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Abstract

Using an iterative tree construction we show that for simple com-
putable subsets of the Cantor space Hausdorff, constructive and com-
putable dimensions might be incomputable.
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2 Ludwig Staiger

Computable dimension along with constructive dimension was introduced
by Lutz [Lut03] as a means for measuring the complexity of sets of infinite
strings (ω-words). Since then and prior to this constructive and computable
dimension were investigated in connection with Kolmogorov complexity and
Hausdorff dimension. The results of [Hit05, Sta93, Sta98] show that the
Hausdorff, constructive and the computable dimensions of automaton defin-
able sets of infinite strings (regular ω-languages) is computable. In contrast
to this Ko [Ko98] derived examples of computable ω-languages which have
incomputable Hausdorff dimension.

In this paper we derive simple examples of computableω-languages which
have not only incomputable Hausdorff dimension but also incomputable com-
putable dimension. To this end we use in iteration of finite trees which re-
sembles the tree construction of Furstenberg [Fur70] (see also [MSS18])

As a byproduct we obtain simple examples of computable ω-languages
having incomputable Hausdorff dimension.

Lutz [Lut03] defines computable and constructive dimension via (super-)
gales. Terwijn [Ter04, CST06] observed that this can also be done using
Schnorr’s concept of martingales and (exponential) order functions [Sch71,
Section 17]. For the computable ω-languages derived in this paper we can
show that the latter concept is in some details more precise than Lutz’s ap-
proach.

1 Notation
In this section we introduce the notation used throughout the paper. By
N= {0,1,2, . . .} we denote the set of natural numbers, by Q the set of rational
numbers, and R are the real numbers.

Let X be an alphabet of cardinality |X | ≥ 2. By X∗ we denote the set of
finite words on X , including the empty word e, and Xω is the set of infinite
strings (ω-words) over X . Subsets of X∗ will be referred to as languages and
subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪ Xω let w ·η be their concatenation. This con-
catenation product extends in an obvious way to subsets W ⊆ X∗ and B ⊆
X∗∪ Xω. We denote by |w| the length of the word w ∈ X∗ and pref(B) is the
set of all finite prefixes of strings in B ⊆ X∗∪ Xω.

It is sometimes convenient to regard Xω as Cantor space, that is, as the
product space of the (discrete space) X . Here open sets in Xω are those of the
form W ·Xω with W ⊆ X∗. Closed are sets F ⊆ Xω which satisfy the condition
F = {ξ : pref(ξ)⊆pref(F)}.

For a computable domain D, such as N, Q or X∗, we refer to a function
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f : D → R as left-computable (or approximable from below) provided the set
{(d, q) : d ∈ D ∧ q ∈ Q∧ q < f (d)} is computably enumerable. Accordingly, a
function f : D → R is called right-computable (or approximable from above)
if the set {(d, q) : d ∈ D ∧ q ∈ Q∧ q > f (d)} is computably enumerable, and
f is computable if f is right- and left-computable. If we refer to a function
f : D →Q as computable we usually mean that it maps the domain D to the
domain Q, that is, it returns the exact value f (d) ∈Q. If D =N we write f as
a sequence (qi)i∈N.

A real number α ∈ R is left-computable, right computable or computable
provided the constant function cα(t)=α is left-computable, right-computable
or computable, respectively. α ∈R is referred to as computably approximable
if α = limi→∞ qi for a computable sequence (qi)i∈N of rationals. It is well-
known (see e.g. [ZW01]) that there are left-computable which are not right-
computable and vice versa, and that there are computably approximable
reals which are neither left-computable nor right-computable.

The following approximation property is easily verified.

Property 1 Let (qi)i∈N be a computable family of rationals converging to α
and let (q′

i)i∈N, q′
i > 0, be a computable family of rationals converging to 0.

If α is not right-computable then there are infinitely many i ∈ N such that
α− qi > q′

i.

For, otherwise, α as the limit of (qi + q′
i)i∈N would be right-computable.

2 Iterative Tree Construction

2.1 Preliminaries
The aim of this section is to present how one can, given a sequence of ra-
tionals (qi)i∈N, find sequences of natural numbers (ki)i∈N and (`i)i∈N with
appropriate properties such that qi = ki/`i.

