
CDMTCS

Research

Report

Series

A Statistical Anytime

Algorithm for the Halting

Problem

C. S. Calude
1
and M. Dumitrescu

2

1University of Auckland, NZ
2Bucharest University, Romania

CDMTCS-529
November 2018

Centre for Discrete Mathematics and
Theoretical Computer Science

A Statistical Anytime Algorithm for the Halting Problem

Cristian S. Calude∗ Monica Dumitrescu†

January 17, 2019

Abstract

In a previous paper we used running times to define a class of computable probability distri-
butions on the set of halting programs and developed a probabilistic anytime algorithm for the
Halting Problem. The cut-off temporal bound of this algorithm can be very large. On the other
hand, the choice of a computable probability distribution can be rather subjective and hard to
substantiate.

In this paper we propose and study an efficient statistical anytime algorithm for the Halting
Problem. The main advantage of the statistical algorithm is that it can be implemented without
any prior information about the running times on the specific model of computation and the cut-
off temporal bound is reasonable small. The algorithm has two parts: the pre-processing which
is done only once (when the parameters of the quality of solutions are fixed) and the main part
which is run for any input. With a confidence level as large as required, the algorithm produces
correct decisions with a probability as large as required. Three implementations of the algorithm
are presented and numerically illustrated. The algorithm can be naturally programmed as a faster
hybrid classical-quantum algorithm for classes of instances of the Halting Problem.

Keywords: Halting Problem, anytime algorithm, running time, order statistics

1 Introduction

The Halting Problem asks to decide, from a description of an arbitrary program and an input, whether
the computation of the program on that input will eventually stop or continue forever. In 1936
A. Church, and independently A. Turing, proved that there is no algorithm solving the Halting Problem
for all possible program-input pairs. The Halting Problem has many applications in mathematics, logic
and theoretical as well as applied computer science, mathematics, physics, biology, etc. Due to its
practical importance approximate solutions for this problem have been proposed for quite a long time,
see [18, 16, 14, 8, 11, 20, 7, 6, 3, 24, 5].

Anytime algorithms trade execution time for quality of results [13]. Instead of correctness, an
anytime algorithm returns a result together with a “quality measure” which evaluates how close the
obtained result is to the result that would be returned if the algorithm ran until completion (which may
be prohibitively long). To improve the quality of the solution, anytime algorithms can be continued
after they have halted. We use a more general form of anytime algorithm as an approximation for a
computation which may never stop (see Manin [20]). The anytime algorithm for the Halting Problem
works as follows: we first effectively compute a threshold time – the stopping condition – and then
run the program for that specific time; if the computation does not stop, then we declare that: a) the
program will never stop and b) evaluate the probability of error, i.e. the probability that the program
may eventually stop. The goal is to prove that the probability of error can be made as small as we wish.

∗Department of Computer Science, University of Auckland, Auckland, New Zealand.
†Faculty of Mathematics and Computer Science, Bucharest University, Romania.

1

Running the program for a longer time will improve its performance either by reaching the halting
time or by decreasing the probability of error. Running times play an important role in the study of
this problem because halting programs are not uniformly distributed, see [27, 28, 26] for experimental
work and [15, 14, 8, 7] for theoretical results.

In this paper we propose a statistical anytime algorithm for the Halting Problem which improves
the performance of the algorithm developed in [5] and works also in case the probability distribution
on the set of halting programs is unknown. The statistical algorithm uses three parameters, namely
the probability of an erroneous decision, the precision of and the confidence level in the decision. The
pre-processing of the algorithm is done only once (when the parameters of the quality of solutions
are fixed) and then used for running the algorithm on any input. With a confidence level as large
as required, the algorithm produces correct decisions with a probability as large as required. Three
implementations of the algorithm are presented and numerically illustrated. The algorithm can be
naturally programmed as a faster hybrid classical-quantum algorithm for classes of instances of the
Halting Problem.

The paper is organised as follows. We start with a section on basic notation. Section 3 presents the
computability and complexity part while Section 4 reviews the main notions and results from proba-
bility and statistics. Section 5 presents the probability framework, Section 6 presents the statistical
framework, then Section 7 presents the statistical anytime algorithm for the Halting Problem and the
proof of its main properties. Finally, in Section 8 we discuss three possible implementations of the
statistical algorithm and present numerically illustrations; the last section is devoted to conclusions
and possible extensions.

2 Notation

In the following we will denote by Z+ the set of positive integers {1, 2, . . . } and let Z+ = Z+ ∪ {∞}; R
is the set of reals. For α ∈ R, ⌈α⌉ is the ceiling function that maps α to the least integer greater than
or equal to α. The domain of a partial function F : Z+ −→ Z+ is denoted by dom (F): dom (F) =
{x ∈ Z+ | F (x) < ∞}. We denote by #S the cardinality of the set S and by P(X) the power set of
X. The indicator (or characteristic) function of a set M is denoted by 1M .

