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Abstract

We study some aspects of the emergence of lógos from xáos on a
simple model of the universe using methods and techniques from al-
gorithmic information and Ramsey theories. Thereby an intrinsic and
unusual mixture of meaningful and (spurious) emerging laws surfaces.
The emergent laws outnumber the meaningful ones, a picture which is
compatible with the lawfulness hypothesis. In accord with the ancient
Greek theogony one could say that lógos, the Gods and the laws of
the universe, originate from “the void,” or from xáos.

1 Introduction

What if the universe, on the most fundamental layer, just consisted of num-
bers? This is a suspicion at least as old as the Pythagoreans: as Schrödinger
notes [61, Chapter III], “The basic doctrine of the Pythagoreans, we are
told, was that things are numbers.” More recently Tegmark’s Mathematical
Universe Hypothesis [67, 68] states that “the physical universe is not merely



described by mathematics, but is a mathematical structure”. As a conse-
quence, mathematical existence equals physical existence, and all structures
that exist mathematically (even in a non-constructive way) exist physically
as well. How could things be numbers? A world “spanned” by numbers can
be represented by a single (binary) sequence, or, equivalently, a single real
number. All entities encoded therein, including observers as well as mea-
sured objects, must be embedded in [69, 66]; that is, they must themselves
be (formed out of) numbers or symbols [7]. Non-numeric properties asso-
ciated with such a “world on a sequence” can arise by way of a structural,
levelled hierarchy [3].

Epistemologically this can be perceived as a sort of emergence of real-
ity, which is the inverse of reductionism to some more fundamental, basic
levels, involving explanations in terms of ever “smaller” entities: laws – in
particular, relational and probabilistic ones – emerge as e↵ective patterns
and structures “bottom-up” (rather than “top-down”).

Such concepts were quite popular in the fin de siécle Viennese physical cir-
cles: stimulated by the apparent indeterminacy manifesting in Rutherford’s
decay law and its corroboration by Schweidler [63], Exner’s 1908 inaugural
lecture as Rector Magnificus included the suggestion that [29, p. 18] “we
have to perceive all so-called exact laws as probabilistic which are not valid
with absolute certainty; but the more individual processes are involved the
higher their certainty”. Also Schrödinger’s inaugural lecture in Zürich enti-
tled “What is a natural law? adopted and promoted Exner’s ideas [59, 60],
well in accord with Born’s later inclinations [8].

In what follows we shall, in a “Humean spirit” [40], study emerging “laws”
as a consequence of spurious correlations in data. Two guiding theories will
be applied: one is algorithmic information theory, the other is Ramsey theory.
The gist of these two ways of looking at data is twofold: “all very long, even
irregular” data sequences contain “very large” (indeed, as long as you prefer)
regular, computable and thus, in physical terms, deterministic, subsequences.
Secondly, it is impossible and inevitable for any arbitrary data set not to
contain a variety of spurious correlations; that is, relational properties which
could physically be wrongly interpreted as laws “governing” that universe of
data.
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2 Natural law

The notion of law in natural sciences, or law of the universe [5, 23, 58, 48, 30]
has a long ambivalent history. It might not be overstated to claim that the
conjecture that there are laws of nature is the core to what science is and
how it was and is performed. Of course, one can refute this view and this
lawless hypothesis has been discussed by various authors, see [31, 4, 70, 16,
57, 17, 71, 47, 11]. Contemplating a lawful universe usually amounts to as-
suming that the laws of nature are objective, have always existed and will
exist, and they are written in the language of mathematics. Taken this for
granted is an assumption which raises many problems, some of which will
be discussed later. In this tradition science can be done in one way, the
Galileo-Newton one; but if there are no laws, we can be freed to pursue other
methodological options, some of which are not entirely unproblematic. Con-
tinuing to enrich the fundamental Greek practice of scientific observation,
thinking and debating on di↵erent theoretical interpretations of phenomena
with other methods, like the experimental methods (since Galileo) and the
mathematical models (since Descartes and Newton) is obviously desirable.
A step in this direction is to incorporate robust data analytics as a scientific
method, see [54, 65, 62, 55]. However, suggestions to narrow down the scien-
tific methods to just a collection of “empirical evidences”, to advance purely
speculative theories (see [28] for physics) or to promote the “philosophy” ac-
cording to which correlation supersedes causation and theorising (see [15])
are dangerous.1

