension via generalisations of
martingales.

Following Lutz a mapping d : X* — [0,00) will be called an o-supergale
provided

VwweX" — X -dw)= Z d(wx)). (1)
xeX

A o-supergale d is called an o-gale if, for all w € X*, Eq. (1) is satisfied with
equality. (Super)Martingales are 1-(super)gales.

From Eq. (1) one easily infers that if d,7 : X* — [0,00) satisfy

V(w)

Vw(w eX* - W = d(U))) (2)
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then d is a o-(super)gale if and only if 7 is a (super)martingale. Thus (su-
per)gales can be viewed as a combination of (super)martingales with expo-

nential order functions in the sense of Schnorr [ , Section 17] (see also
[ , Jor[ , Section 13.3]).
Following Lutz [ ] we define as follows.

Definition 2.1 Let F € X“. Then a is the Hausdorff dimension dimF' of F
provided

1. for all 0 > a there is a o-supergale d such that
Vé(E € F — limsupd(w) = 00), and’

w—¢§

2. for all 0 < a and all o-supergales d it holds
(€ € F Alimsupd(w) < 00).

w—¢

If the w-language F < X“ is closed in Cantor space and satisfies a certain bal-
ance condition Theorem 4 of [ ] shows that the calculation of its Haus-
dorff dimension can be simplified. For the purposes of our investigations the
following special case will suffice.

Proposition 2.2 Let F < X” be non-empty and satisfy the conditions
1. F ={¢:pref(¢) < pref(F)} and

2. |pref(F)nw-X*| = |pref(F)nv-X*| for all k € N and w,v € pref(F) with
lw| = |vl.

1 ref(F)nX"
Then dimF = liminf 29X PrefE 0 X

n—oo n

3 Iterative Tree Construction

The aim of this section is, given a sequence of rationals (q;);en,0 < g; <
1, to construct an w-language F < X“ with Hausdorff dimension dimF =
liminf; . g; satisfying the conditions 1 and 2 of Proposition 2.2.

1Here limsupd(w) is an abbreviation for nhrgo sup{d(w) :w € pref(&) A lw| = n}.
w—¢& -
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3.1 Preliminaries

As a preparation we show how to find sequences of natural numbers (%;);en
and (¢;);en With appropriate properties such that q; = k;/¢;.

Lemma 3.1 Let (q;)ien, 0<qi <1, q; # qi+1, be a family of positive rationals.
Then there are families of natural numbers (k;)ien, (€i)ien, (Ki)ien, (Di)ien
and (r;);en, such that

ri: ki +K; - l;

=k;/l; and q; :—lwherenz{
qi i€ qgi+1 ri'€i+pi'€i i

0, ifgqi>qi+1and
Di, ifqi<qi+1.

Moreover, for 0<t < p;-¥; we have

ri-k; .
= ————— =Qqi+1, i q; >qi+1 and 3
qi ril+t qgi+1 f‘h qi+1 3)
ri-ki+t .
qi= rzf—:+t <qi+1, if i <qi+1. (4)

e
Proof. Let q; =k;i/¢; and q;.1 =al/b-q; = %, with a,b € N\ {0},a # b. Since
£2
1>qg;;1wehaveb-¢;—a-k;=a- q(ﬁ1 (1-qjt1)-4;>0.
Assume q; > qg;+1. Then b > a and the equation

ri'ki‘i‘Ki'[i a-ki

= 5
ri-li+pi-li b-¢ ©)

has the solutions r; =a, and p; =(b—a) = a-(% —1) and x; =0.
qi
) qi+1
1)-¢;and p; =x;:=(a—-b)-ki=a-q;-(1- q‘ﬁl)fi are solutions of Eq. (5).
In view of x; = 0 Eq. (3) is obvious. Eq. (4) follows inductively from %

=
% whenever 0 <k < /. (|

Ifgi<qirithena>bandr;:=b-¢;—a-k;=a-(

'gi_ki):a'Qi'(Flﬂ_

If the family (g;);en is a computable one then the families in Lemma 3.1
can be chosen to be computable. In addition, the values ¢; and ¢;.1/¢; can be
made arbitrarily large.

