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Abstract

Computing the functional dependencies that hold on a given data set is one
of the most important problems in data profiling. Our research advances state-
of-the-art in various ways. Utilizing new data structures and original techniques
for the dynamic computation of stripped partitions, we devise a new hybridization
strategy that outperforms the best algorithms in terms of efficiency, column-, and
row-scalability. This is demonstrated on real-world benchmark data. We show that
current outputs contain many redundant functional dependencies, but canonical
covers greatly reduce output sizes. Smaller representations of outputs are easier
to comprehend and use. We propose the number of redundant data values as a
natural measure to rank the output of discovery algorithms. Our ranking assesses
the relevance of functional dependencies for the given data set.
Keywords: Cover; Data profiling; Dependency discovery; Functional dependency;
Missing values; Null markers; Ranking; SQL

1 Introduction

Data profiling comprises the activities that determine meta data about a given data
set [1]. In practice, data profiling is a scientific approach towards data preparation,
a resource-intense task in data science projects. Applications include data cleaning,
integration, repository design, quality, preparation for analytics, and query optimization
[1]. A fundamental task in data profiling is the discovery of data dependencies that hold
on the given data set. Since the 1980s many advances have been made. We will focus on
functional dependencies (FDs). These have received most attention from academia and
industry, due to their usefulness in many applications [2, 6, 9, 15, 17,19,21,23,24].
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An FD X → Y with column sets X and Y expresses that the combination of values
on the columns in X uniquely determines the value on each of the columns in Y . The dis-
covery problem for FDs is to compute the set of FDs that are satisfied by a given relation.
For example, the benchmark data set ncvoter with 1000 rows and 19 columns exhibits
758 FDs with minimal left-hand sides (LHSs), and 3,754 total occurrences of attributes
in those FDs. In general, the discovery problem is computationally challenging. There
are relations over any given number of columns whose best representation of the satisfied
FDs is of exponential size [18]. The decision variant is to decide for a given relation r
and a given positive integer k if there is an FD X → A with A /∈ X and |X| ≤ k that
is satisfied by r. The decision variant is NP-complete [5] and W [2]-complete in k [4].
Despite these fundamental barriers to generally efficient solutions, known algorithms can
efficiently solve many real-world instances. For example, row/column-based algorithms
are efficient whenever the given data set has few columns/rows, respectively. However,
real-world data, especially big data, have typically many rows and columns. The recent
hybrid algorithm [21] combines row- and column-based approaches to address larger data
sets. For example, it can find the 3,984 LHS-reduced FDs that the benchmark data set
lineitem with 6,001,215 rows and 16 columns exhibits in 2,340 seconds. In the hybrid
algorithm, a switch of strategies occurs whenever the current strategy is not working
well, that is, if either too many FDs are invalidated or too few invalid FDs are found.
However, a switch from the current strategy is never based on evidence that the other
strategy will be successful. This lack of evidence leaves room for improvement in terms
of efficiency, column-, and row-scalability, which can make data sets with more rows,
columns, and FDs accessible to FD discovery. Our first major contribution is a new
hybrid FD discovery algorithm that is based on innovations in strategy and technology.
Strategically, we switch from a column- to a row-based approach whenever it is likely that
many FDs can be validated. Technically, this is made possible by a novel data structure
and the first algorithm that computes stripped partitions dynamically. Extensive exper-
iments demonstrate that our algorithm leverages conservative main memory resources
to outperform the state-of-the-art in discovery times, row- and column-scalability. For
example, it discovers the 3,984 LHS-reduced FDs of lineitem within 1,047 seconds.

The aim of discovery algorithms is to represent the set of valid FDs efficiently. In
previous work the representation is a left-reduced cover, minimizing the LHS X of FDs
X → Y . This has two shortcomings. Firstly, left-reduced covers may contain many
redundant FDs. Non-redundant representations are smaller, and easier to process for
computers and humans. Our second main contribution shows how quickly canonical
covers can be computed and how much they reduce output sizes. They achieve an
average of 50% savings on benchmark data. Ten of our data sets are smaller and achieve a
reduction by 25%, while the remaining eleven data sets are larger and achieve a reduction
by over 70%. For example, a canonical cover for ncvoter consists of only 185 FDs with 927
total attribute occurrences, reducing the left-reduced cover by approximately 4 times in
size. The canonical cover can be computed in 0.023 seconds from the left-reduced cover.

Secondly, the output of FD discovery algorithms is not ranked. The more FDs are
returned for a given data set, the more difficult it becomes for users to assess their
relevance. As stated before [21], ultimately, a domain expert must assess whether an FD
is meaningful for the application domain. Even though FDs that only hold accidentally
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Table 1: Snippet of ncvoter to illustrate data redundancy
voter first last name gen street zip

id name name suffix der address city state code
131 joseph cox m 1108 highland ave new bern nc 28562
131 joseph cox m 9 casey rd new bern nc 28562
657 essie warren f 105 south st lasker nc 27845
725 lila morris f 500 w jefferson st jackson nc 27845
244 sallie futrell f 9802 us hwy 258 murfreesboro nc 27855
247 herbert futrell m 9802 us hwy 258 murfreesboro nc 27855
440 barbara johnson f 6155 kimesville rd liberty nc 27298
464 albert johnson m 6155 kimesville rd liberty nc 27298
265 w johnson m 11957 us hwy 158 conway nc 27820
272 clyde johnson m 8944 us hwy 158 conway nc 27820
26 louise johnson f 113 gentry st #20 wilkesboro nc 28659
42 walter johnson m 169 otis brown dr wilkesboro nc 28659
604 christine davenport f 1710 matthews rd robersonville nc 27871
751 christine hurst f 106 w purvis st robersonville nc 27871

on the data set are still useful for some applications, such as query optimization, it is
still beneficial to automatically rank the relevance of the discovered FDs for the given
data set. As our third major contribution we propose data redundancy as a natural
measure of relevance. It is natural for at least two reasons. 1) FDs are a major source for
data redundancy, having brought forward Boyce-Codd and Third Normal Form proposals
[16, 22]. Consequently, the number of redundant data values caused by an FD indicates
the relevance of this FD for normalization. 2) Data redundancy caused by an FD X → Y
measures how many instances of the pattern “X-value determines Y -value” actually occur
in the data set, again showing how relevant the pattern is. Applying our ranking to the
FDs exhibited by real-world benchmark data, a quantitative and qualitative analysis
illustrates that our measure can provide effective guidance for data stewards in assessing
the relevance of discovered FDs. Finally, we report results for the two most common
interpretations of missing values. Since values are missing frequently, such distinction is
important for applications.

For illustration consider ncvoter, with a small snippet shown in Table 1. Among
many FDs, the full data set satisfies σ1 = ∅ → state, σ2 = last name, zip code → city,
σ3 = last name, gender, zip code→ name suffix, and σ4 = voter id→ state. Recall that
the occurrence of a data value is redundant for a set Σ of constraints [22] whenever every
change of this value to a different value at this occurrence incurs a violation of some
constraint in Σ. Hence, the value is fixed for this occurrence given Σ. For example,
changing any occurrence of the state value ‘nc’ will result in the violation of σ1. This
FD expresses that the state value is constant in the data set. It is meaningful because
the data set only considers voters from the state ‘nc’. As a consequence, FD σ1 causes
1,000 data value occurrences to be redundant. Similarly, FD σ2 causes 182, FD σ3 causes
61, and FD σ4 causes 2 redundant occurrences in ncvoter. For instance, each of the bold
occurrences in Table 1 are redundant due to the FD σ2. While highly ranked FDs attract
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interest from data stewards, low ranked FDs do, too. For example, FD σ4 has the likely
key voter id on its LHS, and the only violation of the key in the full data set is illustrated
by the first two tuples in Table 1. More insight unfolds when we exclude null markers
from redundant occurrences. In this case, FD σ3 causes only 2 redundant occurrences
instead of the 61 when null markers are included. If nearly all redundant data values
caused by an FD are null markers, then it is likely that the FD is not relevant for the
data set.
Organization. We explain our contributions over related work in Section 2, fix notation in
Section 3, present our discovery algorithm in Section 4, explain our experimental results
for our discovery algorithms in Section 5 and for our rankings in 6, respectively, and
conclude and outline future work in Section 7. The appendix contains more details.