We assume familiarity with elementary computability theory and algorithmic information the-
ory [19, 4, 12]. For a partially computable function F : Z+ −→ Z+ we denote by F (x)[t] < ∞ the
statement “the algorithm computing F has stopped exactly in time t”. For t ∈ Z+ we consider the
computable set Stop(F, t) = {x ∈ Z+ | F (x)[t] < ∞}, and note that

dom(F) =
!

t∈Z+

Stop(F, t). (1)

3 Complexity and universality

The algorithmic complexity relative to a partially computable function F : Z+ −→ Z+ is the par-
tial function ∇F : Z+ −→ Z+ defined by ∇F (x) = inf {y ∈ Z+ | F (y) = x} . If F (y) ∕= x for every
y ≥ 1, then ∇F (x) = ∞. A partially computable function U is universal if for every partially com-
putable function F : Z+ −→ Z+ there exists a constant cU,F such that for every x ∈ dom (F) we have
∇U (F (x)) ≤ cU,F · x, see [7].

The set dom(U) (see (1) for U = F) is computably enumerable, but not computable (the undecid-
ability of the Halting Problem); its complement dom(U) is not computably enumerable, but the sets
(Stop(U, t))t≥1 are computable. To solve the Halting Problem means to determine for an arbitrarily
pair (F, x), where F is a partially computable function and x ∈ Z+, whether F (x) stops or not, or

2

equivalently, whether x ∈ dom(F), that is, x ∈ Stop(F, t), for some t ∈ Z+. Solving the Halting Prob-
lem for a fixed universal U is enough to solve the Halting Problem. From now on we fix a universal U
and study the Halting Problem “For every x ∈ Z+, does U(x) < ∞?”.

4 Probability and statistics

In this section we define the main notions from probability theory and statistics used in this paper.
For more details see [9, 23].

A measurable space (Ω,B (Ω)) consists of a non-empty set Ω and a Borel field of subsets of Ω,
B (Ω) ⊆ P (Ω). A probability space is a triple (Ω,B(Ω),Pr), where (Ω,B(Ω)) is a measurable space and
Pr: B(Ω) −→ [0, 1] is a probability measure, that is, Pr satisfies the following two conditions: a) the
probability of a countable union of mutually-exclusive sets in B(Ω) is equal to the countable sum of
the probabilities of each of these sets, and b) Pr(Ω) = 1. We interpret B(Ω) as “the family of events”
and Ω as “the certain event”.

Consider a probability space (Ω,B(Ω),Pr) and a measurable space (A,B(A)). A random variable
is a measurable function X : Ω −→ A, that is, for every B ∈ B(A) we have X

−1(B) ∈ B(Ω). In this
case X induces a probability (called probability distribution of X) PX : B(A) −→ [0, 1] defined by

PX(B) = Pr(X−1(B)) = Pr({ω | X(ω) ∈ B}), B ∈ B(A),

which defines the probability space (A,B(A), PX).
The random variable X has a discrete probability distribution if A is at most countable. If we

denote by PX({x}) the probability of the event {X = x} = {ω ∈ Ω | X(ω) = x}, then the discrete
probability distribution of X is completely defined by the numbers PX({x}) ∈ [0, 1], x ∈ A, with"
x ∈ A

PX({x}) = 1. A computable probability distribution PX is a discrete probability distribution such

that the function x ∈ A ↩→ PX({x}) is computable (in particular, PX({x}) is a computable real for
each x ∈ A [21, p. 159]; see also [29, 22]).

In what follows we assume that A ⊆ R.
The mean (or expected value) of the random variable X : Ω −→ A is defined by

E (X) =
#

x∈A
x · Pr ({ω ∈ Ω | X (ω) = x}) ,

if the series converges.

The following form of Hoeffting’s inequality (see [25]) will be used in what follows:

Theorem 1. Let N > 0 be an integer and a, b ∈ R, a < b. For every X1, . . . , XN independent random
variables defined on (Ω,B (Ω) ,Pr) with values in [a, b] we have:

Pr

$%
ω ∈ Ω | 1

N

N#

i=1

Xi(ω)− E

$
1

N

N#

i=1

Xi

&
≤ λ

'&
≥ 1− exp

(
− 2Nλ2

(b− a)2

)
.

The Cumulative Distribution Function of a random variable X is the function CDFX : R −→ [0, 1]
defined by CDFX(y) = Pr(X ≤ y), y ∈ R. In case X is a random variable with a discrete distribution,
CDFX is the stair-function (with piecewise-constant sections) given by

CDFX(y) =
#

{x∈A | x ≤ y}

PX(x), y ∈ R.

3

The Quantile Function of the random variable X with a discrete distribution is the function qX :
[0, 1] −→ A defined by qX (p) = inf {y ∈ A | p ≤ CDFX (y)}. By definition, CDFX (qX (p)) ≥ p, for
all p ∈ [0, 1].