Lemma 2 Let (qi)i∈N, 0 < qi < 1, qi 6= qi+1, be a family of positive ratio-
nals. Then there are families of natural numbers (ki)i∈N, (`i)i∈N, (κi)i∈N,

(pi)i∈N and (r i)i∈N, such that qi = ki/`i, qi+1 = r i ·ki +κi ·`i

r i ·`i + pi ·`i
where κi ={

0, if qi > qi+1 and
pi, if qi < qi+1.

Moreover, for 0≤ t ≤ pi ·`i we have

qi ≥ r i ·ki

r i ·`i + t
≥ qi+1, if qi > qi+1 and (1)



4 Ludwig Staiger

qi ≤ r i ·ki + t
r i ·`i + t

≤ qi+1, if qi < qi+1. (2)

Proof. Let qi = ki/`i and qi+1 = a/b ·qi = a ·ki

b ·`i
, with a,b ∈N\{0},a 6= b. Since

1> qi+1 we have b ·`i −a ·ki = a · qi
qi+1

· (1− qi+1) ·`i > 0.
Assume qi > qi+1. Then b > a and the equation

r i ·ki +κi ·`i

r i ·`i + pi ·`i
= a ·ki

b ·`i
(3)

has the solutions r i = a, and pi = (b−a)= a · ( qi
qi+1

−1) and κi = 0.
If qi < qi+1 then a > b and r i := b ·`i−a ·ki = a ·( qi

qi+1
·`i−ki)= a ·qi ·( 1

qi+1
−

1) ·`i and pi = κi := (a−b) ·ki = a · qi · (1− qi
qi+1

) ·`i are solutions of Eq. (3).
In view of κi = 0 Eq. (1) is obvious. Eq. (2) follows inductively from k+1

`+1 ≥
k
`

whenever 0≤ k < `. o

If the family (qi)i∈N is a computable one then the families in Lemma 2 can
be chosen to be computable. In addition, the values `i and `i+1/`i can be
made arbitrarily large.

2.2 Tree construction
We define F via the following auxiliary languages Ti ⊆ X`i and Ui ⊆ X pi ·`i .

Let T0 := X k0 ·0`0−k0 or T0 := 0`0−k0 · X k0 and set

Ti+1 := Tr i
i ·Ui with Ui :=

{
X pi ·`i , if qi+1 ≥ qi and
{ui}, otherwise (4)

where ui ∈ X pi is a fixed word. Then `i+1 = (r i+ pi) ·`i. The values r i and pi
are referred to as repetition or prolongation factors, respectively.

By induction one proves

|Ti| = |X |qi ·`i . (5)

Property 3 The trees Ti have the following properties. Let `≤ `i.

1. Prefix property: pref(Ti+1)=⋃r i−1
j=0 T j

i ·pref(Ti)∪Tr i
i ·pref(Ui),

2. Extension property: pref(Ti)∩ X` =pref(Ti+1)∩ X`, and

3. Spherical symmetry: pref(Ti)∩ X`−1 = (pref(Ti)∩ X`) · X or
|pref(Ti)∩ X`−1| = |pref(Ti)∩ X`|.
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2.3 The infinite tree

Define F :=⋂
i∈NTi · Xω where (Ti)i∈N satisfies Eq. (4).

Before we proceed to further properties of the family (Ti)i∈N and the ω-
language F we mention the following general property.

Lemma 4 Let Ti ⊆ X∗, Ti+1 ⊆ Ti · X · X∗, Ti ⊆ pref(Ti+1) and F := ⋂
i∈NTi ·

Xω. Then pref(F)=⋃
i∈Npref(Ti).

If, moreover, all Ti are finite then F := {ξ : ξ ∈ Xω∧pref(ξ)⊆⋃
i∈Npref(Ti)}.

Proof. In view of Ti+1 ⊆ Ti ·X ·X∗ we have Ti+1 ·Xω ⊆ Ti ·Xω and also |w| ≥ i
for w ∈ Ti.

