

CDMTCS

Research
Report Series

On the incomputability of computable dimension

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg

CDMTCS-535

May 2019

> Centre for Discrete Mathematics and Theoretical Computer Science

On the incomputability of computable dimension

Ludwig Staiger*
Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
von-Seckendorff-Platz 1
D-06099 Halle (Saale), Germany

Abstract

Using an iterative tree construction we show that for simple computable subsets of the Cantor space Hausdorff, constructive and computable dimensions might be incomputable.

Contents

1 Notation 2
2 Iterative Tree Construction 3
2.1 Preliminaries 3
2.2 Tree construction 4
2.3 The infinite tree 5
2.4 Monotone families $\left(q_{i}\right)_{i \in \mathbb{N}}$ 7
3 Gales and Martingales 7
4 Incomputable dimensions 9
4.1 Hausdorff dimension 9
4.2 Martingales 10
4.3 Comparison of gales and martingales 11
5 Concluding remark 12

[^0]Computable dimension along with constructive dimension was introduced by Lutz [Lut03] as a means for measuring the complexity of sets of infinite strings (ω-words). Since then and prior to this constructive and computable dimension were investigated in connection with Kolmogorov complexity and Hausdorff dimension. The results of [Hit05, Sta93, Sta98] show that the Hausdorff, constructive and the computable dimensions of automaton definable sets of infinite strings (regular ω-languages) is computable. In contrast to this Ko [Ko98] derived examples of computable ω-languages which have incomputable Hausdorff dimension.

In this paper we derive simple examples of computable ω-languages which have not only incomputable Hausdorff dimension but also incomputable computable dimension. To this end we use in iteration of finite trees which resembles the tree construction of Furstenberg [Fur70] (see also [MSS18])

As a byproduct we obtain simple examples of computable ω-languages having incomputable Hausdorff dimension.

Lutz [Lut03] defines computable and constructive dimension via (super-) gales. Terwijn [Ter04, CST06] observed that this can also be done using Schnorr's concept of martingales and (exponential) order functions [Sch71, Section 17]. For the computable ω-languages derived in this paper we can show that the latter concept is in some details more precise than Lutz's approach.

1 Notation

In this section we introduce the notation used throughout the paper. By $\mathbb{N}=\{0,1,2, \ldots\}$ we denote the set of natural numbers, by \mathbb{Q} the set of rational numbers, and \mathbb{R} are the real numbers.

Let X be an alphabet of cardinality $|X| \geq 2$. By X^{*} we denote the set of finite words on X, including the empty word e, and X^{ω} is the set of infinite strings (ω-words) over X. Subsets of X^{*} will be referred to as languages and subsets of X^{ω} as ω-languages.

For $w \in X^{*}$ and $\eta \in X^{*} \cup X^{\omega}$ let $w \cdot \eta$ be their concatenation. This concatenation product extends in an obvious way to subsets $W \subseteq X^{*}$ and $B \subseteq$ $X^{*} \cup X^{\omega}$. We denote by $|w|$ the length of the word $w \in X^{*}$ and $\operatorname{pref}(B)$ is the set of all finite prefixes of strings in $B \subseteq X^{*} \cup X^{\omega}$.

It is sometimes convenient to regard X^{ω} as Cantor space, that is, as the product space of the (discrete space) X. Here open sets in X^{ω} are those of the form $W \cdot X^{\omega}$ with $W \subseteq X^{*}$. Closed are sets $F \subseteq X^{\omega}$ which satisfy the condition $F=\{\xi: \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)\}$.

For a computable domain \mathscr{D}, such as \mathbb{N}, \mathbb{Q} or X^{*}, we refer to a function
$f: \mathscr{D} \rightarrow \mathbb{R}$ as left-computable (or approximable from below) provided the set $\{(d, q): d \in \mathscr{D} \wedge q \in \mathbb{Q} \wedge q<f(d)\}$ is computably enumerable. Accordingly, a function $f: \mathscr{D} \rightarrow \mathbb{R}$ is called right-computable (or approximable from above) if the set $\{(d, q): d \in \mathscr{D} \wedge q \in \mathbb{Q} \wedge q>f(d)\}$ is computably enumerable, and f is computable if f is right- and left-computable. If we refer to a function $f: \mathscr{D} \rightarrow \mathbb{Q}$ as computable we usually mean that it maps the domain \mathscr{D} to the domain \mathbb{Q}, that is, it returns the exact value $f(d) \in \mathbb{Q}$. If $\mathscr{D}=\mathbb{N}$ we write f as a sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$.

A real number $\alpha \in \mathbb{R}$ is left-computable, right computable or computable provided the constant function $c_{\alpha}(t)=\alpha$ is left-computable, right-computable or computable, respectively. $\alpha \in \mathbb{R}$ is referred to as computably approximable if $\alpha=\lim _{i \rightarrow \infty} q_{i}$ for a computable sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of rationals. It is wellknown (see e.g. [ZW01]) that there are left-computable which are not rightcomputable and vice versa, and that there are computably approximable reals which are neither left-computable nor right-computable.

The following approximation property is easily verified.
Property 1 Let $\left(q_{i}\right)_{i \in \mathbb{N}}$ be a computable family of rationals converging to α and let $\left(q_{i}^{\prime}\right)_{i \in \mathbb{N}}, q_{i}^{\prime}>0$, be a computable family of rationals converging to 0 . If α is not right-computable then there are infinitely many $i \in \mathbb{N}$ such that $\alpha-q_{i}>q_{i}^{\prime}$.
For, otherwise, α as the limit of $\left(q_{i}+q_{i}^{\prime}\right)_{i \in \mathbb{N}}$ would be right-computable.