For fixed r ∈ [0, 1], the value (number) qX (r) is called the rth quantile of the random variable
X. Quantiles are important indicators that give information about the location and clustering of the
probability values {PX(x), x ∈ A} . For example, if the data being studied are not actually distributed
according to an assumed underlying probability distribution or if there are outliers far removed from
the mean, then quantiles may provide useful information. Beside the classical quartiles – first, second
(median), third – the lower and upper εth quantiles, qX(ε) and qX(1− ε), give important information
about the “tails” of the probability distribution (for small ε > 0). For more details see [2].

The following result suggested the probabilistic anytime algorithm for the Halting Problem [5]:

Proposition 2. For every ε ∈ (0, 1) we have PX ({x ∈ A | x > qX(1− ε)}) ≤ ε.

The notions and results discussed above are theoretical and are based on the assumption that the
probability Pr and the random variable X are known. In case this assumption is not satisfied, can an
inferential approach be used to extract information about the probability distribution of the random
variable X from observations of the phenomenon described by X? Thus, instead of working with the
theoretical CDFX , can we characterise the probability distribution of a random variable X by means
of a (long-enough) sequence X1, . . . , XN of independent, identically distributed random variables with
the same distribution as X? The answer is affirmative.

Consider the probability space (Ω,B(Ω),Pr), the random variable X : Ω −→ A and N replicates
X1, . . . , XN of X. In what follows (x1, . . . , xN) ∈ A

N will denote the observed values of a sample of
size N corresponding to the random variables X1, . . . , XN : (x1, . . . , xN) = (X1(ω), . . . , XN (ω)) ∈ A

N .
The vector (x1, . . . , xN) will be called an N -dimensional sample and its values x1, . . . , xN data points.
The Empirical Cumulative Distribution Function is defined by

ECDFX,N (y) =
{1 ≤ i ≤ N | xi ≤ y}

N

, y ∈ R. (2)

Suppose that we order increasingly the observed data points and denote the sequence by

x(1) ≤ x(2) ≤ · · · ≤ x(N−1) ≤ x(N). (3)

The order statistics of rank k is the kth smallest value in (3): X(k)(ω) = x(k). See more in [9,
Ch. 6]).

Inference-based-decisions are made using statistical procedures based on sets of observations. An
inference-based-decision of a hypothesis results in one of two outcomes: the hypothesis is accepted or
rejected. The outcome can be correct or erroneous. The set of observations leading to the decision
“reject the hypothesis” is called the critical region.

Fix the probability space (A,B(A), PX) induced by a random variable X. Consider a critical region
B ⊂ A,B ∈ B(A) and an observed value x ∈ A. For every x ∈ A, a hypothesis Hx is a statement such
that “Hx is true” and “Hx is false” are measurable sets from B(A).

An inference-based-decision has the following form:

If the observed value x ∈ A belongs to B, then decide to reject the hypothesis Hx.

An error occurs if we reject Hx on the basis of B, when Hx is true. The probability of error, that
is, the probability of an erroneous decision, is PX({x ∈ B | “Hx is true”}). Of course, only decisions
with very low probability of error are of interest.

4

5 Probability framework

Recall that the finite running times of the computations U (x) are the set of exact stopping times
for the halting programs of U: TU = {t ∈ Z+ | there exists x ∈ Z+ such that x ∈ Stop (U, t)} =
{t ∈ Z+ | there exists x ∈ Z+ such that U (x) [t] < ∞} .

Let us consider the family of (finite and countable) unions of sets Stop(U, t), t ∈ Z+
. This family

includes dom (U) and is closed under complement Stop(U, t) =
*

t′∈TU\{t} Stop(U, t
′), and countable

unions; accordingly, it is a Borel field of subsets of dom(U), which we denote by B(dom(U)). To define
the discrete probability measure on the measurable set (dom(U),B(dom(U))) we fix a computable
probability distribution ρ on TU and put Pr = Prρ : B (dom(U)) −→ [0, 1], Pr(Stop(U, t)) = ρ(t), t ∈
TU.

Next we introduce a probability structure on the set TU via a random variable. Let B(TU) be
the family of all subsets of TU. The function RT = RTU : dom(U) −→ TU, RT (x) = min{t >

0 | x ∈ Stop(U, t)} has the property that for every t ∈ TU, RT
−1({t}) = Stop(U, t) ∈ B (dom(U)).

Consequently, RT is a random variable which will be called the running time associated with U. As
described in Section 4, the random variable RT induces the probability space (TU,B(TU), PRT) on
TU in which the probability is defined by PRT ({t}) = Pr(RT

−1({t})), t ∈ TU. For every t ∈ TU we
have: PRT ({t}) = Pr(Stop(U, t)) = ρ(t).