If w ∈ pref(F) then w ∈ pref(ξ) where ξ ∈ F ⊆ Ti · Xω for i > |w|. Conse-
quently, w ∈pref(Ti).

Using the condition Ti ⊆pref(Ti+1), by induction we obtain that for every
w ∈pref(Ti) there is an infinite chain (w j) j≥i such that w j ∈ T j and w v wi @
wi+1 @ · · ·. Thus there is a ξ ∈ F with w@ ξ.

If the languages Ti are finite F = ⋂
i∈NTi · Xω is closed in the product

topology of the space Xω which implies F := {ξ : ξ ∈ Xω∧pref(ξ) ⊆ pref(F)}.
o

Our lemma shows that F := {ξ : ξ ∈ Xω∧pref(ξ)⊆⋃
i∈Npref(Ti)}.

From the spherical symmetry of Ti (see Property 3) the ω-language F =⋂
i∈NTi · Xω inherits the following balance property.

Lemma 5 Let F =⋂
i∈NTi · Xω where the Ti are defined by Eq. (4). Then for

all w,v ∈pref(F) with |w| = |v| we have
|w · X k ∩pref(F)| = |v · X k ∩pref(F)|.

Proof. We proceed by induction on k. Let k = 1. Then for all w,v ∈
pref(F) with |w| = |v| either pref(F)∩X |u|+1 = (pref(F)∩X |u|)·X or |pref(F)∩
X |u|+1| = |pref(F)∩ X |u|| (u ∈ {w,v}).

In the first case we have |w · X ∩pref(F)| = |X | = |v · X ∩pref(F)| and in
the second |w · X ∩pref(F)| = 1= |v · X ∩pref(F)|.

Let the assertion be proved for k and all pairs u,u′ ∈pref(F) of the same
length. Let w,v ∈ pref(F) with |w| = |v| and consider words w′,v′ ∈ X k such
that w·w′,v·v′ ∈pref(F). Then from the spherical symmetry we obtain either
pref(F)∩ X |u|+1 = (pref(F)∩ X |u|) · X or |pref(F)∩ X |u|+1| = |pref(F)∩ X |u||
for u ∈ {w ·w′,v ·v′} and we proceed as above.

Since, by our assumption |{w′ : |w′| = k ∧ w · w′ ∈ pref(F)}| = |{v′ : |v′| =
k∧v ·v′ ∈pref(F)}|, the assertion follows. o

Next we investigate in more detail the structure function sF :N→N where
sF (`) := |pref(F)∩ X`|.
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First, Lemma 4 implies

pref(F)∩ X` =pref(Ti)∩ X` whenever `≤ `i . (6)

From Eqs. (4) and (5) and the properties of the tree family (Ti)i∈N we obtain
for the intervals `i ≤ `≤ `i+1:

Lemma 6 1. In the interval [ j ·`i, ( j+1) ·`i] where j < r i we have:

sF ( j ·`i + t)= sF (`i) j · sF (t) for 0≤ t ≤ `i ,

and in a more detailed form in the subinterval
[ j ·`i + j′ ·`i−1, j ·`i + ( j′+1) ·`i−1] where j′ < r i−1

sF ( j ·`i + j′ ·`i−1 + t)= sF (`i) j · sF (`i−1) j′ · sF (t) for 0≤ t < `i−1 .

2. In the interval [r i ·`i,`i+1] for 0≤ t ≤ pi ·`i:

sF (r i ·`i + t)=
{

sF (`i)r i , if |Ui| = 1 and
sF (`i)r i · |X |t, if Ui = X pi ·`i .

This yields the following connection to the values qi.
From Eqs. (6) and (5) we have

log|X | sF ( j ·`)
j ·` = qi . (7)

Using the identities of Lemma 6 and Eqs. (1) and (2) we obtain the following
estimates for log|X | sF (`)

`
in the range `i ≤ `≤ `i+1 = r i ·`i +ni ·`i.