2 Iterative Tree Construction

2.1 Preliminaries

The aim of this section is to present how one can, given a sequence of rationals $\left(q_{i}\right)_{i \in \mathbb{N}}$, find sequences of natural numbers $\left(k_{i}\right)_{i \in \mathbb{N}}$ and $\left(\ell_{i}\right)_{i \in \mathbb{N}}$ with appropriate properties such that $q_{i}=k_{i} / \ell_{i}$.

Lemma 2 Let $\left(q_{i}\right)_{i \in \mathbb{N}}, 0<q_{i}<1, q_{i} \neq q_{i+1}$, be a family of positive rationals. Then there are families of natural numbers $\left(k_{i}\right)_{i \in \mathbb{N}},\left(\ell_{i}\right)_{i \in \mathbb{N}},\left(\kappa_{i}\right)_{i \in \mathbb{N}}$, $\left(p_{i}\right)_{i \in \mathbb{N}}$ and $\left(r_{i}\right)_{i \in \mathbb{N}}$, such that $q_{i}=k_{i} / \ell_{i}, q_{i+1}=\frac{r_{i} \cdot k_{i}+\kappa_{i} \cdot \ell_{i}}{r_{i} \cdot \ell_{i}+p_{i} \cdot \ell_{i}}$ where $\kappa_{i}=$ $\begin{cases}0, & \text { if } q_{i}>q_{i+1} \text { and } \\ p_{i}, & \text { if } q_{i}<q_{i+1} .\end{cases}$

Moreover, for $0 \leq t \leq p_{i} \cdot \ell_{i}$ we have

$$
\begin{equation*}
q_{i} \geq \frac{r_{i} \cdot k_{i}}{r_{i} \cdot \ell_{i}+t} \geq q_{i+1}, \text { if } q_{i}>q_{i+1} \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
q_{i} \leq \frac{r_{i} \cdot k_{i}+t}{r_{i} \cdot \ell_{i}+t} \leq q_{i+1}, \text { if } q_{i}<q_{i+1} . \tag{2}
\end{equation*}
$$

Proof. Let $q_{i}=k_{i} / \ell_{i}$ and $q_{i+1}=a / b \cdot q_{i}=\frac{a \cdot k_{i}}{b \cdot \ell_{i}}$, with $a, b \in \mathbb{N} \backslash\{0\}, a \neq b$. Since $1>q_{i+1}$ we have $b \cdot \ell_{i}-a \cdot k_{i}=a \cdot \frac{q_{i}}{q_{i+1}} \cdot\left(1-q_{i+1}\right) \cdot \ell_{i}>0$.

Assume $q_{i}>q_{i+1}$. Then $b>a$ and the equation

$$
\begin{equation*}
\frac{r_{i} \cdot k_{i}+\kappa_{i} \cdot \ell_{i}}{r_{i} \cdot \ell_{i}+p_{i} \cdot \ell_{i}}=\frac{a \cdot k_{i}}{b \cdot \ell_{i}} \tag{3}
\end{equation*}
$$

has the solutions $r_{i}=a$, and $p_{i}=(b-a)=a \cdot\left(\frac{q_{i}}{q_{i+1}}-1\right)$ and $\kappa_{i}=0$.
If $q_{i}<q_{i+1}$ then $a>b$ and $r_{i}:=b \cdot \ell_{i}-a \cdot k_{i}=a \cdot\left(\frac{q_{i}}{q_{i+1}} \cdot \ell_{i}-k_{i}\right)=a \cdot q_{i} \cdot\left(\frac{1}{q_{i+1}}-\right.$ 1) $\cdot \ell_{i}$ and $p_{i}=\kappa_{i}:=(a-b) \cdot k_{i}=a \cdot q_{i} \cdot\left(1-\frac{q_{i}}{q_{i+1}}\right) \cdot \ell_{i}$ are solutions of Eq. (3).

In view of $\kappa_{i}=0$ Eq. (1) is obvious. Eq. (2) follows inductively from $\frac{k+1}{\ell+1} \geq$ $\frac{k}{\ell}$ whenever $0 \leq k<\ell$.
If the family $\left(q_{i}\right)_{i \in \mathbb{N}}$ is a computable one then the families in Lemma 2 can be chosen to be computable. In addition, the values ℓ_{i} and ℓ_{i+1} / ℓ_{i} can be made arbitrarily large.

2.2 Tree construction

We define F via the following auxiliary languages $T_{i} \subseteq X^{\ell_{i}}$ and $U_{i} \subseteq X^{p_{i} \cdot \ell_{i}}$.
Let $T_{0}:=X^{k_{0}} \cdot 0^{\ell_{0}-k_{0}}$ or $T_{0}:=0^{\ell_{0}-k_{0}} \cdot X^{k_{0}}$ and set

$$
T_{i+1}:=T_{i}^{r_{i}} \cdot U_{i} \text { with } U_{i}:= \begin{cases}X^{p_{i} \cdot \ell_{i}}, & \text { if } q_{i+1} \geq q_{i} \text { and } \tag{4}\\ \left\{u_{i}\right\}, & \text { otherwise }\end{cases}
$$

where $u_{i} \in X^{p_{i}}$ is a fixed word. Then $\ell_{i+1}=\left(r_{i}+p_{i}\right) \cdot \ell_{i}$. The values r_{i} and p_{i} are referred to as repetition or prolongation factors, respectively.

