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Abstract

We consider Turing machines which perform infinite sequences of
runs, where the (finite) number of computation steps is in each run is
defined by the transitions activated in the preceding run when using
a transition activated for this computation step in this preceding run.
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1 Introduction
In [AFI18b], the idea of activating the rules to be applied in the next steps
of a computation of a sequential grammar by the application of rules dur-
ing the computation has been introduced. Even the concept of backwards
applications of rules was discussed in different ways in [AFI18a]. Allowing
the computations of the grammar to start from the beginning again having
made n derivation steps and in the next “round” making n+ 1 derivation
steps with the activations obtained in the preceding “round” allowed to “go
beyond Turing” even with the underlying objects being multisets and not
strings.

In this paper, we consider Turing machines as accepting devices on strings
and ω-words, using the concept of activating transitions to be used in the
next “round” of computations in an infinite sequence of finite runs, with the
n-th run making exactly n computation steps. The acceptance condition is
that the sequence of runs is non-oscillating, i.e., for every tape cell m there
exists a run r(m) such that in all runs after run r(m) the contents of tape
cell m is not changed any more. Instead of states, labels for the transitions
are used; the same transition in δ may have multiple labels.

As a special variant, we consider Turing machines only going from left
to right on the tape and infinite sequences of runs of such Turing machines
activating the transitions to be used in the next run. Using backwards ac-
tivations for the next run, i.e., activation of transitions in the previous step,
allows for simulating transitions moving to the left, too. In total, even this
special variant allows for the simulation of infinite runs of deterministic and
non-deterministic Turing machines accepting with non-oscillating runs. As
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we consider runs making n computation steps in a row, this requires at least
one transition to be activated for every time step. This special variant also
allows us to recover the contents of the tape cells visited so far even when
starting every run from the initial tape.

If we allow runs where in a computation step nothing happens if no tran-
sition is activated, but still the run may continue until n computation steps
have been carried out in this relaxed way, we may look at this as another
model where in each run exactly the activated transitions are carried out,
without having the need to do a complete run of n steps. On the other hand,
every run has to start with the tape obtained after the preceding run.

Another interpretation of activating transitions in specific time steps is
to consider the transitions assigned to the positions on the tape of the Turing
machine, which especially for the variant of Turing machines only going
from left to right on the tape turns out to be an equivalent concept. As the
rewriting of one tape cell by the activated transition(s) does not depend on
what happens to the other tape cells, all activated transitions could even be
carried out in parallel – in both models, i.e., with the activations assigned to
time steps OR to tape cells.

The rest of the paper is organized as follows: we first recall some defini-
tions and well-known results, especially with respect to (ω-)Turing machines
and the accepted families of (ω-)languages. In Section 3 we define the vari-
ants of Turing machines with activations of transitions as already briefly
described above. The proofs for the characterizations of Π0

3 and Σ1
1 by deter-

ministic respectively non-deterministic Turing machines with activations of
transitions are given in Section 4. A short summary and discussion in Sec-
tion 5 conclude the paper.

2 Definitions
We assume the reader to be familiar with the underlying notions and con-
cepts from formal language theory, e.g., see [RS97] and [DP89].

2.1 Prerequisites
The set of integers is denoted by Z, the set of positive integers by N, and the
set of non-negative integers by N0 := N∪ {0}. Given an alphabet V , a finite
non-empty set of abstract symbols, the free monoid generated by V under
the operation of concatenation is denoted by V∗. The elements of V∗ are
called strings, the empty string is denoted by λ, and V∗à {λ} is denoted by
V+. For an arbitrary alphabet V = {a1, . . . ,an}, the number of occurrences of
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a symbol ai in a string x is denoted by |x|ai , while the length of a string x is
denoted by |x| =∑

ai∈V |x|ai . With respect to a specific order on the elements
a1, . . . ,an of the alphabet V , the n-tuple

(|x|a1 , . . . , |x|an

}
is called the Parikh

vector of |x|.
The set of one-sided infinite strings (mappings from N to V ) is denoted

by Vω. Its subsets are referred to as ω-languages.
A finite multiset over an alphabet V = {a1, . . . ,an} is a mapping f : V →N0

and can be represented by
〈

a f (a1)
1 , . . . ,a f (an)

n

〉
or by any string x for which(|x|a1 , . . . , |x|an

)= ( f (a1), . . . , f (an)). The set of all multisets over V is denoted
by V ◦ or by Ps (V∗).