3.2 Tree construction

The w-language F will be the limit of the following sequence of finite trees
T;. These trees have a property similar to the one in Proposition 2.2.2 which
is referred to as spherical symmetry in [ 1.
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We define the following auxiliary languages T; € X’i and U; < XPii,
Let T := X%0.0% k0 or T\, := 0f0~*0. X*0 and set

XxPiti, ifg;412q; and

Tiv1:=T;"-U; with U; := { {w;) otherwise
28]

(6)
where u; € XPi is a fixed word. Then ¢;.1 =(r; + p;)-¢;. Thus T;,1 consists
of a concatenation of r; copies of T; plus an appendix U; of length p; - ¢;.
The values r; and p; are referred to as repetition or prolongation factors,
respectively.

By induction one proves

IT;| =1X9% (7

Property 3.2 The trees T; have the following properties. Let ¢ < ¢;.
1. Prefix property: pref(T;.1) = U;i:‘ol T/ -pref(T;) UT} - pref(U;),
2. Extension property: pref(T;)n X! = pref(T;.1)nX¢, and

3. Spherical symmetry: pref(T;)n X" = (pref(T;)nX‘"1)-X or
|pref(T;))n X*| = |pref(T)nX*71|. 0

3.3 The infinite tree

We define our w-language F having the properties mentioned in Proposi-
tion 2.2 as F :=(;jen T - X where the family (T';);cn satisfies Eq. (6).

Before we proceed to further properties of (T;);en and F we mention a
general property.

Lemma3.3 Let T; < X*, Ti;y1 < T;-X-X*, T; < pref(T;;1) and
F:= NT;-X“ Then pref(F)= U pref(T);).
ieN ieN
If, moreover, all T; are finite then F :={{:¢{ € X“ Anpref(é) € U pref(T))).
teN

Proof. Inviewof T;,1€T;-X-X* wehave T;,1- X? < T;-X“ and also |w| =i
forweT;.

If w € pref(F) then w € pref({) where (e F < T;-X® for i > |w|. Con-
sequently, w € pref(T};).

Using the condition T; € pref(T’;.1), by induction we obtain that for every
w € pref(T;) there is an infinite chain (w;);>; such that w; € T; and w S w; C
w;+1 C ---. Thus thereisa { € F with w C ¢.
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If the languages T'; are finite the w-language F =(;en T - X is closed in
the product topology of the space X* which implies F' :={{: { € X“ Apref({)
pref(F)}. Qa

Lemma 3.3 shows that F :={¢ : { € X“ A pref(&) € U;enpref(T;)} for the
family (T';);cn defined in Section 3.2.

From the spherical symmetry of T'; (see Property 3.2.3) the w-language
F =NjenT; - X? inherits the balance property of Proposition 2.2.2.

Lemma 3.4 Let F = ( T;-X® where the T; are defined by Eq. (6). Then for
1eN
all k e N and w,v € pref(F) with lw| = |v| we have

lw-X* N pref(F)| = |v-X* npref(F)|.

Proof . We proceed by induction on k. Let 2 = 1. Then for all w,v € pref(F)
with |w| = |v]| either pref(F)nX“*! = (pref(F)nX'“!).X or |pref(F)nX“+1| =
lpref(F)n X"™| (u € {w,v)).

In the first case we have |w - X npref(¥)| = |X| = |v- X npref(F)| and in
the second |w - X Nnpref(F)|=1=|v-X npref(F)|.

Let the assertion be proved for 2 and all pairs u,u’ € pref(F') of the same
length. Let w,v € pref(F) with |w| = |v| and consider words w’,v' € X k such
that w-w’,v-v’ € pref(F). Then from the spherical symmetry we obtain either
pref(F)n X"“*1 = (pref(F)n X"). X or |pref(F)n X"“/*1| = |pref(F)n X “||
for u € {w-w',v-v'} and we proceed as above.