By induction one proves

$$
\begin{equation*}
\left|T_{i}\right|=|X|^{q_{i} \cdot \ell_{i}} . \tag{5}
\end{equation*}
$$

Property 3 The trees T_{i} have the following properties. Let $\ell \leq \ell_{i}$.

1. Prefix property: $\operatorname{pref}\left(T_{i+1}\right)=\cup_{j=0}^{r_{i}-1} T_{i}^{j} \cdot \operatorname{pref}\left(T_{i}\right) \cup T_{i}^{r_{i}} \cdot \operatorname{pref}\left(U_{i}\right)$,
2. Extension property: $\operatorname{pref}\left(T_{i}\right) \cap X^{\ell}=\operatorname{pref}\left(T_{i+1}\right) \cap X^{\ell}$, and
3. Spherical symmetry: $\operatorname{pref}\left(T_{i}\right) \cap X^{\ell-1}=\left(\operatorname{pref}\left(T_{i}\right) \cap X^{\ell}\right) \cdot X$ or $\left|\operatorname{pref}\left(T_{i}\right) \cap X^{\ell-1}\right|=\left|\operatorname{pref}\left(T_{i}\right) \cap X^{\ell}\right|$.

2.3 The infinite tree

Define $F:=\bigcap_{i \in \mathbb{N}} T_{i} \cdot X^{\omega}$ where $\left(T_{i}\right)_{i \in \mathbb{N}}$ satisfies Eq. (4).
Before we proceed to further properties of the family $\left(T_{i}\right)_{i \in \mathbb{N}}$ and the ω language F we mention the following general property.

Lemma 4 Let $T_{i} \subseteq X^{*}, T_{i+1} \subseteq T_{i} \cdot X \cdot X^{*}, T_{i} \subseteq \operatorname{pref}\left(T_{i+1}\right)$ and $F:=\bigcap_{i \in \mathbb{N}} T_{i}$. X^{ω}. Then $\operatorname{pref}(F)=\bigcup_{i \in \mathbb{N}} \operatorname{pref}\left(T_{i}\right)$.

If, moreover, all T_{i} are finite then $F:=\left\{\xi: \xi \in X^{\omega} \wedge \mathbf{p r e f}(\xi) \subseteq \bigcup_{i \in \mathbb{N}} \mathbf{p r e f}\left(T_{i}\right)\right\}$. Proof. In view of $T_{i+1} \subseteq T_{i} \cdot X \cdot X^{*}$ we have $T_{i+1} \cdot X^{\omega} \subseteq T_{i} \cdot X^{\omega}$ and also $|w| \geq i$ for $w \in T_{i}$.

If $w \in \operatorname{pref}(F)$ then $w \in \operatorname{pref}(\xi)$ where $\xi \in F \subseteq T_{i} \cdot X^{\omega}$ for $i>|w|$. Consequently, $w \in \operatorname{pref}\left(T_{i}\right)$.

Using the condition $T_{i} \subseteq \operatorname{pref}\left(T_{i+1}\right)$, by induction we obtain that for every $w \in \operatorname{pref}\left(T_{i}\right)$ there is an infinite chain $\left(w_{j}\right)_{j \geq i}$ such that $w_{j} \in T_{j}$ and $w \sqsubseteq w_{i} \sqsubset$ $w_{i+1} \sqsubset \cdots$. Thus there is a $\xi \in F$ with $w \sqsubset \xi$.

If the languages T_{i} are finite $F=\bigcap_{i \in \mathbb{N}} T_{i} \cdot X^{\omega}$ is closed in the product topology of the space X^{ω} which implies $F:=\left\{\xi: \xi \in X^{\omega} \wedge \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)\right\}$.

Our lemma shows that $F:=\left\{\xi: \xi \in X^{\omega} \wedge \operatorname{pref}(\xi) \subseteq \bigcup_{i \in \mathbb{N}} \operatorname{pref}\left(T_{i}\right)\right\}$.
From the spherical symmetry of T_{i} (see Property 3) the ω-language $F=$ $\bigcap_{i \in \mathbb{N}} T_{i} \cdot X^{\omega}$ inherits the following balance property.

Lemma 5 Let $F=\bigcap_{i \in \mathbb{N}} T_{i} \cdot X^{\omega}$ where the T_{i} are defined by Eq. (4). Then for all $w, v \in \operatorname{pref}(F)$ with $|w|=|v|$ we have

$$
\left|w \cdot X^{k} \cap \operatorname{pref}(F)\right|=\left|v \cdot X^{k} \cap \operatorname{pref}(F)\right| .
$$

Proof. We proceed by induction on k. Let $k=1$. Then for all $w, v \in$ $\operatorname{pref}(F)$ with $|w|=|v|$ either $\operatorname{pref}(F) \cap X^{|u|+1}=\left(\operatorname{pref}(F) \cap X^{|u|}\right) \cdot X$ or $\mid \operatorname{pref}(F) \cap$ $X^{|u|+1}\left|=\left|\operatorname{pref}(F) \cap X^{|u|}\right|(u \in\{w, v\})\right.$.