The laws governing “physis” (nature) and those under which human so-
cieties are ruled have often been conflated and postulated to be of the same
origin. At the dawn of western civilization Heraclitus held that lógos2 perme-
ates everything, an arrangement common to all things yet incomprehensible
to man (DK 22B1, DK 22B2 [24, 22] and [43, 197, 198]). However, there
are crucial di↵erences between these laws. As Aristotle argued, a law is “by
nature” if it is justified by appeal to something other than an agreement or a
decision; in contrast, the laws human societies are ruled by are agreed upon
in the Agora. While the former laws have been considered “absolute”, the
latter are clearly conventional. For example, the laws of movement are natu-
ral in contrast with the institutional structure of Greek democracy which is

1See the Appendix for a more formal discussion.
2Lógos is the apparent antithesis of xáos in Hesiod’s Theogony [39].
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the result of human consensus. In Rhetoric, I.13, Aristotle discusses also the
compatibility between the natural and the conventional laws. a characteristic
of human justice, in contrast to divine justice. Both these laws are di↵erent
from the concept of “natural law” developed in the Greek (Aristotle) as well
as the Roman (Cicero) philosophies. In this philosophical sense a “natural
law” asserts certain rights inherent by virtue of human nature. Endowed by
nature – by God or a transcendent source – such a law can be understood
universally through human reason [21]. Two typical laws of Aristotelian “ph-
ysis” are: (i) Nothing moves unless one pushes it (there must be a ‘mover’ in
order to move it). (ii) Because motion does exist, the above law implies that
there must be a self-moved mover, i.e., a ‘Prime Mover’. Finally, according
to the definition of “natural” found in the Nicomachean Ethics, V.7, God is
both a lawgiver for humans and the governor of nature, a view which was
inherited by Christianity.