For `i ≤ ` < r i ·`i we have ` = j ·`i + j′ ·`i−1 + t where 0 ≤ t < `i−1 and
Lemma 6.1 yields

log|X | sF (`)
`

≥ j ·`i

`
· qi + j′ ·`i−1

`
· qi−1

≥ j ·`i + j′ ·`i−1

`
·min{qi−1, qi} (8)

≥ (1− `i−1

`i
) ·min{qi−1, qi}

If r i ·`i ≤ ` ≤ `i+1, that is, for ` = r i ·`i + t where t ≤ `i+1 − r i ·`i, following
Eqs. (1) and (2), respectively, we have according to Lemma 6.2

qi ≥
log|X | sF (`)

`
= log|X | sF (r i ·`i)

r i ·`i + t
≥ qi+1 if qi > qi+1 (9)

qi ≤
log|X | sF (`)

`
= log|X | sF (r i ·`i)+ t

r i ·`i + t
≤ qi+1 if qi < qi+1 (10)

The considerations in Eqs. (7), (8), (9) and (10) show the following.
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Lemma 7 If the sequence (`i)i∈N is chosen in such a way that liminf
i→∞

`i−1
`i

= 0

then
liminf
`→∞

log|X | sF (`)
`

= liminf
i→∞

qi .

Proof. In view of Eq. (7) the limit cannot exceed liminf
i→∞

qi.

On the other hand, by Eqs. (8), (9) and (10), for `i ≤ ` ≤ `i+1, the inter-
mediate values satisfy log|X | sF (`)

`
≥ (1− `i−1

`i
) ·min{qi−1, qi, qi+1}. o

2.4 Monotone families (q i)i∈N

If the sequence (qi)i∈N is monotone we can simplify the above considerations
of Eq. (8).

Theorem 8 Let the sequence (qi)i∈N be monotone and limi→∞ qi =α.

1. If (qi)i∈N is decreasing and T0 = X k0 ·0`0−k0 then sF (`) ≥ |X |α·`, for all
` ∈N.

2. If (qi)i∈N is increasing and T0 = 0`0−k0 · X k0 then sF (`) ≤ |X |α·`, for all
` ∈N.

Proof. If (qi)i∈N is decreasing we start with T0 = X k0 · 0`0−k0 and have
sF (`) ≥ |X |q0·` ≥ |X |α·` for ` ≤ `0. Then we use Eqs. (6) and (4) and proceed
by induction.

sF ( j ·`i+t)= sF ( j ·`i)·sF (t)≥ |X |qi ·`i ·|X |α·t ≥ |X |α·` for j < r i. In the range
r i ·`i ≤ `≤ `i+1 we have according to Eq. (9) sF (`)≥ |X |qi+1·` ≥ |X |α·`.

If (qi)i∈N is increasing we start with T0 = 0`0−k0 · X k0 and have sF (`) ≥
|X |q0·` ≤ |X |α·` for ` ≤ `0. Again we use Eqs. (6) and (4) and proceed by
induction.

sF ( j ·`i+t)= sF ( j ·`i)·sF (t)≤ |X |qi ·`i ·|X |α·t ≤ |X |α·` for j < r i. In the range
r i ·`i ≤ `≤ `i+1 we have according to Eq. (10) sF (`)≤ |X |qi+1·` ≤ |X |α·`. o

3 Gales and Martingales
Hausdorff [Hau18] introduced a notion of dimension of a subset Y of a met-
ric space which is now known as its Hausdorff dimension, dimY ; Falconer
[Fal03] provides an overview and introduction to this subject. In the case
of the Cantor space Xω, Lutz [Lut03] (see also [DH10, Section 13.2]) has
found an equivalent definition of Hausdorff dimension via generalisations of
martingales.
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Following Lutz a mapping d : X∗ → [0,∞) will be called an σ-supergale
provided

∀w(w ∈ X∗ →|X |σ ·d(w)≥ ∑
x∈X

d(wx)) . (11)

A σ-supergale d is called an σ-gale if, for all w ∈ X∗, Eq. (11) is satisfied with
equality. (Super-)Martingales are 1-(super-)gales.

Observe that, for σ′ ≥ σ any σ-supergale d is also a σ′-supergale. We
define the cut point χd of a supergale d as the smallest value σ for which d
can be an σ-supergale.

