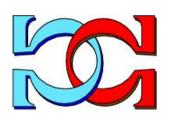
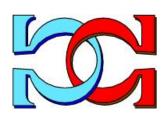


# CDMTCS Research Report Series

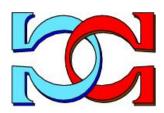




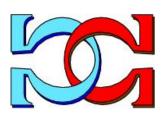
## On the incomputability of computable dimension



**Ludwig Staiger** Martin-Luther-Universität Halle-Wittenberg



CDMTCS-535 May 2019



Centre for Discrete Mathematics and Theoretical Computer Science

### On the incomputability of computable dimension

#### Ludwig Staiger\*

Martin-Luther-Universität Halle-Wittenberg Institut für Informatik von-Seckendorff-Platz 1 D-06099 Halle (Saale), Germany

#### **Abstract**

Using an iterative tree construction we show that for simple computable subsets of the Cantor space Hausdorff, constructive and computable dimensions might be incomputable.

#### **Contents**

| 1        | Not                         | ation                                        | 2  |
|----------|-----------------------------|----------------------------------------------|----|
| 2        | Iterative Tree Construction |                                              |    |
|          | 2.1                         | Preliminaries                                | 3  |
|          | 2.2                         | Tree construction                            | 4  |
|          | 2.3                         | The infinite tree                            | 5  |
|          | 2.4                         | Monotone families $(q_i)_{i \in \mathbb{N}}$ | 7  |
| 3        | Gal                         | es and Martingales                           | 7  |
| 4        | Incomputable dimensions     |                                              |    |
|          | 4.1                         | Hausdorff dimension                          | 9  |
|          | 4.2                         | Martingales                                  | 10 |
|          | 4.3                         | Comparison of gales and martingales          | 11 |
| <b>5</b> | Cor                         | ncluding remark                              | 12 |

<sup>\*</sup>email: staiger@informatik.uni-halle.de

Computable dimension along with constructive dimension was introduced by Lutz [Lut03] as a means for measuring the complexity of sets of infinite strings ( $\omega$ -words). Since then and prior to this constructive and computable dimension were investigated in connection with Kolmogorov complexity and Hausdorff dimension. The results of [Hit05, Sta93, Sta98] show that the Hausdorff, constructive and the computable dimensions of automaton definable sets of infinite strings (regular  $\omega$ -languages) is computable. In contrast to this Ko [Ko98] derived examples of computable  $\omega$ -languages which have incomputable Hausdorff dimension.

In this paper we derive simple examples of computable  $\omega$ -languages which have not only incomputable Hausdorff dimension but also incomputable computable dimension. To this end we use in iteration of finite trees which resembles the tree construction of Furstenberg [Fur70] (see also [MSS18])

As a byproduct we obtain simple examples of computable  $\omega$ -languages having incomputable Hausdorff dimension.

Lutz [Lut03] defines computable and constructive dimension via (super-) gales. Terwijn [Ter04, CST06] observed that this can also be done using Schnorr's concept of martingales and (exponential) order functions [Sch71, Section 17]. For the computable  $\omega$ -languages derived in this paper we can show that the latter concept is in some details more precise than Lutz's approach.

#### 1 Notation

In this section we introduce the notation used throughout the paper. By  $\mathbb{N} = \{0, 1, 2, \ldots\}$  we denote the set of natural numbers, by  $\mathbb{Q}$  the set of rational numbers, and  $\mathbb{R}$  are the real numbers.

Let X be an alphabet of cardinality  $|X| \ge 2$ . By  $X^*$  we denote the set of finite words on X, including the *empty word e*, and  $X^{\omega}$  is the set of infinite strings ( $\omega$ -words) over X. Subsets of  $X^*$  will be referred to as *languages* and subsets of  $X^{\omega}$  as  $\omega$ -languages.

For  $w \in X^*$  and  $\eta \in X^* \cup X^\omega$  let  $w \cdot \eta$  be their *concatenation*. This concatenation product extends in an obvious way to subsets  $W \subseteq X^*$  and  $B \subseteq X^* \cup X^\omega$ . We denote by |w| the *length* of the word  $w \in X^*$  and **pref**(B) is the set of all finite prefixes of strings in  $B \subseteq X^* \cup X^\omega$ .

It is sometimes convenient to regard  $X^{\omega}$  as Cantor space, that is, as the product space of the (discrete space) X. Here *open* sets in  $X^{\omega}$  are those of the form  $W \cdot X^{\omega}$  with  $W \subseteq X^*$ . Closed are sets  $F \subseteq X^{\omega}$  which satisfy the condition  $F = \{\xi : \mathbf{pref}(\xi) \subseteq \mathbf{pref}(F)\}$ .

For a computable domain  $\mathcal{D}$ , such as  $\mathbb{N}$ ,  $\mathbb{Q}$  or  $X^*$ , we refer to a function

 $f: \mathscr{D} \to \mathbb{R}$  as left-computable (or approximable from below) provided the set  $\{(d,q): d \in \mathscr{D} \land q \in \mathbb{Q} \land q < f(d)\}$  is computably enumerable. Accordingly, a function  $f: \mathscr{D} \to \mathbb{R}$  is called right-computable (or approximable from above) if the set  $\{(d,q): d \in \mathscr{D} \land q \in \mathbb{Q} \land q > f(d)\}$  is computably enumerable, and f is computable if f is right- and left-computable. If we refer to a function  $f: \mathscr{D} \to \mathbb{Q}$  as computable we usually mean that it maps the domain  $\mathscr{D}$  to the domain  $\mathbb{Q}$ , that is, it returns the exact value  $f(d) \in \mathbb{Q}$ . If  $\mathscr{D} = \mathbb{N}$  we write f as a sequence  $(q_i)_{i \in \mathbb{N}}$ .