In the first case we have $|w \cdot X \cap \operatorname{pref}(F)|=|X|=|v \cdot X \cap \operatorname{pref}(F)|$ and in the second $|w \cdot X \cap \operatorname{pref}(F)|=1=|v \cdot X \cap \operatorname{pref}(F)|$.

Let the assertion be proved for k and all pairs $u, u^{\prime} \in \operatorname{pref}(F)$ of the same length. Let $w, v \in \operatorname{pref}(F)$ with $|w|=|v|$ and consider words $w^{\prime}, v^{\prime} \in X^{k}$ such that $w \cdot w^{\prime}, v \cdot v^{\prime} \in \operatorname{pref}(F)$. Then from the spherical symmetry we obtain either $\operatorname{pref}(F) \cap X^{|u|+1}=\left(\operatorname{pref}(F) \cap X^{|u|}\right) \cdot X$ or $\left|\operatorname{pref}(F) \cap X^{|u|+1}\right|=\left|\operatorname{pref}(F) \cap X^{|u|}\right|$ for $u \in\left\{w \cdot w^{\prime}, v \cdot v^{\prime}\right\}$ and we proceed as above.

Since, by our assumption $\left|\left\{w^{\prime}:\left|w^{\prime}\right|=k \wedge w \cdot w^{\prime} \in \operatorname{pref}(F)\right\}\right|=\mid\left\{v^{\prime}:\left|v^{\prime}\right|=\right.$ $\left.k \wedge v \cdot v^{\prime} \in \operatorname{pref}(F)\right\} \mid$, the assertion follows.
Next we investigate in more detail the structure function $s_{F}: \mathbb{N} \rightarrow \mathbb{N}$ where $s_{F}(\ell):=\left|\boldsymbol{p r e f}(F) \cap X^{\ell}\right|$.

First, Lemma 4 implies

$$
\begin{equation*}
\operatorname{pref}(F) \cap X^{\ell}=\operatorname{pref}\left(T_{i}\right) \cap X^{\ell} \text { whenever } \ell \leq \ell_{i} . \tag{6}
\end{equation*}
$$

From Eqs. (4) and (5) and the properties of the tree family $\left(T_{i}\right)_{i \in \mathbb{N}}$ we obtain for the intervals $\ell_{i} \leq \ell \leq \ell_{i+1}$:

Lemma 6 1. In the interval $\left[j \cdot \ell_{i},(j+1) \cdot \ell_{i}\right]$ where $j<r_{i}$ we have:

$$
s_{F}\left(j \cdot \ell_{i}+t\right)=s_{F}\left(\ell_{i}\right)^{j} \cdot s_{F}(t) \text { for } 0 \leq t \leq \ell_{i}
$$

and in a more detailed form in the subinterval

$$
\begin{aligned}
& {\left[j \cdot \ell_{i}+j^{\prime} \cdot \ell_{i-1}, j \cdot \ell_{i}+\left(j^{\prime}+1\right) \cdot \ell_{i-1}\right] \text { where } j^{\prime}<r_{i-1}} \\
& \quad s_{F}\left(j \cdot \ell_{i}+j^{\prime} \cdot \ell_{i-1}+t\right)=s_{F}\left(\ell_{i}\right)^{j} \cdot s_{F}\left(\ell_{i-1}\right)^{j^{\prime}} \cdot s_{F}(t) \text { for } 0 \leq t<\ell_{i-1} .
\end{aligned}
$$

2. In the interval $\left[r_{i} \cdot \ell_{i}, \ell_{i+1}\right]$ for $0 \leq t \leq p_{i} \cdot \ell_{i}$:

$$
s_{F}\left(r_{i} \cdot \ell_{i}+t\right)= \begin{cases}s_{F}\left(\ell_{i}\right)^{r_{i}}, & \text { if }\left|U_{i}\right|=1 \text { and } \\ s_{F}\left(\ell_{i}\right)^{r_{i}} \cdot|X|^{t}, & \text { if } U_{i}=X^{p_{i} \cdot \ell_{i}}\end{cases}
$$

This yields the following connection to the values q_{i}.
From Eqs. (6) and (5) we have

$$
\begin{equation*}
\frac{\log _{|X|} s_{F}(j \cdot \ell)}{j \cdot \ell}=q_{i} . \tag{7}
\end{equation*}
$$

Using the identities of Lemma 6 and Eqs. (1) and (2) we obtain the following estimates for $\frac{\log _{|X|} s_{F}(\ell)}{\ell}$ in the range $\ell_{i} \leq \ell \leq \ell_{i+1}=r_{i} \cdot \ell_{i}+n_{i} \cdot \ell_{i}$.

For $\ell_{i} \leq \ell<r_{i} \cdot \ell_{i}$ we have $\ell=j \cdot \ell_{i}+j^{\prime} \cdot \ell_{i-1}+t$ where $0 \leq t<\ell_{i-1}$ and Lemma 6.1 yields

$$
\begin{align*}
\frac{\log _{|X|} s_{F}(\ell)}{\ell} & \geq \frac{j \cdot \ell_{i}}{\ell} \cdot q_{i}+\frac{j^{\prime} \cdot \ell_{i-1}}{\ell} \cdot q_{i-1} \\
& \geq \frac{j \cdot \ell_{i}+j^{\prime} \cdot \ell_{i-1}}{\ell} \cdot \min \left\{q_{i-1}, q_{i}\right\} \tag{8}\\
& \geq\left(1-\frac{\ell_{i-1}}{\ell_{i}}\right) \cdot \min \left\{q_{i-1}, q_{i}\right\}
\end{align*}
$$