χd := inf
{
σ :∀w

(|X |σ ·d(w)≥∑
x∈X d(wx)

)}
. (12)

If d is a computable mapping then χd as sup{q : q ∈ Q∧∃w(|X |q · d(w) <∑
x∈X d(wx))} is a left-computable real number.

Following Lutz [Lut03] we define as follows.

Definition 1 Let F ⊆ Xω. Then α is the Hausdorff dimension dimF of F
provided1

1. for all σ>α there is a σ-supergale d such that ∀ξ(ξ ∈ F → limsup
w→ξ

d(w)=
∞), and

2. for all σ<α and all σ-supergales d it holds ∃ξ(ξ ∈ F∧limsup
w→ξ

d(w)<∞).

For ω-languages having a simple structure like the one in the tree construc-
tion above we can simplify the calculation of the Hausdorff dimension (see
[Sta89, Theorem 4]).

Lemma 9 Let F ⊆ Xω satisfy the conditions F = {ξ : pref(ξ) ⊆ pref(F)} and
sF∩w·Xω = sF∩v·Xω for all w,v ∈pref(F) with |w| = |v|. Then

dimF = liminf
n→∞

log|X |max{1,sF (n)}
n .

As a consequence we obtain the following.

Corollary 10 Let F ⊆ Xω be constructed according to the tree construction
of Section 2.2. Then dimF = liminf

n→∞
log|X | sF (n)

n .

If we require the supergales in Definition 1 to be computable mappings
we obtain the definition of computable dimension dimcomp F of [Hit05, Lut03].

1Here limsup
w→ξ

d(w) is an abbreviation for lim
n→∞sup{d(w) : w ∈pref(ξ)∧|w| ≥ n}.
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Definition 2 Let F ⊆ Xω. Then α is the computable dimension of F pro-
vided

1. for all σ>α there is a computable σ-supergale d such that ∀ξ(ξ ∈ F →
limsup

w→ξ

d(w)=∞), and

2. for all σ < α and all computable σ-supergales d it holds ∃ξ(ξ ∈ F ∧
limsup

w→ξ

d(w)<∞).

Then the inequality dimF ≤ dimcomp F is immediate.

4 Incomputable dimensions

4.1 Hausdorff dimension

In this section we provide the announced examples. First we have the fol-
lowing.

Lemma 11 If the sequence (qi)i∈N of rationals 0 < qi < 1, qi 6= qi+1, is com-
putable then one can construct an ω-language F ⊆ Xω according to the tree
construction such that pref(F) is a computable language.
Proof. Construct from (qi)i∈N the numerator and denominator sequences
(ki)i∈N and (`i)i∈N. Then in view of the results of Sections 2.2 and 2.3 the
assertion is obvious. o

Our lemma shows that the ω-language F ⊆ Xω has a very simple computable
structure (compare with [Sta07, Section 4]).

Next we show that the Hausdorff dimension of a computable ω-language
F ⊆ Xω as in Lemma 11 may be incomputable.

Theorem 12 If the sequence (qi)i∈N of rationals 0< qi < 1, qi 6= qi+1, is com-
putable and α= liminfi→∞ qi then there is an ω-language F ⊆ Xω such that
pref(F) is a computable language and dimF =α.
Proof. Construct from (qi)i∈N the numerator and denominator sequences
(ki)i∈N and (`i)i∈N such that liminfi→∞ `i

`i+1
= 0. Then the assertion follows

from Lemmata 7, 11 and Corollary 10. o

Theorem 3.4 of [Ko98] proves a similar result where the achieved Haus-
dorff dimension α is a computably approximable number. Our result extends
this range to a class of numbers beyond the computably approximable ones
[ASWZ00, ZW01].
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4.2 Martingales
We associate with every non-empty ω-language E ⊆ Xω a martingale VE in
the following way.

Definition 3

VE(e) := 1

VE(wx) :=
{ |X |

|pref(E)∩w·X | ·VE(w), if wx ∈pref(E), and
0, otherwise.

In view of the spherical symmetry, for F defined as in Section 2.3 we obtain

VF (w)= |X ||w|/sF (|w|), if w ∈pref(F) . (13)

Moreover, if pref(F) is computable then sF and VF are computable mappings.