A real number  $\alpha \in \mathbb{R}$  is left-computable, right computable or computable provided the constant function  $c_{\alpha}(t) = \alpha$  is left-computable, right-computable or computable, respectively.  $\alpha \in \mathbb{R}$  is referred to as *computably approximable* if  $\alpha = \lim_{i \to \infty} q_i$  for a computable sequence  $(q_i)_{i \in \mathbb{N}}$  of rationals. It is well-known (see e.g. [ZW01]) that there are left-computable which are not right-computable and vice versa, and that there are computably approximable reals which are neither left-computable nor right-computable.

The following approximation property is easily verified.

**Property 1** Let  $(q_i)_{i\in\mathbb{N}}$  be a computable family of rationals converging to  $\alpha$  and let  $(q_i')_{i\in\mathbb{N}}, q_i' > 0$ , be a computable family of rationals converging to 0. If  $\alpha$  is not right-computable then there are infinitely many  $i \in \mathbb{N}$  such that  $\alpha - q_i > q_i'$ .

For, otherwise,  $\alpha$  as the limit of  $(q_i + q_i')_{i \in \mathbb{N}}$  would be right-computable.

#### 2 Iterative Tree Construction

#### 2.1 Preliminaries

The aim of this section is to present how one can, given a sequence of rationals  $(q_i)_{i\in\mathbb{N}}$ , find sequences of natural numbers  $(k_i)_{i\in\mathbb{N}}$  and  $(\ell_i)_{i\in\mathbb{N}}$  with appropriate properties such that  $q_i = k_i/\ell_i$ .

**Lemma 2** Let  $(q_i)_{i\in\mathbb{N}}$ ,  $0 < q_i < 1$ ,  $q_i \neq q_{i+1}$ , be a family of positive rationals. Then there are families of natural numbers  $(k_i)_{i\in\mathbb{N}}$ ,  $(\ell_i)_{i\in\mathbb{N}}$ ,  $(\kappa_i)_{i\in\mathbb{N}}$ ,  $(p_i)_{i\in\mathbb{N}}$  and  $(r_i)_{i\in\mathbb{N}}$ , such that  $q_i = k_i/\ell_i$ ,  $q_{i+1} = \frac{r_i \cdot k_i + \kappa_i \cdot \ell_i}{r_i \cdot \ell_i + p_i \cdot \ell_i}$  where  $\kappa_i = k_i/\ell_i$ 

$$\begin{cases} 0, & \text{if } q_i > q_{i+1} \text{ and} \\ p_i, & \text{if } q_i < q_{i+1}. \end{cases}$$

*Moreover, for*  $0 \le t \le p_i \cdot \ell_i$  *we have* 

$$q_i \ge \frac{r_i \cdot k_i}{r_i \cdot \ell_i + t} \ge q_{i+1}, if q_i > q_{i+1} and$$
 (1)

$$q_i \le \frac{r_i \cdot k_i + t}{r_i \cdot \ell_i + t} \le q_{i+1}, if q_i < q_{i+1}.$$
 (2)

 $\textit{Proof.} \ \ \text{Let} \ q_i = k_i/\ell_i \ \text{and} \ q_{i+1} = a/b \cdot q_i = \frac{a \cdot k_i}{b \cdot \ell_i}, \ \text{with} \ a,b \in \mathbb{N} \setminus \{0\}, a \neq b. \ \text{Since}$  $1 > q_{i+1}$  we have  $b \cdot \ell_i - a \cdot k_i = a \cdot \frac{q_i}{q_{i+1}} \cdot (1 - q_{i+1}) \cdot \ell_i > 0$ . Assume  $q_i > q_{i+1}$ . Then b > a and the equation

$$\frac{r_i \cdot k_i + \kappa_i \cdot \ell_i}{r_i \cdot \ell_i + p_i \cdot \ell_i} = \frac{a \cdot k_i}{b \cdot \ell_i}$$
(3)

has the solutions  $r_i = a$ , and  $p_i = (b-a) = a \cdot (\frac{q_i}{q_{i+1}} - 1)$  and  $\kappa_i = 0$ . If  $q_i < q_{i+1}$  then a > b and  $r_i := b \cdot \ell_i - a \cdot k_i = a \cdot (\frac{q_i}{q_{i+1}} \cdot \ell_i - k_i) = a \cdot q_i \cdot (\frac{1}{q_{i+1}} - 1)$ 1)  $\cdot \ell_i$  and  $p_i = \kappa_i := (a - b) \cdot k_i = a \cdot q_i \cdot (1 - \frac{q_i}{q_{i+1}}) \cdot \ell_i$  are solutions of Eq. (3).

In view of  $\kappa_i = 0$  Eq. (1) is obvious. Eq. (2) follows inductively from  $\frac{k+1}{\ell+1} \ge$  $\frac{k}{\ell}$  whenever  $0 \le k < \ell$ .