The families of regular and recursively enumerable string languages are
denoted by REG and RE, respectively, and Co-RE denotes the family of
complements of recursively enumerable string languages.

2.2 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [Bud06, Rog67] or [Sta97, Section 3.4])
is usually developed with the universal (∀) and existential (∃) quantifiers
restricted to the integers. Levels in the Arithmetical Hierarchy are labeled
as Σ0

n if they can be defined by expressions beginning with a sequence of at
most n alternating quantifiers starting with ∃; levels are labeled as Π0

n if
they can be defined by such expressions of at most n alternating quantifiers
that start with ∀. Σ0

0 and Π0
0 are defined as having no quantifiers and are

equivalent. Σ0
1 and Π0

1 only have the single quantifier ∃ and ∀, respectively.
We only need to consider alternating pairs of the quantifiers ∀ and ∃ because
two quantifiers of the same type occurring together are equivalent to a single
quantifier. Moreover, we use the notion ∆0

n, being defined as to represent
Π0

n ∩Σ0
n. In particular, the languages in Π0

1 ∩Σ0
1 and Σ0

1 are the computable
languages and the recursively enumerable languages, respectively.

More specifically, we say that a language W ⊆V∗ belongs to the class Σ0
n

if and only if W = {w | ∃a1 . . .Qmam : (a1, . . . ,am,w) ∈ RW }, m ≤ n, and an ω-
language F ⊆ Vω belongs to the class Σ0

n if and only if F = {ξ | ∃a1 . . .Qmam :
(a1, . . . ,am−1,ξ�m) ∈ RF }, m ≤ n, where ξ�` is the prefix of length ` of the
infinite word ξ, RW ⊆Nn ×V∗ and RF ⊆Nn−1 ×V∗ are computable relations
and Qi is one of the quantifiers ∀ or ∃. The class Πn is defined dually by
taking ∀ instead of ∃ as the first quantifier in all definitions.

If we also quantify over functions from N to N, i.e., define sets of natural
numbers by using second order logic formulas, we get the analytical hierar-
chy, starting with Σ1

1 and Π1
1. For example, an ω-language F ⊆Vω belongs to

the class Σ1
1 if and only if it can be accepted by a non-deterministic Turing
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machine (by a complete non-oscillating run).

2.3 Turing Machines
A Turing machine (a TM for short) is a construct M = (V , Z0,B,T,Q, p0,F,δ)
where

• V is the set of the tape alphabet, {Z0,B}⊂V \ T;

• Z0 is the left boundary marker of the tape;

• B is the blank symbol;

• T ⊂V is the terminal alphabet;

• Q is the set of states;

• p0 ∈Q is the initial state;

• F ⊆Q is the set of final states;

• δ⊆Q×V ×Q×V × {L,R} is the transition function.

The Turing machine M is called deterministic if for every pair (p, X ) ∈Q×
V there is (at most) one triple (q,Y ,D) ∈Q×V×{L,R} such that (p, X , q,Y ,D) ∈
Q×V ×Q×V × {L,R}.

For a finite string w ∈ T∗, acceptance usually is defined by M reaching
a finite state when starting with Z0wBω on its tape in state p0 and the
read/write head being on Z0. M making a transition using (p, X , q,Y ,D)
means that with being in state p and reading X on the current tape cell, M
enters state q, rewrites X to Y , and moves its head into direction D, i.e., to
the left if D = L and to the right if D = R.

For infinite strings, one possible acceptance condition for an ω-word ξ is
that it there exists a non-oscillating run on it, i.e., for every tape cell n there
exists a time t(n) such that for all times t ≥ t(n) tape cell n is not visited any
more [CG78, FS01]. For finite strings w, we start with Z0wBω, hence, we
obtain a similar definition of acceptance for finite strings.