A computable probability space (dom (U) ,B(dom(U)),PrρU) of the form defined above will be
called a running time probability space. The random variable RT is completely specified by a computable
probability distribution on the set of finite running times of programs of U, {ρ(t) | t ∈ TU}. Examples
of computable probability distributions are in [5].

6 Statistical framework

The statistical anytime algorithm assumes that the probability distribution of RT is unknown. There-
fore, the cumulative distribution function of RT , CDFRT (t) = Pr ({x ∈ dom (U) | RT (x) ≤ t}), is
also unknown and has to be estimated.

To this aim we fix a positive integer N and consider the N−dimensional program sampling space:
+
dom (U)N ,B

+
dom (U)N

,
,PrN

,
.

The elements of dom (U)N will be denoted by x = (x1, . . . , xN) . The “projections" {pr1, . . . , prN} ,
pri : dom (U)N −→ dom (U) , pri (x) = xi, i = 1, . . . , N, are independent random variables. If we
denote by RTi = RT ◦pri : dom (U)N −→ TU, RTi (x) = RT (xi) , i = 1, . . . , N , then {RT1, . . . , RTN}
are independent, identical distributed random variables. Furthermore, for every 1 ≤ i ≤ N, we have:

CDFRTi (t) = PrN
+-

x ∈ (dom (U))N | RT (xi) ≤ t, 1 ≤ i ≤ N

.,

= PrN (dom (U)× · · ·× {xi ∈ dom (U) | RT (xi) ≤ t}× dom (U)× · · ·× dom (U))

= Pr (dom (U)) · · ·Pr ({xi ∈ dom (U) | RT (xi) ≤ t}) · Pr (dom (U)) · · ·Pr (dom (U))

= CDFRT (t) .

For every x ∈ dom (U)N we put RTi (x) = ti(x), 1 ≤ i ≤ N and denote the N−dimensional time
sampling space by

/
TN

U,B
/
TN

U

0
, P

N
RT

0
.

In the following Theorem 3, CDFRT (t) is estimated by the Empirical Cumulative Distribution
Function (2)

5

ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t) =
{1 ≤ i ≤ N | RTi (x) ≤ t}

N
(4)

=
{1 ≤ i ≤ N | ti(x) ≤ t}

N

.

Theorem 3. For every positive integer N, t ∈ TU and λ ∈ (0, 1), we have:

PrN
+-

x ∈ dom (U)N | ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t)− CDFRT (t) ≤ λ
.,

(5)

≥ 1− exp
/
−2N · λ2

0
.

Proof. On one hand, from (4) we have:

ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t) =
1

N

N#

i=1

1{x∈domUN | RTi(x) ≤ t}.

On the other hand, using the properties of the operator E (see Section 4) we have:

E

$
1

N

N#

i=1

1{x∈dom(U)N | RTi(x) ≤ t}

&
=

1

N

N#

i=1

E

+
1{x∈dom(U)N |RTi(x) ≤ t}

,

=
1

N

N#

i=1

PrN
/1

x ∈ dom(U)N | RTi (x) ≤ t
20

=
1

N

N#

i=1

CDFRTi (t)

= CDFRT (t) .

As RTi : dom (U)N −→ TU, RTi (x) = RT (xi) , i = 1, . . . , N are independent random variables,
for every t ∈ TU, 1{x∈dom(U)N |RTi(x) ≤ t} : dom(U)N −→ [0, 1], i = 1, . . . , N are also independent
random variables. Consequently, the inequality (5) follows from Theorem 1 applied to the random
variables

-
1{x∈dom(U)N |RTi(x) ≤ t}, i = 1, . . . , N

.
.

If we define the set of “good program samples” by

GN,λ,t =
-
x ∈ dom (U)N | ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t)− λ ≤ CDFRT (t)

.
,

then by Theorem 3 we have

PrN (GN,λ,t) ≥ 1− exp(−2Nλ2),

were λ is the precision parameter and
/
1− exp

/
−2Nλ2

00
can be interpreted as the confidence level

that a program is in GN,λ,t, i.e. it is a good program sample. With this interpretation, Theorem 3 says
that the set of programs x ∈ dom (U)N on which ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t) estimates
CDFRT (t) with precision at least λ can be made as “large” as one wishes according to the probability
PrN . To measure the size of this set (according to PrN) we introduce the confidence level (1− δ) by
the condition

/
1− exp

/
−2N · λ2

00
≥ (1− δ) , (6)

6

which is equivalent with

N ≥ N(λ, δ) = ⌈ 1

2λ2
· ln 1

δ
⌉. (7)

The following result shows that for every N ≥ N(λ, δ) the set of good program samples GN,λ,t can
be made as “large” as required in probability PrN :

Corollary 4. For every t ∈ TU, λ ∈ (0, 1) , δ ∈ (0, 1) and N ≥ ⌈ 1
2λ2 · ln 1

δ ⌉ we have

PrN (GN,λ,t) ≥ 1− δ. (8)