If the family  $(q_i)_{i\in\mathbb{N}}$  is a computable one then the families in Lemma 2 can be chosen to be computable. In addition, the values  $\ell_i$  and  $\ell_{i+1}/\ell_i$  can be made arbitrarily large.

#### 2.2 **Tree construction**

We define F via the following auxiliary languages  $T_i \subseteq X^{\ell_i}$  and  $U_i \subseteq X^{p_i \cdot \ell_i}$ . Let  $T_0 := X^{k_0} \cdot 0^{\ell_0 - k_0}$  or  $T_0 := 0^{\ell_0 - k_0} \cdot X^{k_0}$  and set

$$T_{i+1} := T_i^{r_i} \cdot U_i \text{ with } U_i := \left\{ \begin{array}{ll} X^{p_i \cdot \ell_i}, & \text{if } q_{i+1} \ge q_i \text{ and} \\ \{u_i\}, & \text{otherwise} \end{array} \right. \tag{4}$$

where  $u_i \in X^{p_i}$  is a fixed word. Then  $\ell_{i+1} = (r_i + p_i) \cdot \ell_i$ . The values  $r_i$  and  $p_i$ are referred to as repetition or prolongation factors, respectively.

By induction one proves

$$|T_i| = |X|^{q_i \cdot \ell_i}. \tag{5}$$

**Property 3** The trees  $T_i$  have the following properties. Let  $\ell \leq \ell_i$ .

- 1. Prefix property:  $\mathbf{pref}(T_{i+1}) = \bigcup_{j=0}^{r_i-1} T_i^j \cdot \mathbf{pref}(T_i) \cup T_i^{r_i} \cdot \mathbf{pref}(U_i)$ ,
- 2. Extension property:  $\mathbf{pref}(T_i) \cap X^{\ell} = \mathbf{pref}(T_{i+1}) \cap X^{\ell}$ , and
- 3. Spherical symmetry:  $\mathbf{pref}(T_i) \cap X^{\ell-1} = (\mathbf{pref}(T_i) \cap X^{\ell}) \cdot X$  or  $|\mathbf{pref}(T_i) \cap X^{\ell-1}| = |\mathbf{pref}(T_i) \cap X^{\ell}|.$

#### 2.3 The infinite tree

Define  $F := \bigcap_{i \in \mathbb{N}} T_i \cdot X^{\omega}$  where  $(T_i)_{i \in \mathbb{N}}$  satisfies Eq. (4).

Before we proceed to further properties of the family  $(T_i)_{i\in\mathbb{N}}$  and the  $\omega$ -language F we mention the following general property.

**Lemma 4** Let  $T_i \subseteq X^*$ ,  $T_{i+1} \subseteq T_i \cdot X \cdot X^*$ ,  $T_i \subseteq \mathbf{pref}(T_{i+1})$  and  $F := \bigcap_{i \in \mathbb{N}} T_i \cdot X^{\omega}$ . Then  $\mathbf{pref}(F) = \bigcup_{i \in \mathbb{N}} \mathbf{pref}(T_i)$ .

If, moreover, all  $T_i$  are finite then  $F := \{\xi : \xi \in X^\omega \land \mathbf{pref}(\xi) \subseteq \bigcup_{i \in \mathbb{N}} \mathbf{pref}(T_i) \}$ . Proof. In view of  $T_{i+1} \subseteq T_i \cdot X \cdot X^*$  we have  $T_{i+1} \cdot X^\omega \subseteq T_i \cdot X^\omega$  and also  $|w| \ge i$  for  $w \in T_i$ .

If  $w \in \mathbf{pref}(F)$  then  $w \in \mathbf{pref}(\xi)$  where  $\xi \in F \subseteq T_i \cdot X^{\omega}$  for i > |w|. Consequently,  $w \in \mathbf{pref}(T_i)$ .

Using the condition  $T_i \subseteq \mathbf{pref}(T_{i+1})$ , by induction we obtain that for every  $w \in \mathbf{pref}(T_i)$  there is an infinite chain  $(w_j)_{j \geq i}$  such that  $w_j \in T_j$  and  $w \subseteq w_i \subseteq w_{i+1} \subseteq \cdots$ . Thus there is a  $\xi \in F$  with  $w \subseteq \xi$ .

If the languages  $T_i$  are finite  $F = \bigcap_{i \in \mathbb{N}} T_i \cdot X^{\omega}$  is closed in the product topology of the space  $X^{\omega}$  which implies  $F := \{\xi : \xi \in X^{\omega} \land \mathbf{pref}(\xi) \subseteq \mathbf{pref}(F)\}.$ 

Our lemma shows that  $F := \{\xi : \xi \in X^{\omega} \land \mathbf{pref}(\xi) \subseteq \bigcup_{i \in \mathbb{N}} \mathbf{pref}(T_i) \}.$ 

From the spherical symmetry of  $T_i$  (see Property 3) the  $\omega$ -language  $F = \bigcap_{i \in \mathbb{N}} T_i \cdot X^{\omega}$  inherits the following balance property.