Remark 2.1 We observe that every non-oscillating run is complete, too, i.e.,
every tape cell is visited at least once.

In that way, with deterministic Turing machines we can characterize Π0
3

(see [FS01]), whereas with non-deterministic Turing machines we obtain Σ1
1,

e.g., see [Sta97, SW78]:
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Proposition 2.2 The family of languages and ω-languages accepted by de-
terministic and non-deterministic Turing machines with non-oscillating runs
equals Π0

3 and Σ1
1, respectively.

3 Turing Machines with Activations of Tran-
sitions

In this section, we describe the variants of Turing machines with activations
of transitions as already briefly discussed in Section 1.

A Turing machine with activations of transitions (an ATM) for short) is a
construct

MA = (V , Z0,B,T,H,L, A0)

where

• V the set of the tape alphabet, {Z0,B}⊂V \ T;

• Z0 is the left boundary marker of the tape;

• B is the blank symbol;

• T ⊂V the terminal alphabet;

• H is a set of labels;

• L is a set of labeled transitions of the form r : (X ,Y ; A) with r ∈ H,
X ,Y ∈V and A being a finite subset of H×Z;

• A0 is a finite subset of H×N describing the initial activations of tran-
sitions.

A computation of the ATM MA in general can be defined as follows:

• In any run, the ATM MA only moves from left to right, starting on the
left boundary marker Z0 (this symbol must not be overwritten).

• We consider a sequence of runs; in every run, in any time step k, we
try to apply one of the labeled transitions activated for this time step
k; if none of those is applicable, the computation goes on as long as
there is still a time step for which at least one transition is activated.

• The initial activations of transitions in A0 of the form (r, t) indicate
that for time step t of the first run the transition r is activated and
thus may be used in this step; observe that different transitions may
be activated for the same time step t.
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• Executing the transition r : (X ,Y ; A) in time step k means replacing
the contents X of the k-th tape cell by Y (and moving the head one cell
to the right for the next computation step of this run); an element (s, t)
in A causes the activation of transition s in time step k+ t in the next
run.

There are several ways to define the final result obtained by a sequence
of – finite or infinite – runs of the ATM MA:

finite runs generating finite strings the first run starts with the “empty
tape”, i.e., with Z0Bω; given some w ∈ T∗ we say that w is generated
by MA if and only if there exists a sequence of runs that ends, i.e., in
some run no transition is applicable any more, and the final tape is of
the form Z0wBω;

finite runs accepting finite strings the first run starts with Z0wBω for
some w ∈ T∗; we say that w is accepted if and only if there exists a
sequence of runs that ends, i.e., in a run no transition is applicable;

infinite runs generating ω-words the first run starts with Z0Bω; we
consider infinite sequences of runs, probably having to fulfill specific
conditions with respect to the applied transitions; we here restrict our-
selves to the condition of non-oscillating sequences of runs, i.e., for
every tape cell n there exists a run r(n) such that in all runs after run
r(n) the contents of tape cell n is not changed any more and, if still
transitions for time step n are activated, also those will not change
any more in runs r(m) with m > n;

infinite runs accepting ω-words the first run starts with Z0ξ for some
ξ ∈ Tω; we say that ξ is accepted by MA if and only if there exists a
non-oscillating sequence of runs starting with the initial tape Z0ξ;

infinite runs generating finite strings the first run starts with Z0Bω;
a finite string w ∈ T∗ is said to be generated by MA if and only if the
ω-word wBω is generated by MA;

infinite runs accepting finite strings the first run starts with Z0wBω

for some w ∈ T∗; we say that w is accepted by MA if and only if the
ω-word wBω is accepted by MA.