Since, by our assumption {w': |w'|=kAw- -w' € pref(F)}| = |{v': V| =
k Av-U' € pref(F)}|, the assertion follows. |

As a consequence of Lemmas 3.3, 3.4 and Proposition 2.2 we obtain the
following.

Corollary 3.5 Let F = ( T; - X“ where the T; are defined by Eq. (6). Then

1eN
. .. lo, |[pref(F)NnX"|
dimF = liminf—2XP ) (|

n—oo n

Next we investigate in more detail the structure function sp : N — N
where sp(¢) := |pref(F)n X’|. First, Lemma 3.3 implies

pref(F)n X! = pref(T;) nX¢ whenever ¢ < l;. 8)

From Eqs. (6) and (7) and the properties of the tree family (T';);cny We obtain
for the intervals ¢; < ¢ < ¢;.1:
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Lemma 3.6 Let F =(jenT; - XY where the T; are defined by Eq. (6). Then
the structure function sg :N — N satisfies the following relations.

1. In the interval [j-¢;,(j+1)-¢;1 where j<r;:
sp(G-l;+t)=sp(l;Y -sp(t) for 0<t</¢; and

2. in the subinterval [j-0;+j -€;_1,j-€; +(j'+1)-0;_11where j' <r;_i:
SpG i+ ) - Oi1+t)=sp(l;) -sp(li_1) -sp(t) for 0<t< €;_1.

3. In the interval [r;-¢;,0;+1]:
sp(€;), if |U;l=1and

O<t=p;-¢,. 4
sy XY, if Up=xectn [TOSEEPCG

SF(ri-£i+t)={

This yields the following connection to the values g;. In order to con-
nect our considerations to the application of Proposition 2.2 we consider the

log x| sF(n)

values of instead of sp(n).

From Egs. (8) and (7) we obtain

log|xsr(j- ;)
— =g, &)
R4

Now we use the identities of Lemma 3.6 and Eqgs. (3) and (4) to bound
w intherange ¢;<¢<¥;,1=r;-l;+n;-¥;.
For ¢;<¢<r;-¢; wehave ¢ =j-0;+j -0; 1+t where 0 <t < /¢;_1, and

Lemma 3.6.1 and 2 yield

logixsr(0) _ j-t; .+.]'"€i—1 _
—[ = 7 qi / qgi-1
"€i+‘,'£i— .
> J+-mm{qi_1,qi} (10)
li1, .
> (1- )-min{q;-1,q;}

l;

Ifr;-¢;<¢</¢;,1,thatis, for £ =r;-¢; +t where t < ¥¢;.1—r;-¥¢;, following
Eqgs. (3) and (4), respectively, we have according to Lemma 3.6 (3)

log x| sF() log|x|sp(ri-{;) -
P = I |g = lr.|.£.+1t -z qi+11ifq;i > qi+1 (11)
l l
log x| sr(£) log|x|sp(ri-¢;)+t :
< X1 = X] s < qi+1ifq;<q;+1 (12)

% = R - ril;+t
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The considerations in Eqs. (9), (10), (11) and (12) show the following.

Lemma 3.7 Ifthe sequence (¢;);ecn is chosen in such a way that liminf % =0
1—00 4
then

log xsr(¢)
liminfngl—F =liminfg;.
{—o00 l i —00

Proof. In view of Eq. (9) the limit cannot exceed liminfg;.
1—00

On the other hand, by Eqs. (10), (11) and (12), for ¢; < ¢ < ¢;,1, the inter-

mediate values satisfy M =(1- @—‘il)-min{Qi—l,Qi,Qiﬂ}- U

3.4 Monotone families (q;);en

If the sequence (q;);cn 1S monotone we can simplify the above considerations
of Eq. (10).

Proposition 3.8 Let the sequence (q;);en be monotone and lim; . q; = a.