3 Laws and limit constructions

The scientific revolution grounded the proposal of new laws of nature on ob-
servation and iterable experimentation; sometimes these types of laws were
simply guessed or invented, but nonetheless on the grounds of a “meaningful”
(physical, theoretical and practical) framework. For example, after several
experiments, some of which were just imagined, Galileo and others [26] pro-
posed the “law” of inertia. This law is a fundamental conservation principle,
the conservation of momentum, and is a limit principle since no physical
body actually moves at constant speed along an Euclidean line – a straight
line with no thickness. Yet, by extrapolating from his observations made
on the object of bodies as their friction was changed, Galileo was able to
deduce the concept of inertia, and closely analyse what circumstances a↵ect
this asymptotic movement: friction and gravitation. Thus, by this scientific
process of induction, deduction, extrapolation and abduction [52, 25, 42], an
Aristotelian, God given, absolute, notion of a law of “physis” was radically
modified. The advantage of this notion of physical law based on limit prin-
ciples and symmetry is visible once Newton made the connection between
falling apples and planets: there is no need to be anyone pulling nor pushing
the planets to move them around. Indeed, Newton’s law of gravitation gives
the trajectories of any two bodies in inertial movement within a gravitational
field, including apples and planets. On the one hand it became possible to de-
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rive Kepler’s trajectories and laws for one sun and one planet from Newton’s
law, without the need for a Prime Mover that is constantly pushing. On the
other hand, Newton realised that, with two or more planets, reciprocal inter-
actions destabilise the planets’ trajectories (which later would be recognised
as a result of chaotic non-linearity). He thus assumed the aid of occasional
interventions of God in order to assure the stability of the planetary system
in secula seculorum: God, through a few sapient touches, was the only guar-
antor of the long term stability of the Solar System [45]. Poincaré later con-
firmed mathematically this deep intuition of Newton on the asymptotic chaos
within the Solar System (see below for more discussion of this). We should
note, however, that this analysis only makes sense in the mathematical con-
tinua. Inertia is conceived as a limit property; moreover, its understanding
as a conservation law (of momentum) alongside the conservation of energy,
as a symmetry in the equations (as a result of Noether’s theorems relating
symmetries to conserved quantities [49]), is based on continuous symmetries:
they are invariant with respect to continuous translations in space or time. A
few years later, Galileo, Boyle and Mariotte proposed another limit law: they
traced the isothermal hyperbolas of pressure and volume for perfect gases. Of
course, actual gases, as a result of friction, gravitation, inter-particle interac-
tions, etc., do not follow this peculiar conic section; yet its abstract, algebraic
formulation and its geometric representation, allowed a uniform and general
understanding of the earliest law of thermodynamics. Principles referring to
inexistent ideal trajectories, at the external limit of phenomena, continued to
rule knowledge constructions in physics. As another example, let us consider
Boltzmann’s ergodic principle: In a perfect gas a particle stays in a region
of a given space for an amount of time proportional to the volume of that re-
gion. Once again this is an asymptotic principle, as it uniformly holds only
at the infinite limit in time. On these grounds, Boltzmann’s thermodynamic
integral that allows the deduction of the second law of thermodynamics (re-
garding the increase in entropy) is also formulated as a limit construction
(an integral): it holds only at the infinite limit of the number of particles in
the volume of gas. Can one prove, or at least corroborate, these asymptotic
principles? There is no way to put oneself or a measurement instrument at
these limit conditions and check for Euclidean straight lines, hyperbolas or
behaviour at the asymptotic limit in time. One may only try to falsify some
consequences [53]; yet, even in such cases the derivation itself may be wrong,
but not necessarily the principle. As has already been pointed out by many
philosophers, among them Hume, Berkeley, Kant and Schopenhauer, all we
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can produce – and this is a crucial point – is scientific knowledge: we under-
stand a lot, but not everything, through these limit principles that unify all
movements, all gases, etc., as specific instances of inexistent movements and
gases. And, more importantly, as a result we can construct fantastic tools
and machines that work reasonably well – but not perfectly well, of course
– and have radically changed our lives. With these machines the westerners
dominated the world after the scientific revolution, a non trivial consequence
of their science and its “absolute” laws. We are typing, reading and ex-
changing data in networks of the latest of these inventions, an excellent, but
not perfect, instance of a limit machine – the Turing machine. One of the
limit principles of these machines is Turing’s distinction between hardware
and software and the identification between program with data that allows
abstract, mathematical styles of programming all the while (almost) disre-
garding their material realisation.

Another important consequence was the discovery of limits of computing,
specifically the incomputability of the halting problem, and more generally
the development of theoretical computer science [36]. At the same time these
limit principles obscured the role played by physics in computing: because
of the separation between hardware and software, the role of hardware in
computation was largely ignored in theoretical computer science, arguably
delaying with a few decades the understanding and development of physics
of computation, reversible computing and quantum computing, [44, 32, 46].

4 Order within disordered sequences

In intuitive terms, Ramsey theory states that there exists a certain degree
of order in all sets/sequences, regardless of their composition. Heuristically
speaking this is so because it is impossible for a collection of data not to
have any (spurious) correlations, that is, relational properties among its con-
stituents which are determined only by the size of the data. The simplest
example of such (spurious) correlation is given by the Dirichlet’s pigeonhole
principle stating that n pigeons sitting in m < n holes result in at least one
hole being filled with at least two pigeons. Or in a party of any six people,
some three of them are either mutually acquaintances, or complete strangers
to each other [35, 9]. 3 This seemingly obvious statements can be used to

3Iin fact, there is a second trio who are either mutually acquainted or unacquainted [20].
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demonstrate unexpected results; for example, the pigeonhole principle im-
plies that there are two people in Paris who have the same number of hairs
on their heads. The pigeonhole principle is true for at least two pigeons and
one whole; the party result needs at least six people. A common drawback of
both results is their non-e↵ectivity: we know that two people in Paris have
the same number of hairs on their heads, but we don’t know who they are.