Remark 3.1 As for TMs we observe that every non-oscillating sequence of
runs of an ATM is complete, too, i.e., every tape cell is visited at least once.
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We now consider a rather restricted model where in every run in each
time step a transition must be executed, i.e., we consider sequences of runs
where in the n-th run exactly n steps to the right on the tape are carried out.
In step k, 1 ≤ k ≤ n, one of the labeled transitions activated for time step k
is executed; if none of those is applicable, the computation stops without
yielding a result. Such a restricted ATM will be called continuous or a cATM
for short.

Remark 3.2 If we do not require the ATM to be continuous, we may sim-
plify the final condition of non-oscillating sequences of runs: for every tape
cell n there exists a run r(n) such that in all runs after run r(n), no transition
is activated for tape cell n any more.

An accepting ATM MA is called deterministic if in every run of a non-
oscillating sequence of runs of MA never more than one transition is appli-
cable in a time step of a run.

Remark 3.3 We observe that – in contrast to the feature of a TM to be de-
terministic, which can syntactically be checked from the description of the
TM – the feature of an ATM to be deterministic cannot be checked syntacti-
cally; as a dynamic feature of all possible – even infinite – computations it is
not decidable.

This can be verified in the following manner:
We start with a deterministic universal Turing machine U having the

single final terminal state sfin. We then construct another Turing machine
U ′ which has an additional new final state s′fin, and to any transition leading
to sfin, we add a twin transition leading to this new final state s′fin. Thus the
newly defined machine U ′ is also universal, but is non-deterministic, as for
every accepting computation leading to a final state there is a second one
leading to the other final state in the last step of the computation.

We first consider the following Turing machines Mk, k ∈ N: Mk is ob-
tained by simulating the program k on input k on U ′, that is, the Mk encode
the halting problem K . Then, in view of the invention of the twin final tran-
sitions, Mk is non-deterministic, but works in a deterministic way if and only
if k ∉ K – a problem which is undecidable.

For every Turing machine Mk, we now construct a non-deterministic
ATM AMk simulating Mk and having an accepting (i.e., non-oscillating) run
on input n if and only if the input equals k. To guarantee that its run on in-
put k becomes non-oscillating, AMk also runs an intermediate subprogram
moving the whole tape contents of Mk one cell to the right whenever having
simulated a transition of Mk. This guarantees that for every k ∉ K , AMk has
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a deterministic non-oscillating run on input k while simulating the compu-
tation of Mk on k.

For k ∈ K , AMk can simulate the transitions of Mk in a deterministic way
until Mk reaches one of its final states sfin and s′fin, yet this last transition
has to be chosen in a non-deterministic way. After having reached one of the
final states, AMk just makes an infinite run to the right, thus accepting k
by a non-oscillating run.

On the other hand, for any other input 6= k, after having checked that the
input does not equal k, AMk immediately starts a complete, but oscillating
run, oscillating between going back to the beginning of the tape and visiting
another tape cell to the right.

In sum, the ATMs AMk accept exactly k by (sequences of) non-oscillating
runs, but by construction AMk is deterministic if and only if k ∉ K , a ques-
tion which is undecidable as already pointed out above.

As we shall see from the proofs elaborated in Section 4, cATMs have the
advantage that we can start every run from the initial tape again, as all
information about the contents of the tape cells visited so far can be taken
over from the preceding run by using suitable activations for each tape cell n
which corresponds to using suitable activations for each time step n. A cATM
always starting with the initial tape is called an initial cATM or icATM for
short.

4 Accepting Turing Machines with Activations
of Transitions

In this section we consider accepting Turing Machines with activations of
transitions and prove that the families of (ω-)languages accepted by deter-
ministic and non-deterministic Turing Machines with activations of transi-
tions accepting with non-oscillating sequences of runs coincides with Π0

3 and
Σ1

1, respectively.
Before proving our general results we give an example showing how

regular languages can be characterized by specific restricted variants of
icATMs:

Example 4.1 A deterministic finite automaton can be seen as a special vari-
ant of a deterministic Turing machine M = (V , Z0,B,T,Q, p0,F,δ) accepting
finite strings w ∈ T∗, starting with Z0wBω, having the following restrictions:

• V = T ∪ {Z0,B}, i.e., there are no additional tape symbols;
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• δ only contains transitions with movements to the right of the form
(p,a, q,a,R), p, q ∈Q, a ∈ T ∪ {Z0};

• for each pair (p,a) with p ∈Q and a ∈ T∪{Z0} there is exactly one state
q ∈Q such that (p,a, q,a,R) ∈ δ.