1. If (g;)ieN is decreasing and Ty = Xko.0fo=ko then sp(f) = | X%, for all
/eN.

2. If (q;)ien 18 increasing and Ty = 0f0=ko. X*k0 then sp(0) < | X%, for all
/eN.

Proof . 1If (q;)ien is decreasing we start with T = X*ko. 0t~k gnd have
sp(0) = 1X19¢ > | X% for ¢ < ¢o. Then we use Eqs. (8) and (6) and proceed
by induction.

sr(G-li+t)=sp(j-0;)-spt) = |X |20 | X%t = |X|* for j < r;. In the range
ri-0; <0< ?¢;.1 we have according to Eq. (11) sp(¢) = | X |9i+1¢ = | X|*?.

If (qi)ien is increasing we start with Ty = 0%0—k0. x*0 gand have sp(¢) =
1X190¢ < | X% for ¢ < ¢y. Again we use Eqgs. (8) and (6) and proceed by
induction.

sp(G-l;+8)=sp(j-0;)-sp(t) < X9 1X|%t < |X|%? for j < r;. In the range
ri-0; <0< ?¢;.1 we have according to Eq. (12) sp(¢) < |X|9i+1¢ < | X |*?. |

4 Incomputable dimensions

4.1 Hausdorff dimension

In this section we provide the announced examples. First we have the fol-
lowing.
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Lemma 4.1 If the sequence (q;);en of rationals 0< q; <1,q; # qi+1, 1S com-
putable then one can construct an w-language F < X according to the tree
construction such that pref(F) is a computable language.

Proof . Construct from (q;);eny the numerator and denominator sequences
(k;)ien and (¢;);en and the corresponding sequences for the repetition and
prolongation factors (r;);en and (p;)ien. Then in view of Eq. (6) the assertion
is obvious. |

Our lemma shows that the w-language F' € X“ has a very simple com-
putable structure (compare with [ , Section 4.2]).

Next we show that the Hausdorff dimension of a computable w-language
F c X® as in Lemma 4.1 may be incomputable.

Theorem 4.2 Ifthe sequence (q;);en of rationals 0< q; <1,q; # qiv1, 1S com-
putable and a =liminf;_ o, q; then there is an w-language F < X such that
pref(F) is a computable language and dimF = a.

Proof . Construct from (q;);en the numerator and denominator sequences
(ki)ien and (¢;);en such that liminf; ., [ == = 0. Then the assertion follows

from Lemmas 3.7, 4.1 and Corollary 3.5. Q
Theorem 3.4 of [ ] proves a similar result where the achieved Haus-
dorff dimension a is a computably approximable number. In [ ]it is

shown that there are reals which are not computably approximable of the
form liminf; ., g; where (q;);en is @ computable sequence.

4.2 Computable dimension

If we require the supergales in Definition 2.1 to be computable mappings we
obtain the definition of computable dimension dim¢ompF" of [ , 1.
In view of Eq. (2) we may, as in Section 13.15 of [ 1, define the comput-
able dimension of an w-language E < X“ via martingales.

Definition 4.3 Let F < X®“. Then a is the computable dimension of F provided

1. for all 0 > a there is a computable martingale 7 such that

Ve eF — lims?p l)(lz/l(fwz,glwl =00), and
w—¢

2. for all 0 < a and all computable martingales 7 it holds

(¢ e F Alim sup; T < 00).

The inequality dim F' < dim¢omp F' is immediate.
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We associate with every non-empty w-language E < X“ a martingale 7z
in the following way.

Definition 4.4 Yge) = 1
X1 .
m'VE(W), ifx € X and
Te(wx) = wx € pref(E), and
0, otherwise.

If pref(E) is computable then sz and 7z are computable mappings. In
view of the spherical symmetry, for F € X“ defined as in Section 3.3, we
obtain

Vi(w) = 1X|™/sp(w)), if w € pref(F). (13)

Theorem 4.5 Ifthe sequence (q;)icn of rationals 0< q; <1,q; # qi+1, s com-
putable and a =liminf;_. ., q; then there is an w-language F < X“ such that
pref(F) is a computable language and dimF = dim¢omp F' = a.