2 Related Work

Revisiting a large body of previous work, we describe how we advance the FD discov-
ery problem by i) new techniques that improve state-of-the-art in efficiency, row-, and
column-scalability, and ii) the size and ranking of the output.
FD discovery. Since the 1980s, many FD discovery algorithms addressed data sets with
a large number of either rows or columns. An important technique models the search
space of FDs as an attribute lattice [9]. This is traversed level by level from smaller
to larger sets of attributes. An attribute set is pruned if no attributes are functionally
dependent on the set. Other column-based algorithms introduced different pruning and
lattice traversal strategies [2, 19, 24]. Row-based algorithms use agree sets, determined
by all pairs of distinct rows in the input. Based on maximal agree sets [15] or their
set complements [23], the algorithms use hypergraph transversals to generate the output
FDs. An FD-tree manages an FD set [6]. Examining all agree sets iteratively, an FD-
tree is updated until it represents the output set. A column-based hybrid algorithm was
introduced for the discovery of minimal keys [7]. Their algorithm traverses from the top
and bottom of the attribute lattice simultaneously, essentially ’halving’ the search space
by faster pruning. Combining the row-based algorithm from [9] with the column-based
algorithm from [6] was used to discover FDs [21]. The column-based part validates the
FDs of an FD-tree [6] and switches to the row-based algorithm when too many FDs
are invalidated. The row-based part generates FDs that do not hold on the input, and
switches to the column-based part whenever too few of such invalid FDs are found.
Novelty. Our article introduces extended FD-trees and a dynamic data manager (DDM)
for stripped partitions. Our new hybrid strategy follows the column-based approach over
extended FD trees, but uses the DDM as a row-based technique when many FDs are
likely to be valid.
Covers. FD sets can be represented by different notions of covers [16]. A non-redundant
cover does not contain any FD that is implied by the remaining FDs in the cover. The
results of previous algorithms are given by left-reduced covers. That is, for each column
A the cover contains all valid FDs X → A with minimal LHS X. Canonical covers
are non-redundant left-reduced covers with unique LHSs [16]. Novelty. We demonstrate
on real-world benchmarks that canonical covers can greatly reduce output sizes with
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typically small overheads of running time.
Ranking FDs. Despite the savings by canonical covers, not all FDs are equally relevant
for the given data set. We are unaware of any measures for ranking discovered FDs.
Recently, genuine FDs were used to estimate which FDs are likely to hold on the ‘true’
completion of an incomplete data set by imputing null marker occurrences [3]. However,
genuine FDs do not say anything about the relevance of the FDs for the underlying data
set. Instead, we regard the number of redundant data value occurrences that an FD
causes as the arguably most natural measure for relevance. The notion of a redundant
data value occurrence [22] justifies schema normal forms for Boyce-Codd, Third, and
Fourth normal forms [16,22]. It has never been used to rank FDs. Novelty. We measure
the relevance of an FD for a data set by the number of redundant data value occurrences
it causes.

3 Preliminaries

We fix some notions and notation required for the exposition of our approach.
A relation schema is a finite, non-empty set R of attributes (or columns). With each

attribute A, we associate a domain dom(A) of values that can occur in A. We assume
a total order on R, that is, R = {A1, · · · , An}. This allows us to use positive integers
to identify columns. For X = {A1, A2, · · · , An}, we write X as A1A2 · · ·An and XY as
the set union X ∪ Y . A tuple t over R, or row, maps each A ∈ R to a value in dom(A).
Two tuples are equal if they have matching values on all the attributes, and distinct
otherwise. For X ⊆ R and a tuple t over R, t(X) denotes the projection of t onto X.
A relation is a finite set of tuples. The active domain of A ∈ R for a given relation r is
adomr(A) = {t(A) | t ∈ r}.

A functional dependency (FD) over R has the form X → Y where X, Y ⊆ R. We
call X the left-hand-side (LHS) and Y the right-hand-side (RHS) of the FD. A relation
r satisfies the FD X → Y (or X → Y holds on r), denoted by r � X → Y , if for all
t, t′ ∈ r, t(X) = t′(X) implies t(Y ) = t′(Y ). If r does not satisfy X → Y , we say r violates
X → Y . For fixed r, we say that the FDs satisfied by r are valid. We write X 6→ Y if
none of the FDs X → A for any A ∈ Y holds on r. In consistency with previous work
but by abuse of terminology, we also say in this case that X → Y is invalid. Non-FDs
are invalid FDs where the RHS is the complement of the LHS, that is, X 6→ R−X. For
an FD set Σ ∪ {X → Y }, relation r satisfies Σ, denoted by r � Σ, if r satisfies all the
FDs in Σ. We say Σ implies X → Y , denoted by Σ � X → Y , if every relation that
satisfies Σ also satisfies X → Y . Σ′ is a cover of Σ whenever Σ and Σ′ imply the same
set of FDs. The FD discovery problem is to compute for any given relation r a cover for
the set of FDs that hold on r.

It suffices to consider FDs X → A with a singleton RHS A. Let Σ′ be a cover of Σ
where all FDs in Σ′ have singleton RHSs. Σ′ is left-reduced if there are no X → A,Z →
A ∈ Σ′ where Z is a proper subset of X. State-of-the-art algorithms such as [21] represent
their output as left-reduced covers. A cover Σ′ is non-redundant if there is no FD σ ∈ Σ′

such that Σ−{σ} � σ. Left-reduced, non-redundant covers with unique LHSs are known
as canonical covers [16].
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The X-equivalence class of tuple t ∈ r is the set [t]X = {s ∈ r | s(X) = t(X)}. The
stripped partition of r over X is πX(r) = {[t]X | t ∈ r, |[t]X | ≥ 2}. We sometimes omit
r and write πX if r is fixed. We use |πX(r)| and ||πX(r)|| to denote the number of sets
(aka the cardinality) in πX(r), and the total number of tuples (aka the size) in the sets of
πX(r), respectively. In previous FD discovery algorithms [9,21], stripped partitions either
sample non-FDs or validate candidate FDs, but sampling and validation have never been
combined. The reason is that no technique had been devised that can manage stripped
partitions efficiently. They have huge memory requirements if the size of a relation or the
number of valid FDs is large. We establish the first technique of dynamically computing
stripped partitions. This overcomes memory limitations of static computations, using
memory effectively whenever more FDs are likely to be valid.

4 Discovery Algorithms

We introduce the dynamic hybrid algorithm (DHyFD). We describe how previous ap-
proaches can be improved, describe our extension of FD trees, and our dynamic data
manager. These result in our new hybrid strategy which leads to DHyFD.

4.1 Revisiting previous algorithms

Column-based Algorithm. The column-based algorithm in [9] models the search space of
FDs as an attribute lattice. The algorithm traverses the lattice from bottom to top. At
each level, the LHS and RHS of an FD are attribute sets. Each pair of LHS and RHS is
validated using the stripped partition of the LHS. If an FD does not hold, new LHSs on
the next level for the same RHS attribute are generated. The stripped partition of the new
LHSs are computed. This process is infeasible if there are too many columns. Generating
LHSs by levels typically enumerates the entire lattice if valid FDs exist at different levels.
Stripped partitions duplicate the original input aggressively, consuming any available
memory for inputs with too many rows. Stripped partitions are efficient for FD validation.
Validating X → Y usually requires a mapping from the X-values to their Y -values. Once
duplicated X-values are found, unmatched A ∈ Y -values invalidate X → A. This method
is inefficient on larger inputs. For example, validating X → A and XB → A (assume
X → A is invalid) creates mappings for X- and XB-values. Hence, many X-values are
computed redundantly. Such redundancy causes inefficiency if the input contains too
many rows and columns. If πXB could be generated dynamically from πX , then only
B-values needed extraction. Computation would become more efficient. Hence, using
previously computed stripped partitions can decrease the cost of FD validation effectively.
Another challenge is to let stripped partitions consume only reasonable memory.
Row-based Algorithm. The agree sets of the row-based algorithm [6] consists of those
attributes on which two tuples have matching values. That is, ag(t, t′) = {A ∈ R |
t(A) = t′(A)}. The agree set of r is the set of agree sets for all pairs of distinct tuples in
r, that is, ag(r) = {agr(t, t′) | t, t′ ∈ r, t 6= t′}. Importantly, the agree set for each pair of
distinct tuples implies the non-FD ag(t, t′)→ R−ag(t, t′). Starting with the FD ∅ → R,
the row-based algorithm processes the sets in ag(r) iteratively, inducing new FDs that
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Figure 1: The FD-tree (left) and extended FD-tree (right) for FDs A→ B, AB → CD,
and CD → B

do not contradict any of the non-FDs implied by the agree sets processed so far. Details
are in Section 4.3. Inducing FDs from non-FDs uses a tree-like data structure called FD-
tree [6]. As in Figure 1, the LHS of an FD is represented by a path in the FD-tree where
each node represents an attribute in the LHS with labels of RHS attributes. An FD-tree
provides quick access to all FDs that do not contradict any of the non-FDs processed so
far. A new observation is that the induction algorithm of [6] only handles singleton RHS
of implied non-FDs. Instead of inducing new FDs based on the non-FD X 6→ R−X, the
process iteratively induces new FDs based on the invalid FDs X 6→ A for all A ∈ R−X.
FD-trees are implemented as a linked data structure. Hence, path traversal is costly
as links are maintained by heap memory. Our observation can thus significantly reduce
time spent on FD induction as the number of non-FDs can be quadratic in the number
of tuples.
Hybridization. The strategy of the sampling-focused hybrid algorithm [21], see the left of
Figure 2, has three components and two phases. On input r over R, the sample compo-
nent computes a stripped partition for each attribute in R. Then the sorted neighborhood
pair selection method [8] extracts non-FDs by sampling agree sets of the stripped parti-
tions. The agree sets are sampled from tuple pairs of the same equivalence class in the
stripped partition. Here the underlying sorting algorithm of the method determines the
neighborhood of the tuples. The validation component validates candidate FDs, and uses
invalid FDs to update an FD-tree. The induction phase uses either the non-FDs from
the sample component or the invalid FDs from the validation component to induce new
FDs. The algorithm [21] starts with the sampling phase, and then applies invalid FDs to
update the FD-tree. Once too few new samples (non-FDs) are generated, the algorithm
switches to the validation phase. Likewise, it switches back to the sampling phase if too
many FDs are invalidated.