The probabilistic anytime algorithm in [5] suggests that the critical time region should be a mea-
surable set in B (TU) that guarantees an upper bound ε ∈ (0, 1) on the probability of an erroneous
decision of the anytime algorithm. Accordingly, for ε,λ ∈ (0, 1), the critical time region should satisfy
the following two conditions:

B (RT,x; ε,λ) = {t ∈ TU | t > threshold(x, ε,λ)} , PRT (B (RT,x; ε,λ)) ≤ ε. (9)

For a sample of programs x we use the notation t(x) = (t1(x), . . . , tN (x)), where ti = RTi (x) ,
1 ≤ i ≤ N. We increasingly order the observed running times ti and get the values of the corresponding
order statistics t(1)(x) ≤ · · · ≤ t(N)(x). As one of these order statistics will be the choice for the
statistical threshold, threshold(x, ε,λ), we must find the smallest number 1 ≤ K ≤ N such that
x ∈ GN,λ,t(K)(x). In terms of order statistics, t(K) (x) generates a statistical threshold (x, ε,λ) which
must satisfy (9). Explicitly these two requirements are:

ECDFRT,N

/
(t1(x), . . . , tN (x)) ; t(K)(x)

0
− λ ≤ CDFRT

/
t(K)(x)

0
, (10)

PRT

/1
t ∈ TU | t > t(K)

/
x)}

0
≤ ε. (11)

As from (4),

ECDFRT,N

/
(t1(x), . . . , tN (x)) ; t(K)(x)

0
=

K

N

,

both conditions are satisfied if

1− ε ≤ K

N
− λ ≤ CDFRT

/
t(K)(x)

0
. (12)

Indeed, from the definition of CDFRT , if x ∈ GN,λ,t(K)
, then

K

N
− λ ≤ CDFRT

/
t(K)(x)

0
,

so (10) is satisfied. Furthermore, as

PRT

/1
t ∈ TU | t > t(K)(x)

20
= 1− CDFRT

/
t(K)(x)

0
,

if x ∈ GN,λ,t(K)(x) and 1− ε ≤ K
N − λ, then (11) is satisfied.

From the first inequality in (12) we get K ≥ N (1− ε+ λ) . As we must have 0 < 1− ε+λ < 1, we
get λ < ε. For N = N (λ, δ) as in (7) we can take K = K (ε,λ, δ) = ⌈N (1− ε+ λ)⌉ – the minimum
integer 1 ≤ K ≤ N satisfying (12) – hence

threshold(x, ε,λ) = tK(ε,λ,δ)(x) = t⌈N(1−ε+λ)⌉(x).

From (12) we have
1− ε ≤ CDFRT

/
t(⌈N(1−ε+λ)⌉)(x)

0
. (13)

7

7 A statistical anytime algorithm for the Halting Problem

We now approach the testing of the hypothesis Hz = {U (z) < ∞} against the alternative H
′
z =

{U (z) = ∞}, for z ∈ Z+, under (the more realistic) assumption that the probability distribution PRT

is unknown. An “erroneous decision" means rejecting Hz when Hz is true. The decision is taken on the
basis of RT (z), hence the probability framework is given by the probability space (TU,B (TU) , PRT) ,
see Section 5.

The statistical anytime algorithm for the Halting Problem will operate with three parameters: a)
a bound ε ∈ (0, 1) for the decision error, b) a precision parameter 1 < λ < ε which is a bound on the
approximation of CDFRT with ECDFRT,N , and c) a confidence parameter 1 − δ ∈ (0, 1) which is a
probabilistic bound on the confidence in the precision parameter.

We generate N independent halting programs x1, . . . , xN ∈ dom(U) and, by running them till
they stop, calculate their respective running times t1(x), . . . , tN (x) ∈ TU. Let x = (x1, . . . , xN) and
t(x) = (t1(x), . . . , tN (x)).

The statistical anytime algorithm is:

Pre-processing.
Fix three rational numbers ε,λ, δ ∈ (0, 1) with λ < ε.
Compute N = N(λ, delta) = ⌈ 1

2λ2 · ln 1
δ ⌉.

Generate N independent programs x = (x1, . . . , xN) ∈ dom(U)N and calculate their
respective running times t(x) = (t1(x), . . . , tN (x)).
Compute the order statistics of rank T = t(⌈N(1−ε+λ)⌉)(x).

Main part.
Let z be an arbitrary program for U.
If the computation U (z) does not stop in time less than or equal to T, then declare
that U(z) = ∞.

We now evaluate the error the statistical anytime algorithm can make in declaring that U (z) does
not stop when in fact it stops. To this aim we use the statistical threshold t(⌈N(1−ε+λ)⌉) and the critical
regions

B (RT,x; ε,λ) = {t ∈ TU | t > t(⌈N(1−ε+λ)⌉)(x)},

C (RT,x; ε,λ) = {y ∈ dom(U) | RT (y) > t(⌈N(1−ε+λ)⌉)(x)}.