Theorem 13 If the sequence (qi)i∈N of rationals 0< qi < 1, qi 6= qi+1, is com-
putable and α= liminfi→∞ qi then there is an ω-language F ⊆ Xω such that
pref(F) is a computable language and dimF = dimcomp F =α.
Proof. We use the ω-language F defined in the proof of Theorem 12. If σ ∈
(0,1) is a computable number then VF (w) · |X |−|w|·(1−σ) is a computable σ-gale
(see [DH10, Section 13.2]). If σ > α then limsupw→ξVF (w) · |X |−(1−σ)·|w| =∞
for all ξ ∈ F. Thus dimcomp F ≤α. The other inequality follows from dimF ≤
dimcomp F and Theorem 12. o

In certain cases we can achieve even the borderline value

VF (w)
|X |(1−dimF)·|w| = limsup

n→∞
|X |dimF·n

sF (n)
=∞ for all ξ ∈ F .

Theorem 14 Let (qi)i∈N,0 < qi < 1, qi 6= qi+1, be a computable sequence of
rationals converging to α. If α is not right-computable then there is an ω-
language F ⊆ Xω such that α= dimF, pref(F) is a computable language and

limsup
n→∞

|X |dimF·n

sF (n)
=∞.

Proof. We construct F as in the proof of Theorem 12 requiring addition-
ally that `i ≥ i2. Then pref(F) is computable and dimF = α. In view of
Property 1 there are infinitely many i ∈N with α− 1

i > qi and, consequently,
sF (`i) = |X |qi ·`i ≤ |X |α·`i−`i /i. This shows limsup

n→∞
|X |α·n
sF (n) ≥ limsup

i→∞
|X |`i /i = ∞.

o
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4.3 Comparison of gales and martingales

In this final part we compare the precision with which gales and martingales
achieve the value of computable dimension of a subset E ⊆ Xω. To this end
we define the following notion which reflects in some sense the accuracy
with which a supergale or a martingale defines the computable dimension of
a subset E ⊆ Xω.

Definition 4 1. A computable supergale d : X∗ → [0,∞) matches E ⊆ Xω

provided d is a dimcomp E-supergale and ∀ξ(ξ ∈ E → limsup
w→ξ

d(w)=∞).

2. A computable martingale V : X∗ → [0,∞) matches E ⊆ Xω provided
limsup

w→ξ

VE(w)
|X |(1−dimcomp E)·|w| =∞ for all ξ ∈ E.

Since from Definition 2 it follows that a for σ < dimcompE no computable
σ-supergale satisfies ∀ξ(ξ ∈ E → limsup

w→ξ

d(w) = ∞), the matching condition

characterises “best” computable supergales for an ω-language E. Similarly,
Definition 4.2 characterises “best” computable martingales. It should be
mentioned that matching supergales or martingales do not always exist.

Lemma 15 If a computable supergale d : X∗ → [0,∞) matches E ⊆ Xω then
dimcomp E = χd.

Proof. By definition of χd we have χd ≤ dimcomp E. Assume χd < dimcomp E.
Then there is a rational number q,χd < q < dimcomp E, and d is a computable
q-supergale which satisfies ∀ξ(ξ ∈ E → limsup

w→ξ

d(w) = ∞). This contradicts

the definition of dimcomp E. o

Above we mentioned that the cut point χd of a computable supergale d is
always left-computable. Therefore, if some supergale d matches E ⊆ Xω the
value dimcomp E has to be left left-computable.

In Theorem 12 we proved that for every computably approximable σ

there are simple computable ω-languages F ⊆ Xω with dimcomp F =σ. More-
over, Theorem 14 shows that, if additionally dimcomp F = σ is not right-
computable the computable martingale VF matches F. Since there are com-
putably approximable reals which are neither right- not left-computable this
shows that in some cases Schnorr’s combination of martingales with (expo-
nential) order functions (see [Sch71]) can be more precise than Lutz’s ap-
proach via supergales.
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5 Concluding remark
As the constructive dimension of subsets of Xω is sandwiched between the
computable and the Hausdorff dimension ([Lut03, Hit05]) the result of The-
orem 13 holds likewise for constructive dimension, too.
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