The hybrid algorithm implements the row-based algorithm as induction component.
No advantage is taken of the column-based approach in which stripped partitions reduce
redundant computations of values on the LHS of FDs. However, adapting the validation
method from the column-based algorithm proves challenging. Here, a larger stripped
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Figure 2: Sampling-validation hybridization strategy

partition is computed by joining the stripped partitions of two adjacent prefix blocks [9].
For example, πXAB is computed by intersecting πXA and πXB. Hence, all invalid LHSs
need to be known before the stripped partitions on a higher level can be computed. Due
to the randomness in FD induction some of the invalid LHSs are eliminated by invalid
FDs. This means each level of the FD-tree contains only some but not all of the invalid
FDs. Hence, FD induction can make the computation of stripped partitions obsolete.
The major challenge in hybridizing column- and row-based algorithms is to dynamically
compute stripped partitions while avoiding excessive memory consumption. It is always
better not to use invalid FDs from the validation component if more general non-FDs
can be found. For example, the invalid FD X 6→ Y over R could be inefficient in two
ways. Firstly, there may be a non-FD X 6→ R − X such that Y ⊆ R − X. Secondly,
X 6→ Y may induce new FDs that could still be invalidated by a non-FD X ′ 6→ R −X ′

where X ⊆ X ′.

4.2 An Overview of DHyFD

We introduce the dynamic hybrid algorithm for FD discovery (DHyFD), as shown on the
right of Figure 2. Firstly, DHyFD performs synergized FD inductions on an extended
FD-tree. In comparison, the extended FD-tree is more efficient for searching FDs than
the classical FD-tree [6], and the new induction method dramatically eliminates redun-
dant traversals. Secondly, DHyFD introduces a dynamic data manager (DDM) to help
with FD validation and non-FD sampling. Balancing the main memory use by stripped
partitions with the cost of validation, DDM dynamically refines stripped partitions so
that FD candidates can be validated efficiently. While validating FDs, new non-FDs are
extracted. As the refined partition contains more equivalence classes with fewer tuples,
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Figure 3: Overview of DHyFD

the extraction of non-FDs based on tuple pairs from the same class is more efficient. The
non-FDs are finally applied to the extended FD-tree to derive new FDs.

Before going into details, we outline DHyFD as illustrated in Figure 3. Given a
relation r over schema R, DDM pre-computes stripped partitions for each singleton
attribute of R. The partitions are refined later dynamically. Before any iteration, a
set of initial non-FDs (aka initial samples) are sampled from the pre-computed stripped
partitions. This step extracts a wide range of non-FDs to perform synergized induction on
the extended FD-tree, providing a good first approximation of the final FD-tree. DHyFD
then starts validating the extended FD-tree level by level. The current level is called the
validation level (vl). DHyFD validates the FDs on the current vl by stripped partitions
from DDM. During validation, a set of non-FDs is generated. Afterwards, synergized
induction uses these non-FDs to derive new FDs. After induction, DHyFD decides if
DDM can perform better by refining stripped partitions. The decision applies a novel
measure called efficiency-inefficiency ratio. We refer to the validation level vl at which
the latest refinement occurs as the controlled level (cl). In essence, the refined stripped
partitions are based on the FDs associated with nodes at the controlled level. At the
end of an iteration, DHyFD either computes the nodes at the next validation level or
terminates if the extended FD-tree does not require further traversal. Next, we provide
the details of each component.

4.3 Extended FD-Trees

FD-trees [6] facilitate FD induction. We enhance FD induction by extended FD-trees
that help derive candidate FDs and validate them faster.
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Let Σ be a set of FDs over R. Assuming attributes of R are integers, an extended
FD-tree has the following properties: (1) A unique root node represents the empty LHS;
(2) Each node represents an attribute in R except the root node; (3) Each node only
has children of larger attributes; (4) For each FD A1 . . . An → Y ∈ Σ, there is a path
representing A1 . . . An where An is called an FD-node; (5) Each FD-node is associated
with a non-empty attribute set as the RHS of an FD; (6) Each node is assigned a positive
integer id; (7) The default id of a node A ∈ R is A; and (8) Given a DDM of relation
r over R and a node with id i where i > |R|, the (i − |R|)-th stripped partition in the
DDM is πX′ where X ′ ⊆ X and X is the path from the root to the node.

Example 1 The right of Figure 1 shows an extended FD-tree of the FDs A→ B, AB →
CD, CD → B. The integer ids are shown at the bottom right. The extended FD-tree has
fewer RHS labels than the FD-tree on the left of Figure 1.

The novelty of extended FD-trees is a new type of node, called FD-node, which
stores RHS attributes of FDs. In contrast, nodes of an FD-tree store RHS attributes
not only for the FDs represented by themselves but also for FDs represented by their
descendants. In the left of Figure 1 the root node and the nodes at level 1 all have B
as a RHS attribute even though only node A represents FD A → B. This overhead in
labeling is inefficient. The FD-tree requires more maintenance of RHS attributes than
extended FD-trees. Excessive tracking of RHS attributes does not accelerate FD search.
For example, on the left of Figure 1, if we search for X → B, checking nodes that lead
to FDs with attribute B on the RHS does not prune the search space: indeed, the root
node and the nodes at level 1 all have B as their RHS attributes.

In DHyFD, FD-nodes are validated level by level. We call the level where the FD-
nodes are validated the validation level. A DDM will also store an array of stripped
partitions which are computed from the paths of length l in the extended FD-tree. Here,
the so-called controlled level l must be smaller than the validation level. In fact, the
integer ids of nodes in an extended FD-tree are assigned by the DDM. They index the
array of stripped partitions in the DDM. We say a node’s id is (in)consistent to a DDM
if the attribute set X of stripped partition πX is (not) a subset of the path that leads to
the node.

FDs of FD-nodes with consistent ids can be validated using the stripped partitions
of a DDM. That is, if there is a difference between a controlled and a validation level,
the stripped partition πX′ can still be used to validate the node’s underlying FD X → Y
once πX′ has been further refined to πX (see Algorithm 5 for details).

Hence, a major task of extended FD-trees is to assign consistent ids to its nodes.
During FD validation, DHyFD must know all the nodes at the current validation level
such that the nodes at the next level can be traversed. However, after validating cur-
rent FD candidates, the FD induction process may introduce new nodes by inserting a
completely new path or extending an existing one.

Example 2 Let FD AC → E be the only path in an extended FD-tree over R =
{A,B,C,D,E}. If non-FD AC 6→ BDE is applied to the tree, ABC → E and ACD →
E are induced. To add ACD → E, RHS E of FD-node C is removed and a child FD-
node D is appended to node C. In the end, node C is no longer an FD-node and its child
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FD-node D stores E as RHS. To add ABC → E, a new path ABC is created from node
A since the only existing path is ACD. Suppose the validation level is 2 before non-FD
AC 6→ BDE is implied. One can only retrieve FD-node C from level 2 of the tree. After
induction, node B from the new path ABC is added to level 2. Without knowing the new
node B, it is impossible to validate ABC → E by only exploring the children of node C
at level 2.

Algorithm 1 assigns consistent ids while adding a new FD path. The algorithm checks
if the new FD requires new nodes at the end of some path (step 5-8). If it does, the new
nodes are assigned the ids from their ancestors at the controlled level (step 11 - 14). The
new nodes are added to the validation level (step 15) for correct traversal of the FD-tree.

Algorithm 1 Add FD

1: Input: An FD X → Y over R, the root node root of an FD-tree, controlled level
cl, the set vl nodes of all nodes at validation level vl

2: Output: a new FD-tree with FD X → Y
3: current = root
4: i = 1, n = |X|
5: while i ≤ n do
6: if current has child c of Ai ∈ X then
7: current = c, i = i+ 1
8: else break
9: while i ≤ n do

10: Create a new node c of Ai ∈ X as the child of current
11: if i > cl then
12: Assign id of current as id of c
13: else
14: Assign the order of Ai in R as id of current

15: if i = vl then vl nodes = vl nodes ∪ {c}
16: current = c, i = i+ 1

17: Let rhs(current) be the RHS of current
18: rhs(current) = rhs(current) ∪ Y
19: Return root

4.4 Synergized Induction

Given a non-FD X 6→ Y over R, classical FD induction [6] updates a given FD set
over R using X 6→ A for all A ∈ Y . Hence, if |Y | > 1, multiple traversals of an FD-tree
are caused. This can trigger overheads because FD-trees are linked-based data structures
and stored in heap memory. We introduce synergized FD induction that processes several
RHS attributes at once to minimize traversals. Given a non-FD X 6→ Y , no FD X ′ → Y ′

can be valid when X ′ ⊆ X and Y ′ ⊆ Y hold. Synergized FD induction augments X ′ → Y ′

to create all non-trivial candidates for valid FDs.
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Example 3 Let AC → E and AC → BE be FDs. If AC 6→ BDE is a non-FD on a
given relation, the two FDs cannot be valid. ABC → E and ACD → E are all non-
trivial candidates of valid FDs that result from augmenting AC → E. ACD → BE,
ABC → E, and ACE → B are all non-trivial candidates of valid FDs that result from
augmenting AC → BE.