An important result in Ramsey theory is Van der Waerden theorem
(see [34]) which states that in every binary sequence at least one of the two
symbols must occur in arithmetical progressions of every length.4 The theo-
rem describes a set of arbitrary large strong correlations – in the sequence
x1x2 . . . xn . . . there exist arbitrary large k,N such that equidistant posi-
tions k, k + t, k + 2t, . . . k + Nt contain the same element (0 or 1), that is,
xk = xk+t = xk+2t, · · · = xk+Nt.5 Crucial here is the fact that the property
holds true for every sequence, ordered or disordered. Can we say that these
correlations are “spurious”? According to Oxford Dictionary, spuriousmeans
“Not being what it purports to be; false or fake. False, although seeming
to be genuine. Based on false ideas or ways of thinking.” The (dictionary)
definition of the word “spurious” is semantic, that is, it depends on an as-
sumed theory: one correlation can be spurious according to one theory, but
meaningful with respect to another one.

Can we give a definition of “spurious correlation” which is independent of
any theory? In [15] a spurious correlation is defined in a very restrictive way
as follows: “a correlation is spurious if it appears in a randomly generated
sequence”. Indeed, in the above sense a spurious correlation is “meaningless”
according to any reasonable interpretation because, by construction, its val-
ues are chosen at “random”, as all data in the sequence. Of course, there are
other reasons making a correlation spurious, even within a “non-random”
sequence. Van der Waerden theorem proves that in every sequence there
are spurious correlations in the above sense – they can be said to “emerge.”
Therefore, these spurious correlations can also be re-interpreted as “emergent
laws.” It is important to keep in mind that these “laws” are not properties
of a particular sequence, – indeed, they are satisfied by all sequences as Van
der Waerden theorem proves. How do the spurious correlations manifest
themselves in a number world? The more bits of the sequence describing the

4If we interpret 0 and 1 as colours, then the theorem says that in every binary sequence
there exist arbitrarily long monochromatic arithmetical progressions.

5Again, the proof is not constructive.
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number world we can observe, the longer are the lengths of monochromatic
arithmetical progressions. So, once there are (su�ciently many) data, regard-
less of their intrinsic structure, “laws from nowhere” (ex nihilo) emerge. The
larger the data set, the greater is the number of emerging laws. How “large”
is the set of spurious correlations, in the above sense? Using an argument
based on algorithmic information theory, in [15] it is proved that the size of
spurious correlations tends exponentially to 1 with the size of the data. Fur-
thermore, the increase of some types of spurious correlations, i.e. emerging
laws, can be quantified: Goodman’s inequality [33, 64] yields lower bounds on
how many spurious correlations are observed as a function of the size of data.
Conversely, Pawliuk recently suggested [51] that Goodman’s inequality can
be utilised for testing the (null) hypothesis that a dataset is random: if the
bounds are over-satisfied, the correlations might be not spurious, and thus
the dataset might not be stochastic. Can we distinguish between meaningful
laws and emerging laws? The answer seems to be negative at least from an
computational point of view.

5 Emergence of Turing complete (universal)

computation

In view of the “quantification” of information content [18, 13], how could
complexity and structures such as universal computation, evolve even in prin-
ciple? The answer to this question is in the algorithmic information content
(complexity) of the number world.

The proof of Turing completeness6 of the Game of Life provided by Con-
way in [6, Chapter 25, What Is Life?] is a useful method for exploring how
complex behaviour like Turing completeness can emerge from very simple
rules, in this case, the rules of cellular automata (see more in [56]). With a
universal self-delimiting Turing machine7 and all algorithmic random strings8

one can generate all strings [13].
Is this phenomenon also possible for sequences, that is, for number worlds?

6A model of computation is Turing complete – sometimes called Turing universal – if
it can simulate any Turing machine, or equivalently, if it can simulate a universal Turing
machine.

7A machine with a prefix-free domain.
8A string is algorithmic random if it cannot be compressed by the self-delimiting uni-

versal Turing machine by more than a fixed number of bits.
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The answer is a�rmative. According to a theorem by Kučera-Gács-Hertlinger
[13, p. 179], there e↵ectively exists a process F – which is continuous com-
putable operator – which generates all sequences from the set of Martin-Löf
random sequences9: in other words, every sequence is the image from F of
Martin-Löf random sequence.