Due to the restricted forms of the transitions, any computation in a deter-
ministic finite automaton halts if it reaches the first blank symbol B; we say
that w is accepted by M if and only if it is in a final state from F when halt-
ing. The language accepted by M, i.e., the set of all terminal words accepted
by M in that way is denoted by L(M).

We now construct an icATM

MA = (V , Z0,B,T,H,L, A0)

with V = T ∪ {Z0,B} simulating the transitions of M in such a way that in
the n-th run the first n−1 symbols of the input string w are read; in the
first step, always Z0 is read. If after n+1 runs the input string has been
parsed completely, the sequence of runs stops as no transition is defined
when reading the first blank symbol B if M has reached this situation in a
final state; otherwise, an infinite loop is started moving to the right over the
infinite tail Bω on the tape.

• A0 = {(< p0, Z0 >,1)},
i.e., for the first step in the first run as the initial transition < p0, Z0 >
is activated;
< p0, Z0 >: (Z0, Z0, {(< id(Z0)>,0)}∪ {(< q,a >,1) | (p0, Z0, q) ∈ δ,a ∈ T}∪
{(< r,B >,1) | (p0, Z0, q) ∈ δ, q ∈Q \ F}),
i.e., Z0 in the next run is just rewritten to itself, but for the second
any valid transition according to the given relation δ is activated; as
M is deterministic, for every terminal symbol a to be read exactly one
transition will be available; if the end of the input string has been
reached, the sequence of runs only continues if M has not reached a
final state.

• Each transition of M in state p reading the terminal symbol a is sim-
ulated in MA by
< p,b >: (b,b, {(id(b),0)}∪ {(< q,a >,1) | (p,b, q) ∈ δ,a ∈ T}∪
{(< r,B >,1) | (p,b, q) ∈ δ, q ∈Q \ F}),
i.e., the underlying symbol of the input string on tape cell n is rewrit-
ten to itself, but for the next run any valid transition according to the
given relation δ is activated for tape cell n+1; as M is deterministic, for
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every terminal symbol a to be read at position n+1 exactly one transi-
tion will be available; if the end of the input string has been reached,
the sequence of runs only continues if M has not reached a final state
using the transition labeled by < r,B >.

• For any b ∈ T ∪ {B}, the identity transition is defined by
< id(b)>: (b,b, {(< id(b)>,0)}).

• For doing the infinite loop to the right on the blank symbols, we use
< r,B >: (B,B, {(< id(B)>,0), (< r,B >,1)}).

Summing up, we have defined

H = {< p,b >| p ∈Q,b ∈ T ∪ {B}}∪ {< p0, Z0 >,< r,B >}
∪ {< id(b)>| b ∈ T ∪ {B}},

L =
{
< p0, Z0 >:

(
Z0, Z0, {(< id(Z0)>,0)}∪

{(< q,a >,1) | (p0, Z0, q) ∈ δ,a ∈ T}∪
{(< r,B >,1) | (p0, Z0, q) ∈ δ, q ∈Q \ F}

)}
∪

{
< p,b >:

(
b,b, {(id(b),0)}∪

{(< q,a >,1) | (p,b, q) ∈ δ,a ∈ T}∪
{(< r,B >,1) | (p,b, q) ∈ δ, q ∈Q \ F}

) ∣∣∣ p ∈Q,b ∈ T ∪ {B}
}

∪ {< id(b)>: (b,b, {(< id(b)>,0)}) | b ∈ T ∪ {B}}
∪ {< r,B >: (B,B, {(< id(B)>,0), (< r,B >,1)})},

A0 = {(< p0, Z0 >,1)}.