Algorithm 2 performs a synergized induction to update an extended FD-tree given
any invalid FDs. It works as follows. Any FD X ′ → Y ′ where X ′ ⊆ X and Y ′ ⊆ Y
cannot be satisfied by r given the non-FD X 6→ Y . In steps 20-24, the algorithm only
traverses the paths which are subsets of X. During a traversal, a node’s invalid RHS Y ′

is removed if the node is an FD-node and Y ′ intersects with Y (step 5-10). Although
X ′ → Y ′ cannot form a valid FD in r, there are two ways to add another attribute A ∈ R
to X ′ such that X ′A is the LHS of some candidate FD. (1) We take A outside the union
XY ′ (step 12). Then X ′A→ Y ′ is non-trivial and has a LHS that is not a subset of X.
(2) We take A from Y ′ (step 16) and then X ′A→ Y ′−{A} is also non-trivial and has a
LHS that is not a subset of X.

Algorithm 2 Synergized Induction

1: Input: A relation schema R, an invalid FD X 6→ Y , the root node root of an
FD-tree

2: function induct(X, Y )
3: induct recursive(X = {A1, . . . , An}, Y, root)
4: function induct recursive(X = {Ai, . . . , An}, Y, current)
5: if current is an FD-node then
6: Let X ′ be the path leading to current
7: Let rhs(current) be the RHS of current
8: removed = rhs(current) ∩ Y
9: Remove FD X ′ → removed

10: rhs(current) = rhs(current)− Y
11: if removed 6= ∅ then
12: for each A′ ∈ R− (X ∪ removed) do
13: Y ′ ⊆ removed is the minimal RHS of X ′A′

14: Add FD X ′A′ → Y ′ if |Y ′| > 0

15: if |removed| > 1 then
16: for each A′ ∈ removed do
17: removed′ = removed− {A′}
18: Y ′ ⊆ removed′ is the minimal RHS of X ′A′

19: Add FD X ′A′ → Y ′ if |Y ′| > 0

20: for each j ∈ [i, n] do
21: if Aj > max{A′ ∈ R | current has a child of A′} then
22: Return
23: if there is a child c of current with Aj then
24: induct recursive({Aj, . . . , An}, Y, c)
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Figure 4: Example of id assignments

4.5 Dynamic Data Manager

Our dynamic data manager (DDM) uses extended FD-trees to compute stripped parti-
tions dynamically and efficiently. DDM pre-computes stripped partitions for all single
attributes of a given relation schema. These are required during FD induction when
completely new FD paths are added. Moreover, DDM maintains an array of dynamic
stripped partitions. These are based on the paths ending at the current controlled level.
Hence, they are refined as the controlled level increases. The ids of nodes in an extended
FD-tree index stripped partitions, which are either pre-computed or dynamic.

Example 4 Figure 4 shows an extended FD-tree over R = {A,B,C,D,E, F}, with
validation and controlled level 3. The DDM contains πABD, πACD, and πACE, indexed by
1, 2, 3, respectively. Since node F resides at level 4, its id is that of its parent node E at
the validation level. If the value of an id exceeds |R|, the id indexes a stripped partition in
the DDM. Here, node E’s id (9) corresponds to πACE as 9− |R| = 3. The id (7) of node
B is inconsistent because it corresponds to πABD as 7− |R| = 1. So, if FD ABC → E is
added to the tree now, node C becomes an FD-node with id 3 (default) instead of 7.

The main task of a DDM is to update dynamic stripped partitions and assign nodes
with consistent ids in an FD-tree. Given the nodes at the controlled level, DDM uses
the underlying paths to compute new stripped partitions. Algorithm 3 updates a DDM
from controlled level i to j. For each node at level j, the algorithm finds the path to
the node, and refines the node’s stripped partition in A using the new attributes in the
node’s path. The refined partition is appended to the new array A′ (step 10). The new
id of the node is the node’s position in A′ plus |R| (step 13). Then, the new id is copied
to the node’s descendants, ensuring consistency in the extended FD-tree. Any new node
that is introduced at the controlled level is not processed by Algorithm 3. Hence, no
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corresponding stripped partition exists for such a node. Here, the order of its attribute
is used as the id of this node (default id).

Algorithm 3 Update DDM

1: Input: A relation r over relation schema R, an array A of stripped partitions from
level i, the set L of nodes from level j > i

2: Output: A new array of stripped partitions at level j
3: Let A′ be an array of size |L|
4: i = 1
5: for each node n ∈ L do
6: Let X be the path leading to n
7: Let πX′ = πA where A is the attribute of n
8: if n.id > |R| then
9: πX′ = A[n.id− |R|]

10: Let A′[i] = πX′

11: for each B ∈ X −X ′ do
12: A′[i] = refine(r,A′[i], B)

13: n.id = i+ |R|
14: i = i+ 1
15: Copy id of node n to its descendants

16: Return A′

4.6 Validation and Refinement

For computing stripped partitions efficiently, we use a domain independent indexing
scheme (DIIS). This compresses an input relation into a two-dimensional array. Given
relation r over R, a DIIS for A ∈ R is a bijective mapping of the active domain adomr(A)
to {1, . . . , |adomr(A)|}. This is easy to compute, convenient for generating stripped par-
titions, and validating FDs. Note that the active domain of A with respect to r is just
the finite set {t(A) | t ∈ r}.

Validation of an FD X → Y returns a set of non-FDs that cover all RHS attributes
in Y that are not functionally dependent on the given LHS X. Classical FD validation,
see Section 4.3, typically requires multiple runs to find valid mappings between LHS and
RHS values [9,21]. These mappings are generated incrementally from the static stripped
partitions of the singleton attributes. Consequently, LHS values are typically computed
redundantly. We now discuss how DDMs improve classical FD validation. With the aim
to avoid redundant computation, we propose Algorithm 4 to validate FDs using dynamic
stripped partitions.

Given relation r over R and an FD X → Y , a DDM may hold the stripped partition
πX′ instead of πX where X ′ ⊆ X. In general, it is inefficient to generate πX from πX′

when validating X → Y . Indeed, the computation of πX must scan every tuple in πX′ .
This wastes resources if X → Y is not satisfied by r. In fact, the overhead is substantial
if there are many tuples in πX′ . Hence, Algorithm 4 only refines one set in a stripped
partition at a time, using Algorithm 5. It can thus terminate quickly if a given FD is not

14



Algorithm 4 Validation

1: Input: Relation r over schema R, FD X → Y , stripped partition πX′ where X ′ ⊆ X
2: Output: Non-FDs that invalidate X → Y ′ where Y ′ ⊆ Y
3: non fds = ∅
4: valid rhs = Y
5: for each S ∈ πX′ do
6: Let π = {S}
7: for each A ∈ X −X ′ do
8: π = refine(r, π, A)

9: for each {t0, . . . , tn} ∈ π do
10: for each i ∈ [1, n] do
11: invalid rhs = {A ∈ valid rhs | ti(A) 6= t0(A)}
12: valid rhs = valid rhs− invalid rhs
13: if invalid rhs 6= ∅ then
14: Z = ag(t0, ti)
15: non fds = non fds ∪ {Z 6→ R− Z}
16: if valid rhs = ∅ then
17: Return non fds

18: Return non fds

satisfied. Algorithm 4 reduces redundant computations of X-values since πX′ is known.
Only (X −X ′)-values are processed (step 7-8) if there are valid RHSs. That is, in steps
16 and 17 the algorithm returns a set of non-FDs if there is no valid RHS for X.

Algorithm 5 computes stripped partitions. It stores the new equivalence classes in an
array. Our data compression scheme eases the allocation of tuples to their new classes in
the array, since the index of each class corresponds to some domain value. The algorithm
refines every class in the input partition one attribute at a time. When a tuple is allocated
to an empty set, we store the set’s position by retrieving the tuple’s projected value on
the current attribute (step 8). Recording these positions saves the search for non-empty
sets.