Lemma 5. For every x ∈ dom(U)N , ε,λ ∈ (0, 1) with λ < ε, we have:

Pr(C (RT,x; ε,λ)) = PRT (B (RT,x; ε,λ)). (14)

Proof. We have:

Pr (C (RT,x; ε,λ)) = Pr
/1

y ∈ domU | RT (y) > t(⌈N(1−ε+λ)⌉)(x)
20

= PRT

/1
t ∈ TU | t > t(⌈N(1−ε+λ)⌉)(x)

20

= PRT (B (RT,x; ε,λ)) .

8

Lemma 6. For every integer N > 0, ε,λ ∈ (0, 1) with λ < ε, we have:

PrN
+-

x ∈ dom (U)N | PRT (B (RT,x; ε,λ)) ≤ ε
.,

≥ PrN
+-

x ∈ dom (U)N | CDFRT (t(⌈N(1−ε+λ)⌉)(x)) ≥ 1− ε
.,

. (15)

Proof. We only need to prove the implication:

CDFRT (t(⌈N(1−ε+λ)⌉) (x)) ≥ 1− ε =⇒ PRT (B (RT,x; ε,λ)) ≤ ε.

If T1 = {k ∈ TU | 1 ≤ k ≤ t(⌈N(1−ε+λ)⌉)(x)} and T2 = {j ∈ TU | j > t(⌈N(1−ε+λ)⌉)(x)}, then
T1 ∩ T2 = ∅ and

CDFRT (t(⌈N(1−ε+λ)⌉)(x)) = PRT (T1), PRT (B (RT,x; ε,λ)) = PRT (T2).

Consequently, if PRT (T1) ≥ 1− ε, then

1− ε+ PRT (T2) ≤ PRT (T1) + PRT (T2) ≤ PRT (T1 ∪ T2) ≤ 1,

so PRT (B (RT,x; ε,λ)) = PRT (T2) ≤ ε.

Theorem 7. For every ε,λ, δ ∈ (0, 1) with λ < ε and N = N(λ, δ) we have:

PrN
+-

x ∈ dom (U)N | Pr(C (RT,x; ε,λ)) ≤ ε
.,

≥ 1− δ. (16)

Proof. From the definition (4) and the choice of the statistical threshold,

threshold(x, ε,λ) = t(⌈N(1−ε+λ)⌉)(x),

we have
ECDFRT,N ((RT1 (x) , . . . , RTN (x)) ; t) =

⌈N (1− ε+ λ)⌉
N

.

In view of (13), (14) and (15) and (8) we have

PrN
+-

x ∈ dom (U)N | Pr(C (RT,x; ε,λ)) ≤ ε
.,

= PrN
+-

x ∈ dom (U)N | PRT (B (RT,x; ε,λ)) ≤ ε
.,

≥ PrN
+-

x ∈ dom (U)N | CDFRT (t(⌈N(1−ε+λ)⌉)(x)) ≥ 1− ε
.,

≥ PrN
(3

x ∈ dom (U)N | CDFRT (t(⌈N(1−ε+λ)⌉)(x)) ≥
⌈N (1− ε+ λ)⌉

N

4
− λ

)

≥ 1− δ.

According to (16), the probability PrN of the event that the statistical anytime algorithm gives a
wrong decision, that is, it declares U(z) = ∞ when there exists t > t(⌈N(1−ε+λ)⌉)(x) such that U(z)
stops in time t, is smaller or equal than ε, is larger than 1 − δ, i.e. the probability of error is smaller
than or equal than ε with confidence larger than 1− δ.

9

8 Implementations of the statistical anytime algorithm

The standard implementation of the statistical anytime algorithm is as follows. Given three rational
numbers ε,λ, δ ∈ (0, 1) with λ < ε, first compute the sample size N = ⌈ 1

2λ2 ·ln 1
δ ⌉; this positive integer is

fixed as long as λ, δ are fixed. Then use an algorithm to generate an injective computable enumeration
of dom(U) till N programs x1, . . . , xN and their running times t1, . . . , tN are obtained; again, these
programs is fixed as long as ε,λ, δ are fixed. Then, for every program z ∈ Z+, if the computation U(z)
does not stop in time t(⌈N(1−ε+λ)⌉)(x), then declare that U(z) = ∞. In the latter case the probability
of error is smaller than or equal to ε with confidence larger than 1− δ.

Below we illustrate numerically the first implementation with fixed parameters ε,λ, δ.