Proof. We use the w-language F defined in the proof of Theorem 4.2 and the
associated computable martingale 7.

Let 0 > a =liminf; .., q;. Then (¢ — q;) > (0 — @)/2 > 0 for infinitely many
i € N. Since sp(¢;) = | X2 (see Eq. (9)), we have Irw) 1X|(0-9) >

|X|(170)~|w\
1X9=2 for w e pref(F)n X" . This shows limsup IXT?T% =ocoforall{eF,
w—¢

that is, dimcomp F' < a.
The other inequality follows from dim F' < dim¢omp ' and Theorem 4.2.

In certain cases we can achieve even the borderline value

. Vr(w) . | X |dimF
III:UIE?p m(l_dT)lwl = ll}'lILSol.g.p W = oo for all 6 eF. (14)

Theorem 4.6 Let (¢;)ien,0<q; <1,q9; # qi+1, be a computable sequence of
rationals with liminf; ., q; = a. If a is not right-computable then there is
an w-language F < X® such that pref(F') is a computable language, dimF =
dimeomp F' = a and Eq. (14) is satisfied.

Proof . We construct F' as in the proof of Theorem 4.2 requiring addition-
ally that ¢; = ;. Then pref(F) is computable and dimF = dimeomp F' =
a. In view of Property 1.1 there are infinitely many i € N with a — % > q;
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and, consequently, sp(¢;) = |X 9% < | X|*¢i~ti/t This shows limsup 'j}il(:; >
n—oo
limsupIXIZi/L = 0. |
1—00

4.3 Comparison of gales and martingales

In this final part we compare the precision with which (super)gales and mar-
tingales achieve the value of computable dimension of a subset E <€ X“. In
Theorem 4.6 we have seen that there are w-languages F < X® such that
dimeomp F' = @ and limsup,, _; Vp(w)/|X|1~9%! = oo for all ¢ € F, that is, the
computable martingale 77 “matches” exactly the value of the computable di-
mension of F. The following theorem shows that this is, in some cases, not
possible for supergales.

First, observe that, for 0’ = o, any o-supergale d : X* — [0,00) is also a
o’-supergale. Thus computable o-supergales exist for all ¢ € [0, 1].

We define the cut point yg4 of a supergale d as the smallest value o for
which d can be an o-supergale.

Xd ::inf{azVw(|X|0~d(w)zzxeXd(wx))}. (15)

If d is a computable mapping then y4 as supiq : ¢ € Q A Jw(|X|?-d(w) <
Y rex d(wx))} is a left-computable real number. For computable o-gales d
the cut point y4 coincides with o and is necessarily a computable real.

Theorem 4.7 Let (q;)ien,0<qi <1,q9; # qi+1, be a computable sequence of
rationals with liminf;_...q; = a. If a is neither left- nor right-computable
then there is an w-language F < X® such that pref(F) is a computable lan-
guage, a = dimF = dimeomp F, Eq. (14) is satisfied but there is no computable
a-supergale with limsup,,_.;d(w) = oo for all { € F.

Proof. In view of the preceding Theorems 4.2 and 4.6 it suffices to show that
under the additional assumption that a is not left-computable no comput-
able a-supergale satisfies limsup,,_;d(w)=oo for all { € F.

Assume the contrary. Since «a is not left-computable, the cut point y; of
the computable a-supergale d cannot coincide with a. Hence a > y4, and we
have some rational number q,a > q > y4. Consequently, d is a g-supergale
with limsup,,_.;d(w) = oo for all ¢ € F. This contradicts ¢ < a = dimcomp '

Since there are computably approximable reals which are neither right-
not left-computable Theorem 4.7 shows that in some cases Schnorr’s [ ]
combination of martingales with (exponential) order functions can be more
precise than Lutz’s approach via supergales.
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5 Concluding remark

As the constructive dimension of subsets of X is sandwiched between the
computable and the Hausdorff dimension ([ , , D) the res-
ult of Theorem 4.5 holds likewise for constructive dimension, too.
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