**Lemma 5** Let  $F = \bigcap_{i \in \mathbb{N}} T_i \cdot X^{\omega}$  where the  $T_i$  are defined by Eq. (4). Then for all  $w, v \in \mathbf{pref}(F)$  with |w| = |v| we have

$$|w \cdot X^k \cap \mathbf{pref}(F)| = |v \cdot X^k \cap \mathbf{pref}(F)|.$$

*Proof.* We proceed by induction on k. Let k = 1. Then for all  $w, v \in \mathbf{pref}(F)$  with |w| = |v| either  $\mathbf{pref}(F) \cap X^{|u|+1} = (\mathbf{pref}(F) \cap X^{|u|}) \cdot X$  or  $|\mathbf{pref}(F) \cap X^{|u|+1}| = |\mathbf{pref}(F) \cap X^{|u|}|$  ( $u \in \{w, v\}$ ).

In the first case we have  $|w \cdot X \cap \mathbf{pref}(F)| = |X| = |v \cdot X \cap \mathbf{pref}(F)|$  and in the second  $|w \cdot X \cap \mathbf{pref}(F)| = 1 = |v \cdot X \cap \mathbf{pref}(F)|$ .

Let the assertion be proved for k and all pairs  $u, u' \in \mathbf{pref}(F)$  of the same length. Let  $w, v \in \mathbf{pref}(F)$  with |w| = |v| and consider words  $w', v' \in X^k$  such that  $w \cdot w', v \cdot v' \in \mathbf{pref}(F)$ . Then from the spherical symmetry we obtain either  $\mathbf{pref}(F) \cap X^{|u|+1} = (\mathbf{pref}(F) \cap X^{|u|}) \cdot X$  or  $|\mathbf{pref}(F) \cap X^{|u|+1}| = |\mathbf{pref}(F) \cap X^{|u|}|$  for  $u \in \{w \cdot w', v \cdot v'\}$  and we proceed as above.

Since, by our assumption  $|\{w': |w'| = k \land w \cdot w' \in \mathbf{pref}(F)\}| = |\{v': |v'| = k \land v \cdot v' \in \mathbf{pref}(F)\}|$ , the assertion follows.

Next we investigate in more detail the structure function  $s_F : \mathbb{N} \to \mathbb{N}$  where  $s_F(\ell) := |\mathbf{pref}(F) \cap X^{\ell}|$ .

First, Lemma 4 implies

6

$$\operatorname{pref}(F) \cap X^{\ell} = \operatorname{pref}(T_i) \cap X^{\ell} \text{ whenever } \ell \leq \ell_i.$$
 (6)

From Eqs. (4) and (5) and the properties of the tree family  $(T_i)_{i\in\mathbb{N}}$  we obtain for the intervals  $\ell_i \leq \ell \leq \ell_{i+1}$ :

1. In the interval  $[j \cdot \ell_i, (j+1) \cdot \ell_i]$  where  $j < r_i$  we have: Lemma 6

$$s_F(j \cdot \ell_i + t) = s_F(\ell_i)^j \cdot s_F(t) \text{ for } 0 \le t \le \ell_i$$

and in a more detailed form in the subinterval  $[j \cdot \ell_i + j' \cdot \ell_{i-1}, j \cdot \ell_i + (j'+1) \cdot \ell_{i-1}]$  where  $j' < r_{i-1}$  $s_F(j \cdot \ell_i + j' \cdot \ell_{i-1} + t) = s_F(\ell_i)^j \cdot s_F(\ell_{i-1})^{j'} \cdot s_F(t)$  for  $0 \le t < \ell_{i-1}$ .

2. In the interval  $[r_i \cdot \ell_i, \ell_{i+1}]$  for  $0 \le t \le p_i \cdot \ell_i$ .

$$s_F(r_i \cdot \ell_i + t) = \begin{cases} s_F(\ell_i)^{r_i}, & \text{if } |U_i| = 1 \text{ and} \\ s_F(\ell_i)^{r_i} \cdot |X|^t, & \text{if } U_i = X^{p_i \cdot \ell_i}. \end{cases}$$

This yields the following connection to the values  $q_i$ .

From Eqs. (6) and (5) we have

$$\frac{\log_{|X|} s_F(j \cdot \ell)}{j \cdot \ell} = q_i. \tag{7}$$

Using the identities of Lemma 6 and Eqs. (1) and (2) we obtain the following estimates for  $\frac{\log_{|X|} s_F(\ell)}{\ell}$  in the range  $\ell_i \leq \ell \leq \ell_{i+1} = r_i \cdot \ell_i + n_i \cdot \ell_i$ . For  $\ell_i \leq \ell < r_i \cdot \ell_i$  we have  $\ell = j \cdot \ell_i + j' \cdot \ell_{i-1} + t$  where  $0 \leq t < \ell_{i-1}$  and

Lemma 6.1 yields

$$\frac{\log_{|X|} s_{F}(\ell)}{\ell} \geq \frac{j \cdot \ell_{i}}{\ell} \cdot q_{i} + \frac{j' \cdot \ell_{i-1}}{\ell} \cdot q_{i-1}$$

$$\geq \frac{j \cdot \ell_{i} + j' \cdot \ell_{i-1}}{\ell} \cdot \min\{q_{i-1}, q_{i}\}$$

$$\geq (1 - \frac{\ell_{i-1}}{\ell_{i}}) \cdot \min\{q_{i-1}, q_{i}\}$$
(8)