4.7 When to Update Stripped Partitions

For enabling a DDM to decide if the stripped partitions need updating, we define the
efficiency and inefficiency of a validation level. At each level, the total number of FDs
is the sum of the RHS sizes over the nodes at the current level (also see line 13 of
Algorithm 6), before FD induction takes place (line 20). The number of valid FDs
is counted in the same way (line 13) but after FD induction. The efficiency of the
validation level is the ratio of valid FDs over all FDs (including invalid FDs) at the given
level. Only actually valid FDs require a scan of all the tuples in a stripped partition.
If efficiency is low, more nodes in higher levels may represent invalid FDs. Generating
stripped partitions for more invalid FDs is inefficient. The inefficiency of a validation
level is the proportion of reusable nodes over all the FDs that reside in higher levels.
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Algorithm 5 Refinement

1: Input: A relation r over relation schema R, a subset π′ of the stripped partition
πX , an attribute A ∈ R

2: Output: A subset of πXA

3: Let sets array = {∅, . . . , ∅} where |sets array| = |r|
4: result = ∅, ids = ∅
5: for each S ∈ π do
6: for each i ∈ S do
7: if sets array[r[i][A]] is empty then
8: ids = ids ∪ {r[i][A]}
9: sets array[r[i][A]] = sets array[r[i][A]] ∪ {i}

10: for each id ∈ ids do
11: if |sets array[id]| ≥ 2 then
12: result = result ∪ sets array[id]

13: sets array[id] = ∅
14: ids = ∅
15: Return result

Here, a node is reusable if it is not a leaf. If inefficiency is high, most FDs in higher levels
cannot share stripped partitions. Hence, it is more efficient to directly validate these FDs
when their FD node is reached. In summary, updates of stripped partitions are more
beneficial when the efficiency at the current validation level is high and the inefficiency
is low. Hence, we define the efficiency-inefficiency ratio at the current validation level
as the ratio of its efficiency over its inefficiency. Experiments that determine the actual
ratio used by DHyFD are in Section 5.

Example 5 Figure 5 shows calculations of the efficiency-inefficiency ratio. After pro-
cessing level 2 (left tree), node B represents the valid FD B → F . The efficiency of level
2 (left tree) is 1/1 since there is only one FD-node at level 2. Both nodes B and C are

Figure 5: An efficiency-inefficiency ratio calculation
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reusable. They lead to 5 FDs: ABD → C, ABD → E, ACD → B, ACD → F and
ACEF → B. So, the inefficiency is 2/5 and the ratio is 2.5. After processing level 3
(right tree), the FD ABD → CE is valid but the node D in path ABD is not reusable.
The other FD ACD → BF at level 3 (right tree) is not valid. Hence, the efficiency is
1/2. By an induction on invalid FD ACD 6→ BF , a new path ACDE is constructed.
The reusable nodes at level 3 (node D and E) lead to 3 FDs: ACDE → B, ACDE → F ,
and ACEF → B. So, the inefficiency is 2/3 and the ratio is 0.75.

4.8 DHyFD algorithm

Algorithm 6 implements DHyFD. It starts by initializing the DDM and extended FD-
tree (lines 3-4). The controlled and validation levels are tracked by the variables cl and
vl, respectively. DHyFD performs the sorted neighborhood pair selection sampling only
once at the beginning to extract a diverse selection of non-FDs (line 5). Re-sampling
would only cause computational overheads. For example, sampling with an input of
1, 000 tuples already compares more than 1 million tuple pairs according to Section 5. In
lines 14-18, the DDM of DHyFD finds a stripped partition (lines 15-16), and validates the
corresponding FDs level by level with Algorithm 4 (line 18). Subsequently, any identified
violations of FDs are used to update the extended FD-tree with Algorithm 2 (line 20).
Lines 21-25 calculate the efficiency-inefficiency ratio to determine if the DDM should
update the stripped partitions (line 27). The iterations continue until no candidate FD
is left (line 11).

Note that sorting non-FDs (in steps 7 and 19) helps eliminate redundant inductions
faster than using non-redundant non-FDs, as demonstrated in Section 5. This is explained
as follows. Let T be an FD-tree. Suppose an update is processed by a non-FD X 6→ Y .
Now consider another update by a non-FD X ′ 6→ A where X ′ ⊂ X and A′ ∈ Y . Here,
X ′ 6→ A is redundant with respect to X 6→ A. Hence, no new FDs will be induced if
X 6→ A is applied first. In addition, if X ′ 6→ A is applied first, then some of the new
FDs can still be eliminated by X 6→ A, which causes redundant inductions.

5 Experiments

We analyze our new FD discovery algorithm over real-world benchmarks, including run
time, memory use, row- and column-scalability for different interpretations of missing
values. We also analyze the savings in output sizes made by canonical over left-reduced
covers.

We implemented DHyFD in Visual C++. For comparison we also implemented state-
of-the-art algorithms (TANE [9], FDEP [6], HyFD [21]). These algorithms present bench-
mark performances on data sets with large numbers of rows, or columns, or both [20,21].
We ran our experiments on an Intel Xeon 3.6 GHz, 256GB RAM, Windows 10 Dell work-
station. We used real-world data from the UCI machine learning data repository1 and
previous research [21]. The data sets are available for download2.

1https://archive.ics.uci.edu/ml/
2http://bit.do/erhUF
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Algorithm 6

1: Input: A relation r over relation schema R
2: Output: The left-reduced cover of the FDs satisfied by r
3: Initialize DDM M with the stripped partitions of all A ∈ R
4: Let tree be an extended FD-tree for the single FD ∅ → R
5: violations is the set of non-FDs extracted by sorted neighborhood pair selection

sampling
6: violations = violations ∪ validate(root, {r})
7: Sort the non-FDs in descending order by the sizes of their LHSs
8: for each X 6→ R−X ∈ violations do tree.induct(X,R−X) . Algorithm 2

9: Let candidates be the set of nodes at level 1 of tree
10: Let cl = 1, vl = 1, num fds = 0
11: while candidates 6= ∅ do
12: violations = ∅
13: total =

∑
n∈candidates |rhs(n)|

14: for each node ∈ candidates do
15: if node.id ≤ |R| then
16: node.id = argA min{||πA|| | A ∈ R}
17: Let π be the stripped partition assigned to node by M
18: violations = violations ∪ validate(node, π) . Algorithm 4

19: Sort violations in descending order
20: for all X 6→ R−X ∈ violations do tree.induct(X,R−X) . Algorithm 2

21: reusables = {n ∈ candidates | n is not a leaf}
22: num new fds =

∑
n∈candidates |rhs(n)|

23: num fds = num fds+ num new fds
24: efficiency = num new fds/total
25: inefficiency = |reusables|/(|tree| − num fds)
26: if vl > 1 and efficiency/inefficiency > 3.0 then
27: cl = vl, Update M with reusables . Algorithm 3

28: vl = vl + 1
29: Let candidates be the set of nodes of tree at level vl
30: Return {FDs in tree}
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Figure 6: Time of FD discovery on weather (left) and uniprot 512kr 30c (right) with
different efficiency-inefficiency ratios

Table 2: Run time (seconds) under null = null semantics, and memory usage (in MB)
old

Data set #R #C #FD TANE FDEP FDEP1 FDEP2 HyFD DHyFD best HyFD DHyFD
iris 150 5 4 0.001 0.002 0.002 0.002 0.0001 0.0001 0.1 0.67 0.64

balance 625 5 1 0.002 0.031 0.04 0.024 0.001 0.0001 0.1 0.7 0.69
chess 28056 7 1 0.154 50.192 94.13 47.942 0.017 0.017 0.2 12 12

abalone 4177 9 137 0.029 0.785 2.794 1.191 0.03 0.017 0.2 3 3
nursery 12960 9 1 0.241 23.415 26.205 13.684 0.011 0.01 0.5 7 5
breast 699 11 46 0.044 0.127 0.09 0.048 0.02 0.009 0.2 1 1
bridges 108 13 142 0.03 0.011 0.007 0.005 0.004 0.003 0.1 0.7 0.73

echo 132 13 527 0.01 0.007 0.009 0.006 0.003 0.002 0.1 0.69 0.76
adult 48842 14 78 22.491 311.37 278.59 129.17 0.279 0.215 1.1 14 14
letter 20000 17 61 208.67 73.718 130.41 47.4 6.96 2.035 3.4 33 29

ncvoter 1000 19 758 0.444 0.384 0.551 0.216 0.046 0.029 0.4 3 3
hepatitis 155 20 8250 9.851 0.532 0.158 0.153 0.174 0.189 0.6 9 14

horse 368 29 128727 130.53 4.985 4.607 3.334 4.728 2.595 7.1 123 268
plista 1000 63 178152 TL 35.985 17.945 13.89 19.203 15.403 21.7 389 2048
flight 1000 109 982631 TL 16.134 21.28 9.04 37.064 9.934 53.4 841 2048

fd-reduce 250000 30 89571 8.084 TL TL TL 201.005 158.94 41.1 170 181
weather 262920 18 918 TL TL TL TL 332.734 49.839 N/A 140 1024
diabetic 101766 30 40195 TL TL TL TL 2864.84 847.58 N/A 2253 4301

30c
PDBX 17305799 13 68 TL TL TL TL 95.893 100.906 240 6348.8 6451

lineitem 6001215 16 3984 TL TL TL TL 1352.87 1047.44 2340 2662.4 27648
uniprot 512000 30 3703 TL TL TL TL 184.573 75.442 N/A 3481.6 4608