Acceptance is obtained by finite sequences of runs, but by replacing q ∈
Q \ F by q ∈ F we obtain an icATM M′

A accepting by infinite sequences of
runs instead.

We may also consider ATMs M̃A and M̃′
A which only use the activations

going to the right, i.e., we take the ATM

M̃A = (T ∪ {Z0,B}, Z0,B,T, H̃, L̃, Ã0)
H̃ = {< p,b >| p ∈Q,b ∈ T ∪ {B}}∪ {< p0, Z0 >,< r,B >},
L̃ = {< p0, Z0 >: (Z0, Z0, {(< q,a >,1) | (p0, Z0, q) ∈ δ,a ∈ T}∪

{(< r,B >,1) | (p0, Z0, q) ∈ δ, q ∈Q \ F})}
∪ {< p,b >: (b,b, {(< q,a >,1) | (p,b, q) ∈ δ,a ∈ T}∪

{(< r,B >,1) | (p,b, q) ∈ δ, q ∈Q \ F}) | p ∈Q,b ∈ T ∪ {B}}
∪ {< r,B >: (B,B, {(< r,B >,1)})},

Ã0 = {(< p0, Z0 >,1)}.
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M̃A accepts with finite sequences of runs, and M̃′
A, again obtained from

M̃A by q ∈Q \ F by q ∈ F, accepts with infinite sequences of runs.

We now turn our attention to ATMs accepting with infinite runs. In con-
trast to the finite automata simulated in the example above, in the case of
arbitrary TMs we also have to simulate transitions moving to the left.

Theorem 4.2 The families of string languages and ω-languages accepted by
non-deterministic ATMs and cATMs coincide with Σ1

1.

Proof. Given a non-deterministic ATM MA, we can construct a non-
deterministic TM M accepting, by non-oscillating runs, the same set of
strings or ω-words as accepted by non-oscillating sequences of runs of MA:
M simulates the runs in the sequence one after the other, and stores the
activations of transitions for the next run. The main technical detail is to
guarantee that the run of M is non-oscillating if and only if the simulated se-
quences of runs of MA is non-oscillating. This, for example, can be achieved
by using several tracks on the tape cells, one for the initial input, one for
the computations to be carried out, and one for returning to the leftmost po-
sition where during the simulated run an activated transition has changed
the contents of the tape cell. In this way, only the positions corresponding
to time steps changing the contents of an underlying tape cell are visited.
Hence, for all runs of MA not changing tape cell n any more, also M does not
go left of tape cell n any more. We conclude that a run of M is non-oscillating
if and only if it simulates a non-oscillating sequence of runs of MA.

For the other inclusion, we start with a (non-deterministic) TM

M = (V , Z0,B,T,Q, p0,F,δ)

and construct an equivalent cATM

MA = (V , Z0,B,T,H,L, A0)

with

H = {< p, Z0, q, Z0,R >| (p, Z0, q, Z0,R) ∈ δ}
∪ {< p, X , q,Y ,R >| (p, X , q,Y ,R) ∈ δ, X 6= Z0}
∪ {< p, X , q,Y ,L >| (p, X , q,Y ,L) ∈ δ}
∪ {< X ,R >,< X ,0>,< X ,L >| X ∈V },
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L =
{
< p, Z0, q, Z0,R >:

(
Z0, Z0, {(< Z0,L >,0)}

∪ {(< q, X ′, q′,Y ′,D >,1) | (q, X ′, q′,Y ′,D) ∈ δ, X ′,Y ′ ∈V , q′ ∈Q}
)∣∣∣ (p, Z0, q, Z0,R) ∈ δ

}
∪

{
< p, X , q,Y ,R >:

(
X ,Y , {(<Y ,L >,0)}∪ {(<U ,L >,−1)} |U ∈V }

∪ {(< q, X ′, q′,Y ′,D >,1) | (q, X ′, q′,Y ′,D) ∈ δ, X ′,Y ′ ∈V , q′ ∈Q}
)∣∣∣ (p, X , q,Y ,R) ∈ δ, X 6= Z0