If  $r_i \cdot \ell_i \le \ell \le \ell_{i+1}$ , that is, for  $\ell = r_i \cdot \ell_i + t$  where  $t \le \ell_{i+1} - r_i \cdot \ell_i$ , following Eqs. (1) and (2), respectively, we have according to Lemma 6.2

$$q_{i} \geq \frac{\log_{|X|} s_{F}(\ell)}{\ell} = \frac{\log_{|X|} s_{F}(r_{i} \cdot \ell_{i})}{r_{i} \cdot \ell_{i} + t} \geq q_{i+1} \text{ if } q_{i} > q_{i+1}$$

$$q_{i} \leq \frac{\log_{|X|} s_{F}(\ell)}{\ell} = \frac{\log_{|X|} s_{F}(r_{i} \cdot \ell_{i}) + t}{r_{i} \cdot \ell_{i} + t} \leq q_{i+1} \text{ if } q_{i} < q_{i+1}$$
(10)

$$q_{i} \leq \frac{\log_{|X|} s_{F}(\ell)}{\ell} = \frac{\log_{|X|} s_{F}(r_{i} \cdot \ell_{i}) + t}{r_{i} \cdot \ell_{i} + t} \leq q_{i+1} \text{ if } q_{i} < q_{i+1}$$
 (10)

The considerations in Eqs. (7), (8), (9) and (10) show the following.

**Lemma 7** If the sequence  $(\ell_i)_{i\in\mathbb{N}}$  is chosen in such a way that  $\liminf_{i\to\infty}\frac{\ell_{i-1}}{\ell_i}=0$ then

$$\liminf_{\ell \to \infty} \frac{\log_{|X|} s_F(\ell)}{\ell} = \liminf_{i \to \infty} q_i$$

On the other hand, by Eqs. (8), (9) and (10), for  $\ell_i \leq \ell \leq \ell_{i+1}$ , the intermediate values satisfy  $\frac{\log_{|X|} s_F(\ell)}{\ell} \geq (1 - \frac{\ell_{i-1}}{\ell_i}) \cdot \min\{q_{i-1}, q_i, q_{i+1}\}.$ 

#### Monotone families $(q_i)_{i \in \mathbb{N}}$

If the sequence  $(q_i)_{i\in\mathbb{N}}$  is monotone we can simplify the above considerations of Eq. (8).

**Theorem 8** Let the sequence  $(q_i)_{i\in\mathbb{N}}$  be monotone and  $\lim_{i\to\infty}q_i=\alpha$ .

- 1. If  $(q_i)_{i\in\mathbb{N}}$  is decreasing and  $T_0 = X^{k_0} \cdot 0^{\ell_0 k_0}$  then  $s_F(\ell) \ge |X|^{\alpha \cdot \ell}$ , for all
- 2. If  $(q_i)_{i\in\mathbb{N}}$  is increasing and  $T_0 = 0^{\ell_0 k_0} \cdot X^{k_0}$  then  $s_F(\ell) \leq |X|^{\alpha \cdot \ell}$ , for all

If  $(q_i)_{i\in\mathbb{N}}$  is decreasing we start with  $T_0=X^{k_0}\cdot 0^{\ell_0-k_0}$  and have Proof.  $s_F(\ell) \ge |X|^{q_0 \cdot \ell} \ge |X|^{\alpha \cdot \ell}$  for  $\ell \le \ell_0$ . Then we use Eqs. (6) and (4) and proceed by induction.

 $s_F(j \cdot \ell_i + t) = s_F(j \cdot \ell_i) \cdot s_F(t) \ge |X|^{q_i \cdot \ell_i} \cdot |X|^{\alpha \cdot t} \ge |X|^{\alpha \cdot \ell}$  for  $j < r_i$ . In the range  $r_i \cdot \ell_i \le \ell \le \ell_{i+1}$  we have according to Eq. (9)  $s_F(\ell) \ge |X|^{q_{i+1} \cdot \ell} \ge |X|^{\alpha \cdot \ell}$ .

If  $(q_i)_{i\in\mathbb{N}}$  is increasing we start with  $T_0 = 0^{\ell_0 - k_0} \cdot X^{k_0}$  and have  $s_F(\ell) \ge$  $|X|^{q_0 \cdot \ell} \le |X|^{\alpha \cdot \ell}$  for  $\ell \le \ell_0$ . Again we use Eqs. (6) and (4) and proceed by induction.

 $s_F(j \cdot \ell_i + t) = s_F(j \cdot \ell_i) \cdot s_F(t) \le |X|^{q_i \cdot \ell_i} \cdot |X|^{\alpha \cdot t} \le |X|^{\alpha \cdot \ell}$  for  $j < r_i$ . In the range  $r_i \cdot \ell_i \leq \ell \leq \ell_{i+1}$  we have according to Eq. (10)  $s_F(\ell) \leq |X|^{q_{i+1} \cdot \ell} \leq |X|^{\alpha \cdot \ell}$ .

#### **Gales and Martingales** 3

Hausdorff [Hau18] introduced a notion of dimension of a subset Y of a metric space which is now known as its *Hausdorff dimension*, dim Y; Falconer [Fal03] provides an overview and introduction to this subject. In the case of the Cantor space  $X^{\omega}$ , Lutz [Lut03] (see also [DH10, Section 13.2]) has found an equivalent definition of Hausdorff dimension via generalisations of martingales.