δ ε λ (< ε) N (λ, δ) ⌈N (λ, δ) · (1− ε+ λ)⌉

1
100

5
1000

1
1000 2.3026× 106 2.2934× 106

1
100

1
1000

5
10000 9.2103× 106 9.2057× 106

5
1000

5
1000

1
1000 2.6492× 106 2.6386× 106

5
1000

1
1000

5
10000 1.0597× 107 1.0592× 107

1
1000

5
1000

1
1000 3.4539× 106 3.4401× 106

1
1000

1
1000

5
10000 1.3816× 107 1.3809× 107

In a second implementation we start with two rational numbers ε,λ ∈ (0, 1) with λ < ε and an
“affordable” size Ñ of samples (programs and running times), then compute the rational δ(Ñ ,λ) ∈ (0, 1)
satisfying the inequality (6). We continue with the standard implementation of the statistical anytime
algorithm with parameters ε,λ (λ < ε) and

δ(Ñ ,λ) = exp(−2Ñ · λ2) (17)

calculate the size sample N(λ, δ(Ñ ,λ)) = Ñ . However, the value δ(Ñ ,λ) in (17) is not rational, so to
preserve the inequality (6) we need to calculate a rational approximation

δ(Ñ ,λ) ≥ exp(−2Ñ · λ2),

which implies the inequality N(λ, δ(Ñ ,λ)) < Ñ + 1, that is, N(λ, δ(Ñ ,λ)) ≤ Ñ .

The “price" paid working with an affordable, smaller sample size Ñ is a (possibly sharp) decrease
in the confidence level; below is a numerical illustration of the second implementation with fixed
parameters ε,λ, Ñ .

10

ε λ (< ε) 5N δ
+
5N,λ

, 6
5N (1− ε+ λ)

7

1
100

5
1000 105 6.7379× 10−3 (very good) 9.95× 104

1
100

4
1000 105 4.0762× 10−2 (good) 9.94× 104

1
100

5
1000 2 · 105 4.54× 10−5 (excelent) 1.99× 105

1
100

4
1000 2 · 105 1.6616× 10−3 (very good) 1.988× 105

1
100

1
1000 106 1.3534× 10−1 (hardly acceptable) 9.91× 105

1
1000

5
10000 106 6.0653× 10−1 (unacceptable) 9.995× 105

In a third implementation we start with two rational numbers ε,λ ∈ (0, 1) with λ < ε and an
“affordable” upper bound T on the running time of the computation U(z) in the statistical anytime
algorithm. We then use an injective dovetailing algorithm to generate as many elements of dom(U)
as possible in time T . In this way we will obtain a sample of N(T) programs x1, . . . , xN(T) and their
respective running times t1, . . . , tN(T) such that each program stops in time at least (in fact, much
smaller than) T : ti ≤ T, for all 1 ≤ i ≤ N(T). We then continue with the second implementation with
parameters ε,λ, Ñ = N(T).

Both second and third implementations can be improved by increasing the sample size or the time
bound, respectively.

9 Final comments

A statistical anytime algorithm for the Halting Problem was proposed and investigated. This algorithm
is useful in case the probability distribution of the set of halting programs for the specific universal
model of computation used is unknown. The statistical algorithm – which is inspired by the proba-
bilistic one – uses three parameters for evaluating the quality of solutions, namely the probability of an
erroneous decision ε, the precision λ and the confidence level δ of the statistical approximation. The
sample size and critical regions are constructed based on these parameters. The main advantage of the
statistical algorithm is that it can be implemented without any prior information about the running
times. Another advantage is that the cut-off temporal bound ⌈N (λ, δ) · (1− ε+ λ)⌉ is calculated only
once (when ε,λ, δ ∈ (0, 1) with λ < ε are fixed) and then used for running the algorithm on any input.
We prove that with a confidence level as large as required, the algorithm produces correct decisions
with a probability as large as required. Finally, three implementations of the algorithm have been
presented and numerically illustrated.

It will be interesting to experiment this algorithm with different models of computations in order
to understand its practical utility.

Finally, as the algorithm has two parts, the pre-processing – in which the the order statistics of rank
t(⌈N(1−ε+λ)⌉)(x) is calculated – and the main part, it can naturally be programmed as a faster hybrid

11

classical-quantum algorithm for classes of instances of the Halting Problem [1]. Indeed, for classes of
instances (F, x) of the Halting Problem the main part of the algorithm can be run by efficient quantum
algorithms. To fine-tune such a hybrid classical-quantum algorithm one has to re-design the statistical
anytime algorithm for classes of instances (F, x) instead of the more general, unique instance (U, x)
because the running of the universal machine is significantly larger than the running times of the
machines it simulates.

Acknowledgments

We thank Dr. Ned Allen for many discussions and comments and for motivating one author (CC) to
study practical approximate solutions to the Halting Problem. This work was supported in part by
the Quantum Computing Research Initiatives at Lockheed Martin.

References

[1] E. H. Allen, C. S. Calude. Quassical computing, International Journal of Unconventional Com-
puting, accepted October 2018.