512kr 30c

5.1 Parameter Tuning

DHyFD generates stripped partitions dynamically. They are refined at validation levels
with high efficiency and low inefficiency. However, what actual efficiency-inefficiency
ratio minimizes the running time of DHyFD? The left of Figure 6 shows the time used
to discover FDs on the weather data set for different ratios. It contains 18 columns and
more than 260, 000 rows. DHyFD performed best when the ratio was around 3. For that
ratio it discovered the left-reduced cover of 68 FDs within 50 seconds. While the best
ratio depends on the data, DHyFD performed well on each data set with ratio 3. As
example, the right of Figure 6 shows that the best ratio on uniprot with 512, 001 rows
and 30 columns is 2.5. Nevertheless, the performance at ratio 3 is satisfying.
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5.2 Performance on Real-world Data

We conduct experiments that discover FDs for a range of real-world data using DHyFD
and other algorithms. In Section 4.3 we described how FDEP can be improved over its
original proposal with classical FD induction over classical FD-trees [6]. Accordingly,
we have two implementations FDEP1 and FDEP2. Both implement the new synergized
induction on extended FD-trees, but FDEP2 sorts all of the non-FDs of a relation the
same way FDEP does, while FDEP1 computes a non-redundant cover of non-FDs before
induction. We can thus provide fair and comprehensive performance reports on these
algorithms. The row- and column-based algorithms cannot terminate on all of the data
sets within competitive time. Hence, we set the time limit (TL) of the experiments
to 1 hour. Note that HyFD also implements our synergized FD induction. For our
experiments, we show the number of rows (#R), columns (#C), FDs (#FD) in a left-
reduced cover, incomplete rows (#IR), incomplete columns (#IC), missing values (#⊥),
and the running time in seconds.
Results. Table 2 summarizes the performance of the FD discovery algorithms on the
real-world data sets. In addition, we include memory usage of HyFD and DHyFD.
Overall, there are considerable improvements over the previously best known times. Ex-
pectedly, the hybrid algorithms outperform the row- and column-based algorithms on
data with sufficiently many rows and columns. Note that fd reduced is the only syn-
thetic data set and an exception. DHyFD performs better than HyFD and FDEP2 on
small data sets with less than 10, 000 rows or 50 columns. However, FDEP2 performs
extremely well on data with few rows and many columns, such as plista and flight. The
performance of FDEP2 is mainly influenced by the non-redundant cover of non-FDs.
For data with few rows (e.g. 1000) and few columns, FDEP2 will perform worse than
the hybrid algorithms because FDEP2 computes all the non-FDs but most of them only
create overhead (a redundant non-FD is only used to traverse an FD-tree but cannot
induce new FDs). If the data set has more columns (e.g. plista, flight), then the num-
ber of useless non-FDs is reduced. Accordingly, the inductions of FDEP2 become more
effective. Nevertheless, FDEP2 performs always better than FDEP1, which means the
computation of a non-redundant cover of non-FDs does not yield good performance in
practice. Comparing FDEP2 with FDEP demonstrates the advantages of synergized in-
duction and extended FD-trees over classical induction and FD-trees. Note that in the
case of abalone the classical method performs better. This is mainly because excessive
labeling in an FD-tree sometimes does help prune a search space. However, such situ-
ation is rare and less significant. In general, excessive labeling creates huge overheads,
for example, FDEP takes almost 200 more seconds than FDEP2 to perform the same
FD induction over adult. For these reasons, we will only discuss FDEP2 in what follows,
and simply refer to it as FDEP from here on. TANE only performs well on fd reduced
because this data is particularly suitable for TANE. TANE traverses the attribute lattice
from bottom to top and all the LHSs of the FDs discovered in fd reduced only have
3 attributes. As a result, the FDs with short LHSs will be discovered quickly. As our
implementation of HyFD uses synergized induction and performs better than the best
known bounds, it is further evidence for the performance gains that synergized induction
facilitates.
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Figure 7: Memory used in FD discovery on weather fragments with varying numbers of
rows (left) and on diabetic fragments with different numbers of columns

DHyFD gains performance over HyFD by leveraging more memory whenever new
FD discoveries are likely. We report the use of memory by the various algorithms in the
full paper3. In brief, TANE uses huge memory even on small data like horse but does
not gain performance. Meanwhile, DHyFD only uses more memory when it is rational,
as measured by our efficiency-inefficiency ratio. On PDBX, only an extremely small
number of FDs is satisfied by a large number of tuples, so non-FDs that derive true FDs
can be sampled easily. DHyFD shows similar efficient time and memory use as HyFD,
which proves that the efficiency-inefficiency ratio also suggests correctly to DHyFD that
more memory usage will not improve running time further. On other data, DHyFD
outperforms HyFD by better use of memory for FD validation and non-FD extraction.
In fact, DHyFD beats HyFD in many cases, such as data sets like weather, lineitem and
uniprot 512kr 30c that contain only a small number of FDs that are randomly spread
over the entire FD-tree, and data sets like diabetic that are highly dimensional and
contain a large number of FDs. Lastly, compared to TANE, DHyFD uses much less
memory.

Additional experiments show how DHyFD leverages the tradeoff between performance
and memory. We quantify on some benchmarks the performance gain and additional
memory use by DHyFD over HyFD. The performance increase rate (PIR) is the difference
in run time of HyFD and DHyFD over that of HyFD, and the memory increase rate (MIR)
is the difference in memory use of DHyFD and HyFD over that of DHyFD on a data
set. Figure 7 illustrates how the numbers of rows and columns in a data set affect the
memory use by HyFD and DHyFD. All round, additional memory use results in solid
performance gains. With more rows or columns, the PIRs and MIRs are typically getting
closer. Future work may show how memory use can maximize performance, or for which
efficiency-inefficiency ratio memory use is most effective.
Null semantics. As in practice, many benchmarks contain missing values. Different in-
terpretations of missing values cause differences in discovery algorithms and performance.
We report results on the most common semantics that treats missing values just like any
other value (null = null). Results on the semantics where each missing value is treated

3http://bit.do/erhUF
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as a unique value (null 6= null) are reported in the full paper4. In brief, null 6= null
tends to exhibit more FDs and, hence, longer runtime, especially on larger data sets.
The performance of the algorithms is similar to null = null. However, FDEP is fastest
on some smaller data sets for null 6= null: bridges, hepatitis and horse. For weather,
diabetic and PDBX, the ranking is the same: DHyFD is again the fastest by far on the
former two, while HyFD is marginally faster on PDBX. On uniprot 512kr 30c, HyFD is
marginally faster than DHyFD under null 6= null.

In summary, DHyFD improves state-of-the-art. It performs well on data with more
columns and rows, making effective use of conservatively more main memory to discover
FDs more quickly. Specialized algorithms outperform hybrids on data sets for which
they are designed. Our optimization of FDEP is effective on data sets with few rows and
many columns.

5.3 Scalability

We explore the row- and column-scalability of TANE, FDEP, and both hybrid algorithms.
Qualitative and quantitative experiments show how the row and column numbers impact
on the performance of these algorithms. The qualitative experiments measure the perfor-
mance of all algorithms on fragments of weather and diabetic 30c with varying numbers
of rows and columns. The quantitative experiments show which algorithm performs best
on which fragment.
Quantitative Experiments. Each mark in Figure 8 represents a data fragment where
the numbers of rows and columns are the values at its horizontal and vertical axes,
respectively. The color of a mark denotes the fastest algorithm. FDEP wins consistently
on the left of both charts. As columns increase, FDEP gains more advantage. For
example, in the right of Figure 8, FDEP performs worse on data with 10, 000 rows and
20 columns, but better on data with 10, 000 rows and 30 columns. So, FDEP scales
well on columns but poorly on rows. DHyFD wins when more rows and columns are
present. There are only few fragments where HyFD performs better than DHyFD, and
the differences are small in these cases. This is mainly due to the random behavior of the
sampling method in HyFD. TANE performs poorly as it is targeted at data with FDs
that have smaller LHSs, which happens only rarely on real-world data.
Qualitative Experiments. Figure 9 shows how much one algorithm performs better
than the others. The left of Figure 9 shows the row scalability of the benchmark algo-
rithms and DHyFD. We ran FD discovery on weather by selecting 1, 000 - 260, 000 rows
with increments of 1, 000 rows. The time of TANE and FDEP dramatically increases
for many rows. When a data set exceeds approximately 10, 000 rows, TANE and FDEP
are not feasible. HyFD suffered a significant performance loss at 211, 000 rows. Instead,
DHyFD shows smooth row scalability. The right of Figure 9 shows the column scalability
on diabetic. For comparing the performance of all algorithms we only selected 10, 000
rows. TANE performs well when there are less than 15 columns. If there are more
than 41 columns, the time of HyFD increases significantly. As the second vertical axis
shows on the right of Figure 9, this change is caused by the doubling of valid FDs. That

4http://bit.do/erhUF
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Figure 8: Best performers on weather and diabetic 30c

Figure 9: Row scalability of weather (left) and column scalability on diabetic 10000r
(right)

means, HyFD requires much more time to validate FDs. In contrast, DHyFD handles
the situation more smoothly. This demonstrates a huge improvement achieved by the
new validation method and the DDM. Lastly, FDEP and DHyFD perform similarly on
data sets with few rows. With more columns the performance of FDEP improves over
that of DHyFD. Indeed, FDEP saves substantial FD validation time when more valid
FDs are exhibited.