Following Lutz a mapping  $d: X^* \to [0, \infty)$  will be called an  $\sigma$ -supergale provided

$$\forall w(w \in X^* \to |X|^{\sigma} \cdot d(w) \ge \sum_{x \in X} d(wx)). \tag{11}$$

A  $\sigma$ -supergale d is called an  $\sigma$ -gale if, for all  $w \in X^*$ , Eq. (11) is satisfied with equality. (*Super-)Martingales* are 1-(super-)gales.

Observe that, for  $\sigma' \geq \sigma$  any  $\sigma$ -supergale d is also a  $\sigma'$ -supergale. We define the *cut point*  $\chi_d$  of a supergale d as the smallest value  $\sigma$  for which d can be an  $\sigma$ -supergale.

$$\chi_d := \inf \left\{ \sigma : \forall w \left( |X|^{\sigma} \cdot d(w) \ge \sum_{x \in X} d(wx) \right) \right\}. \tag{12}$$

If d is a computable mapping then  $\chi_d$  as  $\sup\{q: q \in \mathbb{Q} \land \exists w(|X|^q \cdot d(w) < \sum_{x \in X} d(wx))\}$  is a left-computable real number.

Following Lutz [Lut03] we define as follows.

**Definition 1** Let  $F \subseteq X^{\omega}$ . Then  $\alpha$  is the *Hausdorff dimension* dim F of F provided  $^{1}$ 

- 1. for all  $\sigma > \alpha$  there is a  $\sigma$ -supergale d such that  $\forall \xi (\xi \in F \to \limsup_{w \to \xi} d(w) = \infty)$ , and
- 2. for all  $\sigma < \alpha$  and all  $\sigma$ -supergales d it holds  $\exists \xi (\xi \in F \land \limsup_{w \to \xi} d(w) < \infty)$ .

For  $\omega$ -languages having a simple structure like the one in the tree construction above we can simplify the calculation of the Hausdorff dimension (see [Sta89, Theorem 4]).

**Lemma 9** Let  $F \subseteq X^{\omega}$  satisfy the conditions  $F = \{\xi : \mathbf{pref}(\xi) \subseteq \mathbf{pref}(F)\}$  and  $s_{F \cap w \cdot X^{\omega}} = s_{F \cap v \cdot X^{\omega}}$  for all  $w, v \in \mathbf{pref}(F)$  with |w| = |v|. Then  $\dim F = \liminf_{n \to \infty} \frac{\log_{|X|} \max\{1, s_F(n)\}}{n}.$ 

As a consequence we obtain the following.

**Corollary 10** Let  $F \subseteq X^{\omega}$  be constructed according to the tree construction of Section 2.2. Then  $\dim F = \liminf_{n \to \infty} \frac{\log_{|X|} s_F(n)}{n}$ .

If we require the supergales in Definition 1 to be computable mappings we obtain the definition of computable dimension  $\dim_{\text{comp}} F$  of [Hit05, Lut03].

<sup>&</sup>lt;sup>1</sup>Here  $\limsup_{w \to \xi} d(w)$  is an abbreviation for  $\lim_{n \to \infty} \sup \{d(w) : w \in \mathbf{pref}(\xi) \land |w| \ge n\}$ .

**Definition 2** Let  $F \subseteq X^{\omega}$ . Then  $\alpha$  is the *computable dimension* of F provided

- 1. for all  $\sigma > \alpha$  there is a computable  $\sigma$ -supergale d such that  $\forall \xi (\xi \in F \to \limsup_{w \to \xi} d(w) = \infty)$ , and
- 2. for all  $\sigma < \alpha$  and all computable  $\sigma$ -supergales d it holds  $\exists \xi (\xi \in F \land \limsup_{w \to \xi} d(w) < \infty)$ .

Then the inequality  $\dim F \leq \dim_{\text{comp}} F$  is immediate.

#### 4 Incomputable dimensions

#### 4.1 Hausdorff dimension

In this section we provide the announced examples. First we have the following.

**Lemma 11** If the sequence  $(q_i)_{i \in \mathbb{N}}$  of rationals  $0 < q_i < 1, q_i \neq q_{i+1}$ , is computable then one can construct an  $\omega$ -language  $F \subseteq X^{\omega}$  according to the tree construction such that **pref**(F) is a computable language.

*Proof.* Construct from  $(q_i)_{i\in\mathbb{N}}$  the numerator and denominator sequences  $(k_i)_{i\in\mathbb{N}}$  and  $(\ell_i)_{i\in\mathbb{N}}$ . Then in view of the results of Sections 2.2 and 2.3 the assertion is obvious.

Our lemma shows that the  $\omega$ -language  $F \subseteq X^{\omega}$  has a very simple computable structure (compare with [Sta07, Section 4]).

Next we show that the Hausdorff dimension of a computable  $\omega$ -language  $F \subseteq X^{\omega}$  as in Lemma 11 may be incomputable.

**Theorem 12** If the sequence  $(q_i)_{i\in\mathbb{N}}$  of rationals  $0 < q_i < 1, q_i \neq q_{i+1}$ , is computable and  $\alpha = \liminf_{i\to\infty} q_i$  then there is an  $\omega$ -language  $F \subseteq X^{\omega}$  such that  $\operatorname{\mathbf{pref}}(F)$  is a computable language and  $\dim F = \alpha$ .