[2] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja. A First Course in Order Statistics, John
Wiley, New York, 2008.

[3] L. Bienvenu, D. Desfontaines, A. Shen. What percentage of programs halt? in M. M. Halldórsson,
K. Iwama, N. Kobayashi, B. Speckmann (eds.). Automata, Languages, and Programming I, LNCS
9134, Springer, 2015, 219–230.

[4] C. S. Calude. Information and Randomness: An Algorithmic Perspective, Springer, Berlin, 2002.
(2nd edition)

[5] C. S. Calude, M. Dumitrescu. A probabilistic anytime algorithm for the Halting Problem, Com-
putability, 7 (2018) 259–271. (published online May 2017)

[6] C. S. Calude and D. Desfontaines. Universality and almost decidability, Fundamenta Informaticae
138(1-2) (2015), 77–84.

[7] C. S. Calude and D. Desfontaines. Anytime algorithms for non-ending computations, International
Journal of Foundations of Computer Science 26, 4 (2015), 465–475.

[8] C. S. Calude and M. A. Stay. Most programs stop quickly or never halt, Advances in Applied
Mathematics 40 (2008), 295–308.

[9] A. DasGupta. Probability for Statistics and Machine Learning, Springer, New York, 2011.

[10] W. J. Conover. Practical Nonparametric Statistics John Wiley, New York, 1971.

[11] B. Cook, A. Podelski and A. Rybalchenko. Proving program termination, Communications ACM

[12] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity, Springer, Heidelberg,
2010.

[13] J. Grass. Reasoning about computational resource allocation. An introduction to anytime algo-
rithms, Magazine Crossroads 3, 1 (1996), 16–20.

[14] J. D. Hamkins and A. Miasnikov. The halting problem is decidable on a set of asymptotic proba-
bility one, Notre Dame Journal of Formal Logic 47 (4) (2006), 515–524.

12

[15] S. Köhler, C. Schindelhauer, and M. Ziegler. On approximating real-world halting problems, in
M. Liskiewicz and R. Reischuk (eds.). Fundamentals of Computation Theory 2005, LNCS 3623,
Springer, 2005, 454–466.

[16] R. H. Lathrop. On the learnability of the uncomputable, in L. Saitta (ed.). Proceedings Interna-
tional Conference on Machine Learning, Morgan Kaufmann, 1996, 302–309.

[17] P. S. Levy and S. Lemeshow. Sampling of Populations. Methods and Applications, John Wiley,
1999. (3rd edition)

[18] N. Lynch. Approximations to the Halting Problem, Journal of Computer and System Sciences 9
(1974), 143-150.

[19] Yu. I. Manin. A Course in Mathematical Logic for Mathematicians, Springer, Berlin, 2010. (2nd
edition)

[20] Yu. I. Manin. Renormalisation and computation II: time cut-off and the Halting Problem, Math-
ematical Structures in Computer Science 22 (2012), 729–751.

[21] M. Minsky. Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood Cliffs,
1967.

[22] T. Mori, Y. Tsujii, and M. Yasugi. Computability of probability distributions and distribution
functions, in A. Bauer, P. Hertling, Ker-I Ko (eds.). 6th International Conference on Computability
and Complexity in Analysis, http://drops.dagstuhl.de/opus/volltexte/2009/2270/Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2009, Dagstuhl, 185–196.

[23] P. Olofsson. Probability, Statistics, and Stochastic Processes, Wiley-Interscience, New York, 2005.

[24] A. Rybalov. On the generic undecidability of the halting problem for normalized Turing machines,
Theory of Computing Systems, (2016), 1–6.

[25] C. Scott. Statistical Learning Theory, Topic 3: Hoeffding’s Inequality, University of Toronto, 2014,
https://www.coursehero.com/file/18068309/03-hoeffding, retrieved 6 October 2018.

[26] F. Soler-Toscano, H. Zenil, J.-P. Delahaye, and N. Gauvrit. Calculating Kolmogorov complexity
from the output frequency distributions of small Turing machines. PLoS ONE, 9, 5 (2014):e96223.

[27] H. Zenil and J-P. Delahaye. On the algorithmic nature of the world, in G. Dodig-Crnkovic
and M. Burgin (eds.). Information and Computation. Essays on Scientific and Philosophical Un-
derstanding of Foundations of Information and Computation, World Scientific, Singapore, 2010,
477–499.

[28] H. Zenil. Computer runtimes and the length of proofs, in M. J. Dinneen, B. Khoussainov, A. Nies
(eds.). Computation, Physics and Beyond, LNCS 7160, Springer, 2012, 224–240.

[29] K. Weihrauch. Computable Analysis. An Introduction, Springer, Berlin, 2000.

13

http://drops.dagstuhl.de/opus/volltexte/2009/2270/
https://www.coursehero.com/file/18068309/03-hoeffding