If $r_{i} \cdot \ell_{i} \leq \ell \leq \ell_{i+1}$, that is, for $\ell=r_{i} \cdot \ell_{i}+t$ where $t \leq \ell_{i+1}-r_{i} \cdot \ell_{i}$, following Eqs. (1) and (2), respectively, we have according to Lemma 6.2

$$
\begin{align*}
& q_{i} \geq \frac{\log _{|X|} s_{F}(\ell)}{\ell}=\frac{\log _{|X|} s_{F}\left(r_{i} \cdot \ell_{i}\right)}{r_{i} \cdot \ell_{i}+t} \geq q_{i+1} \text { if } q_{i}>q_{i+1} \tag{9}\\
& q_{i} \leq \frac{\log _{|X|} s_{F}(\ell)}{\ell}=\frac{\log _{|X|} s_{F}\left(r_{i} \cdot \ell_{i}\right)+t}{r_{i} \cdot \ell_{i}+t} \leq q_{i+1} \text { if } q_{i}<q_{i+1} \tag{10}
\end{align*}
$$

The considerations in Eqs. (7), (8), (9) and (10) show the following.

Lemma 7 If the sequence $\left(\ell_{i}\right)_{i \in \mathbb{N}}$ is chosen in such a way that $\liminf _{i \rightarrow \infty} \frac{\ell_{i-1}}{\ell_{i}}=0$ then

$$
\liminf _{\ell \rightarrow \infty} \frac{\log _{X \mid X} s_{F}(\ell)}{\ell}=\liminf _{i \rightarrow \infty} q_{i}
$$

Proof. In view of Eq. (7) the limit cannot exceed $\liminf _{i \rightarrow \infty} q_{i}$.
On the other hand, by Eqs. (8), (9) and (10), for $\ell_{i} \leq \ell \leq \ell_{i+1}$, the intermediate values satisfy $\frac{\log _{|X|} s_{F}(\ell)}{\ell} \geq\left(1-\frac{\ell_{i-1}}{\ell_{i}}\right) \cdot \min \left\{q_{i-1}, q_{i}, q_{i+1}\right\}$.

2.4 Monotone families $\left(q_{i}\right)_{i \in \mathbb{N}}$

If the sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ is monotone we can simplify the above considerations of Eq. (8).

Theorem 8 Let the sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ be monotone and $\lim _{i \rightarrow \infty} q_{i}=\alpha$.

1. If $\left(q_{i}\right)_{i \in \mathbb{N}}$ is decreasing and $T_{0}=X^{k_{0}} \cdot 0^{\ell_{0}-k_{0}}$ then $s_{F}(\ell) \geq|X|^{\alpha \cdot \ell}$, for all $\ell \in \mathbb{N}$.
2. If $\left(q_{i}\right)_{i \in \mathbb{N}}$ is increasing and $T_{0}=0^{\ell_{0}-k_{0}} \cdot X^{k_{0}}$ then $s_{F}(\ell) \leq|X|^{\alpha \cdot \ell}$, for all $\ell \in \mathbb{N}$.
Proof. If $\left(q_{i}\right)_{i \in \mathbb{N}}$ is decreasing we start with $T_{0}=X^{k_{0}} \cdot 0^{\ell_{0}-k_{0}}$ and have $s_{F}(\ell) \geq|X|^{q_{0} \cdot \ell} \geq|X|^{\alpha \cdot \ell}$ for $\ell \leq \ell_{0}$. Then we use Eqs. (6) and (4) and proceed by induction.
$s_{F}\left(j \cdot \ell_{i}+t\right)=s_{F}\left(j \cdot \ell_{i}\right) \cdot s_{F}(t) \geq|X|^{q_{i} \cdot \ell_{i}} \cdot|X|^{\alpha \cdot t} \geq|X|^{\alpha \cdot \ell}$ for $j<r_{i}$. In the range $r_{i} \cdot \ell_{i} \leq \ell \leq \ell_{i+1}$ we have according to Eq. (9) $s_{F}(\ell) \geq|X|^{q_{i+1} \cdot \ell} \geq|X|^{\alpha \cdot \ell}$.

If $\left(q_{i}\right)_{i \in \mathbb{N}}$ is increasing we start with $T_{0}=0^{\ell_{0}-k_{0}} \cdot X^{k_{0}}$ and have $s_{F}(\ell) \geq$ $|X|^{q_{0} \cdot \ell} \leq|X|^{\alpha \cdot \ell}$ for $\ell \leq \ell$. Again we use Eqs. (6) and (4) and proceed by induction.
$s_{F}\left(j \cdot \ell_{i}+t\right)=s_{F}\left(j \cdot \ell_{i}\right) \cdot s_{F}(t) \leq|X|^{q_{i} \cdot \ell_{i}} \cdot|X|^{\alpha \cdot t} \leq|X|^{\alpha \cdot \ell}$ for $j<r_{i}$. In the range $r_{i} \cdot \ell_{i} \leq \ell \leq \ell_{i+1}$ we have according to Eq. (10) $s_{F}(\ell) \leq|X|^{q_{i+1} \cdot \ell} \leq|X|^{\alpha \cdot \ell}$.