*Proof.* Construct from  $(q_i)_{i\in\mathbb{N}}$  the numerator and denominator sequences  $(k_i)_{i\in\mathbb{N}}$  and  $(\ell_i)_{i\in\mathbb{N}}$  such that  $\liminf_{i\to\infty}\frac{\ell_i}{\ell_{i+1}}=0$ . Then the assertion follows from Lemmata 7, 11 and Corollary 10.

Theorem 3.4 of [Ko98] proves a similar result where the achieved Hausdorff dimension  $\alpha$  is a computably approximable number. Our result extends this range to a class of numbers beyond the computably approximable ones [ASWZ00, ZW01].

#### 4.2 **Martingales**

We associate with every non-empty  $\omega$ -language  $E \subseteq X^{\omega}$  a martingale  $\mathcal{V}_E$  in the following way.

#### **Definition 3**

$$\mathcal{V}_{E}(e) := 1$$

$$\mathcal{V}_{E}(wx) := \begin{cases} \frac{|X|}{|\mathbf{pref}(E) \cap w \cdot X|} \cdot \mathcal{V}_{E}(w), & if \ wx \in \mathbf{pref}(E), \ and \ 0, & otherwise. \end{cases}$$

In view of the spherical symmetry, for F defined as in Section 2.3 we obtain

$$\mathcal{V}_F(w) = |X|^{|w|}/s_F(|w|), \text{ if } w \in \mathbf{pref}(F).$$
(13)

Moreover, if **pref**(F) is computable then  $s_F$  and  $\mathcal{V}_F$  are computable mappings.

**Theorem 13** If the sequence  $(q_i)_{i \in \mathbb{N}}$  of rationals  $0 < q_i < 1, q_i \neq q_{i+1}$ , is computable and  $\alpha = \liminf_{i \to \infty} q_i$  then there is an  $\omega$ -language  $F \subseteq X^{\omega}$  such that  $\mathbf{pref}(F)$  is a computable language and  $\dim F = \dim_{\mathrm{comp}} F = \alpha$ .

*Proof.* We use the  $\omega$ -language F defined in the proof of Theorem 12. If  $\sigma \in$ (0,1) is a computable number then  $\mathcal{V}_F(w)\cdot |X|^{-|w|\cdot (1-\sigma)}$  is a computable  $\sigma$ -gale (see [DH10, Section 13.2]). If  $\sigma > \alpha$  then  $\limsup_{w \to \xi} \mathcal{V}_F(w) \cdot |X|^{-(1-\sigma)\cdot |w|} = \infty$ for all  $\xi \in F$ . Thus  $\dim_{\text{comp}} F \leq \alpha$ . The other inequality follows from  $\dim F \leq \alpha$  $\dim_{\text{comp}} F$  and Theorem 12.

In certain cases we can achieve even the borderline value

$$\frac{\mathcal{V}_F(w)}{|X|^{(1-\dim F)\cdot |w|}} = \limsup_{n\to\infty} \frac{|X|^{\dim F\cdot n}}{s_F(n)} = \infty \text{ for all } \xi\in F.$$

**Theorem 14** Let  $(q_i)_{i \in \mathbb{N}}, 0 < q_i < 1, q_i \neq q_{i+1}$ , be a computable sequence of rationals converging to  $\alpha$ . If  $\alpha$  is not right-computable then there is an  $\omega$ language  $F \subseteq X^{\omega}$  such that  $\alpha = \dim F$ , **pref**(F) is a computable language and

$$\limsup_{n\to\infty}\frac{|X|^{\dim Y}}{s_F(n)}=\infty.$$

 $\limsup_{n\to\infty}\frac{|X|^{\dim F\cdot n}}{s_F(n)}=\infty.$  Proof. We construct F as in the proof of Theorem 12 requiring additionally that  $\ell_i \geq i^2$ . Then **pref**(F) is computable and dim  $F = \alpha$ . In view of Property 1 there are infinitely many  $i \in \mathbb{N}$  with  $\alpha - \frac{1}{i} > q_i$  and, consequently,  $s_F(\ell_i) = |X|^{q_i \cdot \ell_i} \le |X|^{\alpha \cdot \ell_i - \ell_i/i}$ . This shows  $\limsup_{n \to \infty} \frac{|X|^{\alpha \cdot n}}{s_F(n)} \ge \limsup_{i \to \infty} |X|^{\ell_i/i} = \infty$ .

#### 4.3 Comparison of gales and martingales

In this final part we compare the precision with which gales and martingales achieve the value of computable dimension of a subset  $E \subseteq X^{\omega}$ . To this end we define the following notion which reflects in some sense the accuracy with which a supergale or a martingale defines the computable dimension of a subset  $E \subseteq X^{\omega}$ .

- **Definition 4** 1. A computable supergale  $d: X^* \to [0, \infty)$  *matches*  $E \subseteq X^\omega$  provided d is a  $\dim_{\text{comp}} E$ -supergale and  $\forall \xi (\xi \in E \to \limsup_{w \to \xi} d(w) = \infty)$ .
  - 2. A computable martingale  $\mathcal{V}: X^* \to [0,\infty)$  matches  $E \subseteq X^\omega$  provided  $\limsup_{w \to \xi} \frac{\mathcal{V}_E(w)}{|X|^{(1-\dim_{\mathrm{comp}} E) \cdot |w|}} = \infty$  for all  $\xi \in E$ .