}
∪

{
< p, X , q,Y ,L >:

(
X ,Y , {(<Y ,R >,0)}∪ {(<U ,R >,1)} |U ∈V }

∪ {(< q, X ′, q′,Y ′,D >,−1)} | (q, X ′, q′,Y ′,D) ∈ δ, X ′,Y ′ ∈V , q′ ∈Q}
)∣∣∣ (p, X , q,Y ,L) ∈ δ

}
∪

{
< X ,R >: (X , X , {(<Y ,R >,1) |Y ∈V }) | X ∈V

}
∪

{
< X ,L >: (X , X , {(<Y ,L >,−1) |Y ∈V }) | X ∈V \{Z0}

}
∪ {< Z0,L >: (Z0, Z0,;)},

A0 = {(< p0, Z0, q, Z0,R >,1) | (p0, Z0, q, Z0,R) ∈ δ} .

The simulation of a computation in M starts with the corresponding initial
activation < p0, Z0, q, Z0,R >, with MA replacing Z0 by Z0 and activating
some < q, X ′, q′,Y ′,D > for the second step of the second run of MA, whereas
for the first step in the second run the rule labeled by < Z0,L > is activated,
only rewriting Z0 by itself.

In general, as long as M only makes steps to the right, only rules la-
beled by < p, X , q,Y ,R > are activated in the n-th step, replacing X by Y
and activating some < q, X ′, q′,Y ′,D > for step n+1 in the run n+1 of MA,
whereas for each preceding step in this run rules labeled <U ,L > are ac-
tivated, which rewrite the underlying symbol U by itself, again activating
rules labeled < X ,L > to the left; this sequence sending activations to the
left ends at the position of Z0, where no rule to the left is activated any
more.

As soon as a rule labeled by < p, X , q,Y ,RL > is activated in the n-th
step, which simulates a computation step of M moving the head to the left,
also a sequence of activations to the right is initiated by <Y ,R >,0) for the
n-th step of the run n+1 and <U ,R >, for some U ∈V , for step n+1 in this
run. From that moment on, this sequence of activations to the right ends on
a blank symbol in the last step, activating < B,R > for the next step (position
on the tape), too.
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In general, a transition (p, X , q,Y ,R) of M on position m of the tape to the
right is simulated by MA in step m with the rule labeled by <p, X , q,Y ,R>,
which replaces X by Y , activates rules labeled <q, X ′, q′,Y ′,D> for all possi-
ble next transitions of M on position m+1. The sequences of rules <U ,L >
to the left as well as of rules <U ,R > to the right guarantee that in the
next run of MA all positions on the tape except m+1 rewrite the underlying
symbols and again activate these identity rules to the left and to the right,
whereas only positions m, m+1, and m+2 are controlled by the rule labeled
by < q, X ′, q′,Y ′,D >.

In the same way, a transition (p, X , q,Y ,L) of M on position m of the
tape to the right is simulated by MA in step m with the rule labeled by
< p, X , q,Y ,L >, which replaces X by Y , activates rules labeled < q, X ′, q′,Y ′,D >
for all possible next transitions of M on position m−1. The sequences of rules
<U ,L > to the left as well as of rules <U ,R > to the right guarantee that in
the next run of MA all positions on the tape except m−1 rewrite the under-
lying symbols and again activate these identity rules to the left and to the
right, whereas only positions m, m−1, and m−2 (for m ≥ 2) are controlled
by the rule labeled by < q, X ′, q′,Y ′,D >.

With the simulations described above, MA accepts a finite string w re-
spectively any ω-word ξ by non-oscillating infinite sequences of runs if and
only if M accepts w respectively ξ by a complete non-oscillating run, which
proves the assertions claimed in the theorem.