3 Gales and Martingales

Hausdorff [Hau18] introduced a notion of dimension of a subset Y of a metric space which is now known as its Hausdorff dimension, $\operatorname{dim} Y$; Falconer [Fa103] provides an overview and introduction to this subject. In the case of the Cantor space X^{ω}, Lutz [Lut03] (see also [DH10, Section 13.2]) has found an equivalent definition of Hausdorff dimension via generalisations of martingales.

Following Lutz a mapping $d: X^{*} \rightarrow[0, \infty)$ will be called an σ-supergale provided

$$
\begin{equation*}
\forall w\left(w \in X^{*} \rightarrow|X|^{\sigma} \cdot d(w) \geq \sum_{x \in X} d(w x)\right) \tag{11}
\end{equation*}
$$

A σ-supergale d is called an σ-gale if, for all $w \in X^{*}$, Eq. (11) is satisfied with equality. (Super-)Martingales are 1-(super-)gales.

Observe that, for $\sigma^{\prime} \geq \sigma$ any σ-supergale d is also a σ^{\prime}-supergale. We define the cut point χ_{d} of a supergale d as the smallest value σ for which d can be an σ-supergale.

$$
\begin{equation*}
\chi_{d}:=\inf \left\{\sigma: \forall w\left(|X|^{\sigma} \cdot d(w) \geq \sum_{x \in X} d(w x)\right)\right\} . \tag{12}
\end{equation*}
$$

If d is a computable mapping then χ_{d} as $\sup \left\{q: q \in \mathbb{Q} \wedge \exists w\left(|X|^{q} \cdot d(w)<\right.\right.$ $\left.\left.\sum_{x \in X} d(w x)\right)\right\}$ is a left-computable real number.

Following Lutz [Lut03] we define as follows.
Definition 1 Let $F \subseteq X^{\omega}$. Then α is the Hausdorff dimension $\operatorname{dim} F$ of F provided ${ }^{1}$

1. for all $\sigma>\alpha$ there is a σ-supergale d such that $\forall \xi(\xi \in F \rightarrow \limsup d(w)=$ ∞), and
2. for all $\sigma<\alpha$ and all σ-supergales d it holds $\exists \xi\left(\xi \in F \wedge \limsup _{w \rightarrow \xi} d(w)<\infty\right)$.

For ω-languages having a simple structure like the one in the tree construction above we can simplify the calculation of the Hausdorff dimension (see [Sta89, Theorem 4]).

Lemma 9 Let $F \subseteq X^{\omega}$ satisfy the conditions $F=\{\xi: \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)\}$ and $s_{F \cap w \cdot X^{\omega}}=s_{F \cap v \cdot X^{\omega}}$ for all $w, v \in \operatorname{pref}(F)$ with $|w|=|v|$. Then

$$
\operatorname{dim} F=\liminf _{n \rightarrow \infty} \frac{\log _{[X \mid} \max \left\{1, s_{F}(n)\right\}}{n} .
$$

As a consequence we obtain the following.
Corollary 10 Let $F \subseteq X^{\omega}$ be constructed according to the tree construction of Section 2.2. Then $\operatorname{dim} F=\liminf _{n \rightarrow \infty} \frac{\log _{X X}{ }^{5}(n)}{n}$.

If we require the supergales in Definition 1 to be computable mappings we obtain the definition of computable dimension $\operatorname{dim}_{\text {comp }} F$ of [Hit05, Lut03].

[^1]Definition 2 Let $F \subseteq X^{\omega}$. Then α is the computable dimension of F provided

1. for all $\sigma>\alpha$ there is a computable σ-supergale d such that $\forall \xi(\xi \in F \rightarrow$ $\left.\limsup _{w \rightarrow \xi} d(w)=\infty\right)$, and $w \rightarrow \xi$
2. for all $\sigma<\alpha$ and all computable σ-supergales d it holds $\exists \xi(\xi \in F \wedge$ $\limsup d(w)<\infty)$.
$w \rightarrow \xi$
Then the inequality $\operatorname{dim} F \leq \operatorname{dim}_{\text {comp }} F$ is immediate.

4 Incomputable dimensions

4.1 Hausdorff dimension

In this section we provide the announced examples. First we have the following.

Lemma 11 If the sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of rationals $0<q_{i}<1, q_{i} \neq q_{i+1}$, is computable then one can construct an ω-language $F \subseteq X^{\omega}$ according to the tree construction such that $\operatorname{pref}(F)$ is a computable language.
Proof. Construct from $\left(q_{i}\right)_{i \in \mathbb{N}}$ the numerator and denominator sequences $\left(k_{i}\right)_{i \in \mathbb{N}}$ and $\left(\ell_{i}\right)_{i \in \mathbb{N}}$. Then in view of the results of Sections 2.2 and 2.3 the assertion is obvious.

Our lemma shows that the ω-language $F \subseteq X^{\omega}$ has a very simple computable structure (compare with [Sta07, Section 4]).

Next we show that the Hausdorff dimension of a computable ω-language $F \subseteq X^{\omega}$ as in Lemma 11 may be incomputable.