Since from Definition 2 it follows that a for  $\sigma < \dim_{\operatorname{comp} E}$  no computable  $\sigma$ -supergale satisfies  $\forall \xi (\xi \in E \to \limsup_{w \to \xi} d(w) = \infty)$ , the matching condition characterises "best" computable supergales for an  $\omega$ -language E. Similarly, Definition 4.2 characterises "best" computable martingales. It should be mentioned that matching supergales or martingales do not always exist.

**Lemma 15** If a computable supergale  $d: X^* \to [0, \infty)$  matches  $E \subseteq X^{\omega}$  then  $\dim_{\text{comp}} E = \chi_d$ .

*Proof.* By definition of  $\chi_d$  we have  $\chi_d \leq \dim_{\mathrm{comp}} E$ . Assume  $\chi_d < \dim_{\mathrm{comp}} E$ . Then there is a rational number  $q, \chi_d < q < \dim_{\mathrm{comp}} E$ , and d is a computable q-supergale which satisfies  $\forall \xi (\xi \in E \to \limsup_{w \to \xi} d(w) = \infty)$ . This contradicts the definition of  $\dim_{\mathrm{comp}} E$ .

Above we mentioned that the cut point  $\chi_d$  of a computable supergale d is always left-computable. Therefore, if some supergale d matches  $E \subseteq X^{\omega}$  the value  $\dim_{\text{comp}} E$  has to be left left-computable.

In Theorem 12 we proved that for every computably approximable  $\sigma$  there are simple computable  $\omega$ -languages  $F \subseteq X^{\omega}$  with  $\dim_{\text{comp}} F = \sigma$ . Moreover, Theorem 14 shows that, if additionally  $\dim_{\text{comp}} F = \sigma$  is not right-computable the computable martingale  $\mathcal{V}_F$  matches F. Since there are computably approximable reals which are neither right- not left-computable this shows that in some cases Schnorr's combination of martingales with (exponential) order functions (see [Sch71]) can be more precise than Lutz's approach via supergales.

#### 5 Concluding remark

As the constructive dimension of subsets of  $X^{\omega}$  is sandwiched between the computable and the Hausdorff dimension ([Lut03, Hit05]) the result of Theorem 13 holds likewise for constructive dimension, too.

#### References

- [ASWZ00] Klaus Ambos-Spies, Klaus Weihrauch, and Xizhong Zheng. Weakly computable real numbers. *J. Complexity*, 16(4):676–690, 2000.
- [CST06] Cristian S. Calude, Ludwig Staiger, and Sebastiaan A. Terwijn. On partial randomness. *Ann. Pure Appl. Logic*, 138(1-3):20–30, 2006.
- [DH10] Rodney G. Downey and Denis R. Hirschfeldt. *Algorithmic Randomness and Complexity*. Theory and Applications of Computability. Springer-Verlag, New York, 2010.
- [Fal03] Kenneth Falconer. Fractal geometry. Mathematical foundations and applications. John Wiley & Sons, Inc., Hoboken, N.J., second edition, 2003.
- [Fur70] Harry Furstenberg. Intersections of Cantor sets and transversality of semigroups. In Robert C. Gunning, editor, *Problems in Analysis*, pages 41–59. Princeton University Press, Princeton, N.J., 1970.
- [Hau18] Felix Hausdorff. Dimension und äußeres Maß. *Math. Ann.*, 79(1-2):157–179, 1918.
- [Hit05] John M. Hitchcock. Correspondence principles for effective dimensions. *Theory Comput. Syst.*, 38(5):559–571, 2005.
- [Ko98] Ker-I. Ko. On the computability of fractal dimensions and Hausdorff measure. *Ann. Pure Appl. Logic*, 93(1-3):195–216, 1998.
- [Lut03] Jack H. Lutz. The dimensions of individual strings and sequences. *Inform. and Comput.*, 187(1):49–79, 2003.
- [MSS18] Birzhan Moldagaliyev, Ludwig Staiger, and Frank Stephan. On the values for factor complexity. In Cezar Câmpeanu, editor, *Implementation and Application of Automata - 23rd International*

- Conference, CIAA 2018, Charlottetown, PE, Canada, July 30 August 2, 2018, Proceedings, volume 10977 of Lecture Notes in Computer Science, pages 274–285. Springer, Cham, 2018.
- [Sch71] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, Vol. 218. Springer-Verlag, Berlin, 1971.
- [Sta89] Ludwig Staiger. Combinatorial properties of the Hausdorff dimension. J. Statist. Plann. Inference, 23(1):95–100, 1989.
- [Sta93] Ludwig Staiger. Kolmogorov complexity and Hausdorff dimension. *Inform. and Comput.*, 103(2):159–194, 1993.
- [Sta98] Ludwig Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. *Theory Comput. Syst.*, 31(3):215–229, 1998.
- [Sta07] Ludwig Staiger. The Kolmogorov complexity of infinite words. Theoret. Comput. Sci., 383(2-3):187–199, 2007.
- [Ter04] Sebastiaan A. Terwijn. Complexity and randomness. *Rend. Semin. Mat., Torino*, 62(1):1–37, 2004.
- [ZW01] Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. *MLQ Math. Log. Q.*, 47(1):51–65, 2001.