We finally observe that the construction of the non-deterministic cATM
MA elaborated above immediately also yields an equivalent ATM

M′
A = (V , Z0,B,T,H′,L′, A′

0)

where we can even omit the activation of the transitions not changing the
contents of tape cells from the preceding run:

H′ = {< p, Z0, q, Z0,R >| (p, Z0, q, Z0,R) ∈ δ}
∪ {< p, X , q,Y ,R >| (p, X , q,Y ,R) ∈ δ, X 6= Z0}
∪ {< p, X , q,Y ,L >| (p, X , q,Y ,L) ∈ δ}

L′ =
{
< p, X , q,Y ,R >:

(
X ,Y , {(< q, X ′, q′,Y ′,D >,1)

| (q, X ′, q′,Y ′,D) ∈ δ, X ′,Y ′ ∈V , q′ ∈Q}
) ∣∣∣ (p, X , q,Y ,R) ∈ δ

}
∪

{
< p, X , q,Y ,L >:

(
X ,Y , {(< q, X ′, q′,Y ′,D >,−1)

| (q, X ′, q′,Y ′,D) ∈ δ, X ′,Y ′ ∈V , q′ ∈Q}
) ∣∣∣ (p, X , q,Y ,L) ∈ δ

}
A′

0 = {(< p0, Z0, q, Z0,R >,1) | (p0, Z0, q, Z0,R) ∈ δ}.

In the runs of M′
A, only the rules < p, X , q,Y ,R > or < p, X , q,Y ,L > acti-

vated at position m are executed, moving the activated position for the next
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run to m+1 respectively m−1. Although the activations are not pushed one
position to the right, i.e., initiating one step more, in succeeding runs of M′

A,
a sequence of runs in M′

A still is a non-oscillating infinite one if and only if
the simulated run of M is a non-oscillating infinite one. o

The construction elaborated in the proof of Theorem 4.2 also works in the
deterministic case, guaranteeing that the simulations of accepting runs of a
deterministic TM correspond to deterministic accepting sequences of runs of
the corresponding cATM.

Corollary 4.3 The families of string languages and ω-languages accepted
by deterministic ATMs and cATMs coincide with Π0

3.
Proof. As in the proof of Theorem 4.2, we can simulate any accepting

non-oscillating computation of the given deterministic TM M by sequences
of deterministic runs of the simulating cATM MA, which therefore, by def-
inition is a deterministic cATM. Yet even the non-accepting sequences of
runs of the cATM MA simulating non-accepting runs of the given TM M are
deterministic.

On the other hand, given a deterministic cATM MA, we can construct a
deterministic TM M accepting the same set of strings or ω-words: the ac-
cepting sequences of runs of the cATM MA are deterministic by definition;
hence, for all sequences of runs of the cATM MA, M in addition has to check
whether the determinism condition is fulfilled during the runs of MA; as
soon as a non-deterministic activation of transitions is detected by M, it con-
tinues with an oscillating computation thus rejecting the input; the second
possibility of rejecting an input is by simulating an oscillating deterministic
computation of MA. o

Whether the results shown in Theorem 4.2 and Corollary 4.3 for non-
deterministic respectively deterministic ATMs and cATMs also holds for
icATMs, remains as an open question.

5 Conclusion
In this paper we have considered variants of Turing machines with activa-
tions of transitions. With each execution of a transition, transitions for the
next run of the Turing machine are activated. Accepting with non-oscillating
sequences of runs, such deterministic respectively non-deterministic Tur-
ing machines with activations of transitions characterize Π0

3 and Σ1
1, respec-

tively.
Accepting with non-oscillating runs is the most powerful acceptance mode

for languages and ω-languages when using ω-computations on Turing ma-
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chines. The results of [CG78, SW78, Sta85] and [FS01], however, show that
in the case of non-deterministic machines also the simple red-green ma-
chines of [vLW12] achieve the same power.

In the deterministic case, a comparison of results shows that there is
a difference in the accepting power between Turing machines accepting ω-
languages with arbitrary runs [CG78, Sta97, SW78], complete runs [EH93,
Sta99], and complete non-oscillating runs [FS01]. The same is true for the
language case where the red-green Turing machines of [vLW12] accept lan-
guages in Σ0

2 and, in a more general setting, see [CS10, Sta85], languages up
to the Boolean closure of Σ0

2 are accepted.
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