Theorem 12 If the sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of rationals $0<q_{i}<1, q_{i} \neq q_{i+1}$, is computable and $\alpha=\liminf _{i \rightarrow \infty} q_{i}$ then there is an ω-language $F \subseteq X^{\omega}$ such that $\operatorname{pref}(F)$ is a computable language and $\operatorname{dim} F=\alpha$.
Proof. Construct from $\left(q_{i}\right)_{i \in \mathbb{N}}$ the numerator and denominator sequences $\left(k_{i}\right)_{i \in \mathbb{N}}$ and $\left(\ell_{i}\right)_{i \in \mathbb{N}}$ such that $\liminf _{i \rightarrow \infty} \frac{\ell_{i}}{\ell_{i+1}}=0$. Then the assertion follows from Lemmata 7, 11 and Corollary 10.
Theorem 3.4 of [Ko98] proves a similar result where the achieved Hausdorff dimension α is a computably approximable number. Our result extends this range to a class of numbers beyond the computably approximable ones [ASWZ00, ZW01].

4.2 Martingales

We associate with every non-empty ω-language $E \subseteq X^{\omega}$ a martingale \mathcal{V}_{E} in the following way.

Definition 3

$$
\begin{aligned}
\mathcal{V}_{E}(e) & :=1 \\
\mathcal{I}_{E}(w x) & := \begin{cases}\frac{|X|}{|\operatorname{pref}(E) \cap w \cdot X|} \cdot \mathcal{I}_{E}(w), & \text { if } w x \in \operatorname{pref}(E), \text { and } \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

In view of the spherical symmetry, for F defined as in Section 2.3 we obtain

$$
\begin{equation*}
\mathcal{I}_{F}(w)=|X|^{|w|} / s_{F}(|w|), \text { if } w \in \operatorname{pref}(F) . \tag{13}
\end{equation*}
$$

Moreover, if $\operatorname{pref}(F)$ is computable then s_{F} and ν_{F} are computable mappings.
Theorem 13 If the sequence $\left(q_{i}\right)_{i \in \mathbb{N}}$ of rationals $0<q_{i}<1, q_{i} \neq q_{i+1}$, is computable and $\alpha=\liminf _{i \rightarrow \infty} q_{i}$ then there is an ω-language $F \subseteq X^{\omega}$ such that $\operatorname{pref}(F)$ is a computable language and $\operatorname{dim} F=\operatorname{dim}_{\text {comp }} F=\alpha$.
Proof. We use the ω-language F defined in the proof of Theorem 12. If $\sigma \in$ $(0,1)$ is a computable number then $\mathcal{Z}_{F}(w) \cdot|X|^{||w| \cdot(1-\sigma)}$ is a computable σ-gale (see [DH10, Section 13.2]). If $\sigma>\alpha$ then $\limsup _{w \rightarrow \xi} \mathcal{V}_{F}(w) \cdot|X|^{-(1-\sigma) \cdot|w|}=\infty$ for all $\xi \in F$. Thus $\operatorname{dim}_{\text {comp }} F \leq \alpha$. The other inequality follows from $\operatorname{dim} F \leq$ $\operatorname{dim}_{\text {comp }} F$ and Theorem 12.
In certain cases we can achieve even the borderline value

$$
\frac{\nu_{F}(w)}{|X|^{(1-\operatorname{dim} F) \cdot|w|}}=\limsup _{n \rightarrow \infty} \frac{|X|^{\operatorname{dim} F \cdot n}}{s_{F}(n)}=\infty \text { for all } \xi \in F .
$$

Theorem 14 Let $\left(q_{i}\right)_{i \in \mathbb{N}}, 0<q_{i}<1, q_{i} \neq q_{i+1}$, be a computable sequence of rationals converging to α. If α is not right-computable then there is an ω language $F \subseteq X^{\omega}$ such that $\alpha=\operatorname{dim} F, \operatorname{pref}(F)$ is a computable language and $\limsup _{n \rightarrow \infty} \frac{|X|^{\operatorname{dim} F \cdot n}}{s_{F}(n)}=\infty$.
Proof. $\quad S^{n \rightarrow \infty} F^{(n)}$ construct F as in the proof of Theorem 12 requiring additionally that $\ell_{i} \geq i^{2}$. Then $\operatorname{pref}(F)$ is computable and $\operatorname{dim} F=\alpha$. In view of Property 1 there are infinitely many $i \in \mathbb{N}$ with $\alpha-\frac{1}{i}>q_{i}$ and, consequently, $s_{F}\left(\ell_{i}\right)=|X|^{q_{i} \cdot \ell_{i}} \leq|X|^{\alpha \cdot \ell_{i}-\ell_{i} / i}$. This shows $\limsup _{n \rightarrow \infty} \frac{|X|^{\alpha \cdot n}}{s_{F}(n)} \geq \limsup _{i \rightarrow \infty}|X|^{\ell_{i} / i}=\infty$.

4.3 Comparison of gales and martingales

In this final part we compare the precision with which gales and martingales achieve the value of computable dimension of a subset $E \subseteq X^{\omega}$. To this end we define the following notion which reflects in some sense the accuracy with which a supergale or a martingale defines the computable dimension of a subset $E \subseteq X^{\omega}$.

Definition 4 1. A computable supergale $d: X^{*} \rightarrow[0, \infty)$ matches $E \subseteq X^{\omega}$ provided d is a $\operatorname{dim}_{\text {comp }} E$-supergale and $\forall \xi(\xi \in E \rightarrow \underset{w \rightarrow \xi}{\limsup } d(w)=\infty)$.
2. A computable martingale $\mathcal{V}: X^{*} \rightarrow[0, \infty)$ matches $E \subseteq X^{\omega}$ provided $\limsup _{w \rightarrow \xi} \frac{V_{E}(w)}{|X|^{[1-\text { dimomp } E) \cdot|w|}}=\infty$ for all $\xi \in E$.