5.4 Covers of FD Profiles

Previous work has represented the output of FD discovery algorithms as left-reduced
covers. Table 3 contains the results of applying standard algorithms for the computation
of canonical covers from left-reduced ones to the benchmark data [16]. The table shows
the number of FDs in a left-reduced cover (|L-r|), the total number of attributes in a left-
reduced cover (||L-r||), the number of FDs in a canonical cover (|Can|), the total number
of attributes in a canonical cover (||Can||), the percentage of the ratios |Can|/|L-r| (%Size)
and ||Can||/||L-r|| (%Card), and the time in seconds to compute a canonical from the left-
reduced cover (Time). On average, the canonical covers have about 50% savings in both
the numbers of FDs and total numbers of attributes, about 25% savings on smaller data
sets (the first ten), and about 70% savings on bigger data sets (the remaining eleven).

23



Table 3: Properties of left-reduced & canonical covers
Data set |L-r| ||L-r|| |Can| ||Can|| %S %C Time

iris 4 16 4 16 100 100 0
balance 1 5 1 5 100 100 0
chess 1 7 1 7 100 100 0

abalone 137 715 41 217 30 30 0.001
nursery 1 9 1 9 100 100 0
breast 46 214 39 184 85 86 0
bridges 142 669 65 337 46 50 0.002

echo 527 2322 93 392 18 17 0.012
adult 78 495 42 267 54 54 0.001
letter 61 786 61 786 100 100 0

ncvoter 758 3754 185 927 24 25 0.023
1001r 19c
hepatitis 8250 54821 2204 14718 27 27 0.927

horse 128727 1045762 34053 267385 26 26 81.85
fd-reduce 89571 358238 1550 6203 2 2 79.46

plista 178152 1397038 22680 166963 13 12 276.35
flight 982631 6106725 83496 520623 8 9 19996

weather 918 7219 514 4061 56 56 0.015
diabetic 40195 464871 32689 378546 81 81 9.14
PDBX 68 157 19 58 28 37 0

lineitem 3984 24927 679 4241 17 17 0.6
uniprot 3703 23530 1677 11179 45 48 0.104

512kr 30c

This makes the outputs of FD discovery algorithms not just clearer, because redundancy
is avoided, but also easier to comprehend and process. Our results also demonstrate
potential for future improvements of discovery algorithms. The gap between left-reduced
and canonical covers shows that current algorithms do not prune many redundant FDs.
However, efficient pruning based on the transitivity rule of FDs (X → Y and Y → Z
imply X → Z) is challenging.

6 Ranking FDs according to their Relevance

We provide a quantitative and qualitative analysis of applying our relevance measure of
FDs to the canonical covers of our benchmark data.

6.1 Quantitative analysis

Table 4 lists for each data set the number #values of data occurrences, the number #red
of those that are redundant excluding null, their percentage %red, the number #red+0
of those that are redundant including null, and their percentage %red+0. As stressed
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Table 4: Data redundancy in numbers and percentages
data set #values #red %red #red+0 %red+0
abalone 37,593 67 0.18
adult 683,788 75718 11.07
balance 3,125 0 0
chess 196,392 0 0
fd reduced 7,500,000 2,500,000 33.33
iris 750 31 4.13
letter 340,000 6,809 2
lineitem 96,019,440 11,407,131 11.88
nursery 116,640 0 0
breast 7,689 706 9.18 706 9.18
bridges 1,404 388 28.13 395 28.13
china 4,732,560 1,971,104 41.65 2,022,994 42.75
diabetic 3,052,980 420,607 13.78 474,460 15.54
echo 1,716 375 21.85 416 24.24
flight 109,000 48,297 44.31 100,233 91.96
hepatitis 3,100 1,588 51.23 1,629 52.55
horse 10,304 3,703 35.94 4,854 47.11
ncvoter 19,000 2,886 15.19 3,659 19.26
plista 63,000 27,024 42.9 50,047 79.44
uniprot 15,360,030 1,288,502 8.39 2,556,639 16.64
pdbx 224,975,387 131,743,942 58.56 132,441,479 58.87

before, we let the data speak for itself and do not judge the FDs in the covers on their
meaningfulness.

The table provides the first insight ever on the data redundancy exhibited by the
benchmarks, and clearly shows the significance of the measure by sheer volume. Further-
more, the impact of nulls can be large.

Figure 10 analyzes for our bigger incomplete data sets how many FDs cause how
much data redundancy, and the time in seconds to compute all redundant occurrences
given the data set and canonical cover. Each x-value is a given number of redundant
occurrences an FD can exhibit to be listed under that x-value (and it must exhibit more
than the previous x-value). The x-values always represent 0, 2.5%, 5%, 10%, 15%, 20%,
40%, 60%, 80%, and 100% of the maximum number of redundant occurrences caused
by any FD exhibited in the data set. The charts show how the relevance of FDs ranks
the output of FD discovery algorithms. Many FDs are ranked within a low percentile of
redundant data values (more than 0 and less than 5% of the maximum). Data stewards
may first focus on the other FDs, including those that are ranked higher, and those that
do not cause any data redundancy because the latter may indicate keys. FDs in the
low percentile need to be looked at carefully by domain experts: they could indicate the
presence of dirty data or represent FDs that hold only accidentally. For such FDs it is also
useful to analyze how many of the redundant data values are null marker occurrences.
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Figure 10: Number of FDs in canonical covers (y-axis) that cause not more than the given
number of redundant occurrences (x-axis), plus time (s) taken to compute all redundant
occurrences in the data set using the canonical cover
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6.2 Some qualitative analysis

Let us consider ncvoter for some qualitative illustrations. The introduction listed some
FDs with many, very few, and no redundant occurrences. In particular, σ3 is an example
FD that may hold only accidentally because most redundant occurrences are nulls (59 out
of 61). In contrast, σ4 only has 2 redundant occurrences because of some dirty data. An-
other example is first name, last name → name prefix, name suffix, gender which trig-
gers 60 redundant occurrences, but 40 of those are null. The remaining 20 are all caused
by first name, last name → gender, which appears to be a reasonable constraint. Our
rankings provide data stewards with different ways to analyze the relevance of FDs for
applications. One view is to fix a column of interest, and see which minimal LHSs cause
how many redundant occurrences in that column. For example, some minimal LHSs that
functionally determine city in ncvoter and cause some redundant occurrences in city are
as follows.

minimal LHSs for city #red #red-0
last name, zip code 158 158
middle name, zip code 231 114
street address 81 81
first name, zip code 71 71
age, gender, zip code, full phone num 173 16
voter id 2 2
last name, age, full phone num, register date 4 0
first name, last name, full phone num, download month 2 0

Here, #red lists the number of any redundant occurrences while #red-0 lists the
number of redundant occurrences that do not involve any nulls on neither LHS attributes
nor city. This places stronger relevance on the FDs with boldly marked LHSs, which also
appear to represent more reasonable FDs. Indeed, redundancies caused by FDs that do
not involve any nulls on LHS and RHS attributes are strong evidence of the FD pattern,
and larger numbers of such redundancies are testimony to the stronger relevance of
the FD. Figure 11 compares the numbers of FDs that cause up to a given number of
redundancies with (blue) and without (organge) nulls. Over four different fragments of
ncvoter with 8k, 16k, 512k, and 1024k tuples, it is interesting to see how these numbers
remain stable, and how many FDs with small redundancies are shifted to FDs without
redundancies when nulls are excluded from occurrences on LHS and RHS attributes.

7 Conclusion and Future Work

DHyFD is a new algorithm for the discovery of FDs. Using a novel hybridization strategy
and the dynamic computation of stripped partitions, DHyFD outperforms the state-
of-the-art for runtime, row-, and column-scalability, by effective use of more memory.
Hence, DHyFD can handle larger inputs. Canonical covers significantly decrease the
outputs of FD discovery algorithms by an average 50%. FDs can be ranked by the
number of redundant data values they cause. The ranking guides data stewards towards
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Figure 11: Comparison of FD numbers for given numbers of redundancies with (blue)
and without any nulls on LHSs and RHS (orange) across increasing fragments of ncvoter,
plus times to determine them