Since from Definition 2 it follows that a for $\sigma<\operatorname{dim}_{\text {compE }}$ no computable σ-supergale satisfies $\forall \xi(\xi \in E \rightarrow \underset{w \rightarrow \xi}{\limsup } d(w)=\infty)$, the matching condition characterises "best" computable supergales for an ω-language E. Similarly, Definition 4.2 characterises "best" computable martingales. It should be mentioned that matching supergales or martingales do not always exist.

Lemma 15 If a computable supergale $d: X^{*} \rightarrow[0, \infty)$ matches $E \subseteq X^{\omega}$ then $\operatorname{dim}_{\text {comp }} E=\chi_{d}$.
Proof. By definition of χ_{d} we have $\chi_{d} \leq \operatorname{dim}_{\text {comp }} E$. Assume $\chi_{d}<\operatorname{dim}_{\text {comp }} E$. Then there is a rational number $q, \chi_{d}<q<\operatorname{dim}_{\text {comp }} E$, and d is a computable q-supergale which satisfies $\forall \xi(\xi \in E \rightarrow \underset{w \rightarrow \xi}{\limsup } d(w)=\infty)$. This contradicts the definition of $\operatorname{dim}_{\text {comp }} E$.
Above we mentioned that the cut point χ_{d} of a computable supergale d is always left-computable. Therefore, if some supergale d matches $E \subseteq X^{\omega}$ the value $\operatorname{dim}_{\text {comp }} E$ has to be left left-computable.

In Theorem 12 we proved that for every computably approximable σ there are simple computable ω-languages $F \subseteq X^{\omega}$ with $\operatorname{dim}_{\text {comp }} F=\sigma$. Moreover, Theorem 14 shows that, if additionally $\operatorname{dim}_{\text {comp }} F=\sigma$ is not rightcomputable the computable martingale γ_{F} matches F. Since there are computably approximable reals which are neither right- not left-computable this shows that in some cases Schnorr's combination of martingales with (exponential) order functions (see [Sch71]) can be more precise than Lutz's approach via supergales.

5 Concluding remark

As the constructive dimension of subsets of X^{ω} is sandwiched between the computable and the Hausdorff dimension ([Lut03, Hit05]) the result of Theorem 13 holds likewise for constructive dimension, too.

References

[ASWZ00] Klaus Ambos-Spies, Klaus Weihrauch, and Xizhong Zheng. Weakly computable real numbers. J. Complexity, 16(4):676-690, 2000.
[CST06] Cristian S. Calude, Ludwig Staiger, and Sebastiaan A. Terwijn. On partial randomness. Ann. Pure Appl. Logic, 138(1-3):20-30, 2006.
[DH10] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer-Verlag, New York, 2010.
[Fal03] Kenneth Falconer. Fractal geometry. Mathematical foundations and applications. John Wiley \& Sons, Inc., Hoboken, N.J., second edition, 2003.
[Fur70] Harry Furstenberg. Intersections of Cantor sets and transversality of semigroups. In Robert C. Gunning, editor, Problems in Analysis, pages 41-59. Princeton University Press, Princeton, N.J., 1970.
[Hau18] Felix Hausdorff. Dimension und äußeres Maß. Math. Ann., 79(1-2):157-179, 1918.
[Hit05] John M. Hitchcock. Correspondence principles for effective dimensions. Theory Comput. Syst., 38(5):559-571, 2005.
[Ko98] Ker-I. Ko. On the computability of fractal dimensions and Hausdorff measure. Ann. Pure Appl. Logic, 93(1-3):195-216, 1998.
[Lut03] Jack H. Lutz. The dimensions of individual strings and sequences. Inform. and Comput., 187(1):49-79, 2003.
[MSS18] Birzhan Moldagaliyev, Ludwig Staiger, and Frank Stephan. On the values for factor complexity. In Cezar Câmpeanu, editor, Implementation and Application of Automata - 23rd International

Conference, CIAA 2018, Charlottetown, PE, Canada, July 30 August 2, 2018, Proceedings, volume 10977 of Lecture Notes in Computer Science, pages 274-285. Springer, Cham, 2018.
[Sch71] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, Vol. 218. Springer-Verlag, Berlin, 1971.
[Sta89] Ludwig Staiger. Combinatorial properties of the Hausdorff dimension. J. Statist. Plann. Inference, 23(1):95-100, 1989.
[Sta93] Ludwig Staiger. Kolmogorov complexity and Hausdorff dimension. Inform. and Comput., 103(2):159-194, 1993.
[Sta98] Ludwig Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory Comput. Syst., 31(3):215-229, 1998.
[Sta07] Ludwig Staiger. The Kolmogorov complexity of infinite words. Theoret. Comput. Sci., 383(2-3):187-199, 2007.
[Ter04] Sebastiaan A. Terwijn. Complexity and randomness. Rend. Semin. Mat., Torino, 62(1):1-37, 2004.
[ZW01] Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. MLQ Math. Log. Q., 47(1):51-65, 2001.

[^0]: *email: staiger@informatik.uni-halle.de

[^1]: ${ }^{1}$ Here $\limsup _{w \rightarrow \xi} d(w)$ is an abbreviation for $\lim _{n \rightarrow \infty} \sup \{d(w): w \in \operatorname{pref}(\xi) \wedge|w| \geq n\}$.