FDs of higher relevance. Cover computation and FD ranking open up new research
inquiries. In particular, there are different notions of covers such as optimum covers [16]
which can compute the smallest possible output size. It is important to study the time
penalties that these computations incur. Furthermore, empirical research into the use of
our rankings for applications of FD discovery is necessary. The applications for which
functional dependencies are used determine their semantics and interpretation of the null
marker. The discovery algorithms need to be tailored towards the different semantics.
For example, certain functional dependencies and certain keys were recently shown to
provide the right notion for schema normalization in the SQL context [10–14]. Their
semantics is different from that of null = null or null 6= null, so their discovery problem
is different.
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Table 5: Memory consumption (MB) under null = null (and null 6= null) semantics
Data set Size TANE FDEP1 FDEP2 HyFD DHyFD

iris 0.005 0.67 0.66 0.64 0.67 0.64
balance 0.007 0.73 0.72 0.67 0.7 0.69
chess 0.51 25 10 3 12 12

abalone 0.18 4 3 2 3 3
nursery 1.01 41 6 3 7 5
breast 0.02 5(4) 1(1) 1(1) 1(0.79) 1(0.88)
bridges 0.006 2(2) 0.73(0.71) 0.93(0.76) 0.70(0.73) 0.73(0.76)

echo 18.27 1 0.78(0.93) 0.71(0.73) 0.69(0.73) 0.76(0.73)
adult 3.45 2048 32 7 14 14
letter 0.67 8192 14 32 33 29

ncvoter 0.15 27(3) 3(2) 3(2) 3(2) 3(2)
hepatitis 0.008 99(62) 9(2) 5(3) 9(6) 14(8)

horse 0.02 3072(293) 71(60) 122(34) 123(37) 268(43)
fd-reduce 67.95 328 N/A N/A 170 181

plista 0.56 N/A 530(280) 384(207) 389(193) 2048(239)
flight 0.55 N/A 1024(1006) 838(686) 841(678) 2048(693)

weather 16.94 N/A N/A N/A 140(678) 1024(1229)
diabetic 30c 12.05 N/A N/A N/A 2253(1331) 4301(2765)

PDBX 1218.56 N/A N/A N/A 6348.8(13414.4) 6451.2(15872)
lineitem 1024 N/A N/A N/A 2662.4 27648

uniprot 512kr 30c 631 N/A N/A N/A 3481.6(4198.4) 4608(5222.4)

A Row- and Column-Scalability

Figure 12 and Figure 13 supplement the analysis on row- and column-scalability reported
in Section 5, respectively. Figure 12 shows the results of a row scalability test on ncvoter
with a fixed number of 20 columns, and Figure 13 shows the results of a column scalability
test on ncvoter with a fixed number of 10,000 rows. Similar to the results reported in
Figure 9, DHyFD scales better than HyFD in terms of rows and columns. In terms of
row scalability, TANE is not competitive for even smaller numbers of rows. In terms of
column scalability, FDEP performs very similar to DHyFD.

Figures 14 and Figure 15 explain how DHyFD makes better use of main memory
resources to achieve the improvements in terms of row- and column-scalability.

B Memory Consumption

Table 5 shows how much memory in MB each of the algorithms consumed on each of the
data sets. It quantifies the claims made in Section 5. The results are shown under the
null = null semantics, and the memory consumption under null 6= null semantics are
given in parentheses.
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Figure 12: Row scalability test on ncvoter 20c

Figure 13: Column scalability test on ncvoter 10000r
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Figure 14: Memory used in FD discovery on ncvoter 20c fragments with varying numbers
of rows

C Null 6= Null

This section presents the results of all our experiments under the null 6= null semantics.
While the overall trend of the experiments follows very similar patterns, there are also
some differences. Note that we only report results for data sets with missing values. For
all the other data sets the results do not differ to the null = null semantics since no
missing values occur. We first report on the performance of the FD discovery algorithms,
and then on the computation of left-reduced and canonical covers.

C.1 Performance

Similar to the results of Table 2 under the null = null semantics, Table 6 shows the
runtime (in seconds) of all FD discovery algorithms that we have considered. A note-
worthy difference is that FDEP2 performs better than the hybrid algorithms on most of
the smaller data sets. This is explained by the comments in Section 5. Once there are
enough rows and columns, however, the hybrid algorithms perform better. Whenever
DHyFD is better than HyFD, then it is significantly better, for example three times as
fast on weather and diabetic. For the cases where HyFD performs better, the difference
is not that big.

Another interesting observation about uniprot 1001r 223c is that all algorithms ter-
minate and return a result under the null 6= null semantics, while the result is unknown
under the null = null semantics.

33



Figure 15: Memory used in FD discovery on ncvoter 10000r fragments with different
numbers of columns

Table 6: Run time (seconds) under null 6= null semantics
Data set #FDs #IR #IC #⊥ TANE FDEP1 FDEP2 HyFD DHyFD
breast 47 16 1 16 0.042 0.094 0.028 0.017 0.008
bridges 128 38 9 77 0.021 0.006 0.001 0.003 0.003

echo 355 71 12 132 0.007 0.007 0.001 0.002 0.001
ncvoter 1249 1000 5 2863 0.06 0.478 0.052 0.017 0.008

hepatitis 4513 75 15 167 2.136 0.095 0.037 0.085 0.085
horse 69267 294 21 1605 10.377 1.06 0.445 1.227 0.791
plista 132554 996 34 23317 3082.23 27.863 2.967 8.801 7.44
flight 4749681 1000 69 51938 79.568 80.786 4.46 22.618 9.074

uniprot 1001r 223c 1874233 1000 212 179129 110.051 32.821 2.721 3.419 2.998
weather 6582 157895 12 418580 TL TL TL 355.11 133.881

diabetic 30c 144023 100723 7 192849 TL TL TL 2444.52 721.609
uniprot 512kr 30c 21176 512000 19 3759296 TL TL TL 30.149 41.332

PDBX 101 683410 6 2035242 TL TL TL 127.089 166.445

C.2 Non-redundant Covers

Similar to the results of Table 3 under the null = null semantics, Table 7 shows the
characteristics of non-redundant and canonical covers on our incomplete benchmark data
sets under the null 6= null semantics. In this case, the savings are even larger averaging
more than 75% over all incomplete data sets.

D Relevance of FDs

Here we report some more results on estimating the relevance of FDs discovered from
other benchmark data sets, as well as an example to illustrate the ranking of FDs on
ncvoter.

34



Figure 16: Number of FDs in canonical covers (y-axis) that cause not more than the given
number of redundant occurrences (x-axis), plus time (s) taken to compute all redundant
occurrences in the complete benchmarks
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Figure 17: Number of FDs in canonical covers (y-axis) that cause not more than the given
number of redundant occurrences (x-axis), plus time (s) taken to compute all redundant
occurrences in the remaining benchmarks
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Table 7: Time of computing non-redundant covers under null 6= null semantics
Data set |L-r| ||L-r|| |Can| ||Can|| %Size %Card Time
breast 47 219 40 189 85 86 0
bridges 128 552 52 239 41 43 0.001

echo 355 1344 71 286 20 21 0.006
ncvoter 1249 5500 169 744 14 14 0.054

hepatitis 4513 28049 1450 9404 32 34 0.306
horse 69267 468749 11898 78387 17 17 38.373
plista 132554 926224 16725 114017 13 12 239.869
flight 4749681 29477117 56781 333884 1 1 109038

weather 6582 52296 1575 11882 24 23 0.962
diabetic 30c 144023 1510239 62381 653339 43 43 657.462

uniprot 1001r 223c 1874233 8447842 14919 71519 1 1 24474.3
uniprot 512kr 30c 21176 118524 2189 12544 10 11 13.966

PDBX 68 260 14 58 21 22 0.001

Figure 16 complements Figure 10 by showing the numbers of FDs clustered according
to the numbers of redundant data values they cause on our complete benchmark data
sets. For each data set we also list the times in seconds required to compute all redundant
data value occurrences given the canonical covers of the FD discovery algorithms and the
given data set.

This analysis is continued in Figure 17 where we illustrate the results of the same
analysis for the remaining incomplete benchmark data sets not included in Figure 10.
The results confirm that a data steward can clearly use our rankings to differentiate
between the discovered FDs according to their relevance for the data sets.

So far, all the charts we have presented for the FD rankings were derived by using the
null = null semantics. Figures 18 and 19 show the same analysis for all our incomplete
benchmark data sets under the null 6= null semantics. While there are differences in the
various FD numbers in each of the clusters, it is evident that the distributions remain
stable under the different interpretations of null marker occurrences.

We conclude our illustration on the use of our FD rankings with Figures 20 and 21.
Here, we show a detailed view of all the LHS-reduced FDs for the three singleton RHSs
city, full phone num, and zip code, together their numbers of redundant data value oc-
currences on ncvoter with 1000 tuples (Figure 20) and 1,024,000 tuples (Figure 21),
respectively. The occurrences are measured in three different ways by those including
null, those excluding null on the RHS, and those excluding null from all attributes of the
LHSs and the RHS. Again, this illustrates clearly how the rankings provide data stew-
ards with more insight on the relevance of the discovered FDs. In practice, one would be
able to click on the FDs and bring up the records in which those redundant data value
occurrences occur.
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Figure 18: Number of FDs in canonical covers (y-axis) that cause not more than the given
number of redundant occurrences (x-axis), plus time (s) taken to compute all redundant
occurrences under null 6=null semantics
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Figure 19: Number of FDs in canonical covers (y-axis) that cause not more than the given
number of redundant occurrences (x-axis), plus time (s) taken to compute all redundant
occurrences under null 6=null semantics
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Figure 20: All LHS-reduced FDs with RHS city, full phone num, or zip code together
with the numbers of redundant occurrences including null, those excluding null on the
RHS, and those excluding null on the LHS and RHS on ncvoter with 1000 tuples
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Figure 21: All LHS-reduced FDs with RHS city, full phone num, or zip code together
with the numbers of redundant occurrences including null, excluding null on the RHS,
and excluding null on the LHS and RHS on ncvoter with 1024k tuples
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