6 Is the world number computable?

Of course, there exist infinitely (countable) computable world numbers.
Can we decide whether the sequence describing a given world number

is computable? Answering this question is probably impossible both theo-
retically and empirically. However, we can answer a simpler variant of the
question: What is the probability that a world number is computable? If we
take as probability the Lebesgue measure [13], then the answer is zero.10

The above result shows that the probability that a world number can
be generated by an algorithm is zero. If we weaken the above requirement
and ask about the probability that there exists an algorithm which generates
infinitely many bits of a world number, then the answer remains the same:
this probability is nil. This result follows from a theorem in algorithmic
information theory saying that the complement of the above set – the set
of bi-immune sequences11 – has probability one [13]. A consequence of this
fact, corroborated by an extension of the Kochen-Specker theorem proving
value indefiniteness of quantum observables relative to rather weak physical
assumptions [2], is that with probability one a number world is produced by
repeatedly measuring of such a value indefinite observable.

7 Non-uniform evolution

Two examples of world numbers are particularly interesting: Champernowne
world number and Chaitin world number. A Champernowne world number

9A sequence is Martin-Löf random if there exists a fixed constant such that every finite
prefix (string) of the sequence is algorithmically random [13].

10One should not think that this means that there are no computable world numbers,
which we already stated is false! The result follows from the fact that the computable
sequences form a countable set.

11 A sequence is bi-immune if its corresponding set of natural numbers nor its comple-
ment contain an infinite computably enumerable subset.
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in base two is given by the sequence

C2 = 01000110110000010100111001011101110000 . . .

which consists in the concatenation of all binary strings enumerated in quasi-
lexicographical order [19].12 A Chaitin world number is given by a Chaitin
⌦U number (or halting probability), that is the probability that the universal
self-delimiting Turing machine U halts [14]. Both world numbers are Borel
normal in the sense that every binary string x appears in these sequences
infinitely many times with the same frequency, namely 2�|x|, where |x| is the
length of x. In such a world every text – codified in binary – which was
written and will be ever written appears infinitely many times and with the
same frequency, which depends only on the length of the text. In partic-
ular, any correlation appears in such a world infinitely many times. How-
ever, these worlds are also very di↵erent: A Champernowne world number
is computable, but a Chaitin world number is highly incomputable because
it is Martin-Löf random. As a consequence, while both number worlds have
all possible correlations repeated infinitely many times, the status of those
correlations are di↵erent: in a Chaitin world number these correlations are
spurious (because of its randomness), but in a Champernowne world number
they are not (because its computability, hence highly non-randomness).

How an embedded observer would “feel” to live in such a world? This
is a deep question which needs more study. Here we will make only a few
simple remarks (see also [16]).

First, no observer or rational agent could decide in a finite time whether
they live in a Champernowne or Chaitin world. Second, any observer or
rational agent surviving, or at least recording experimental outcomes, a suf-
ficiently long time will see many of the previously discovered accepted “laws”
being refuted.

Third, suppose observers “surf” the number world by a long succession of
bits, that is long prefixes of Champernowne and Chaitin infinite sequences.
Because of the Borel normality of these sequences, the strings “surfed” by
observers are Borel normal as finite objects, that is, are distributed uniformly
up to finite corrections [12]. How would intrinsic observers experience such
variations? In one scenario one may speculate that intrinsically such “in-
terim” periods of monotony may not count at all; that is, these will not be

12In base 10, C10 = 12345678910111213141516 . . . .
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operationally recognized as such: for an embedded observer [69, 66], the world
number will remain “dormant” while the number world remains monotonous.

Another option, maybe even more speculative, is to assume that, as long
as the world number allows for a su�ciently wide variety of substrings, the in-
trinsic phenomenology will, through emergent character of (self-)perception,
“pick” its own segment or pieces (of numbers) from all the available ones. In-
deed, it might not matter at all for intrinsic perception whether, for instance,
the cycle time is altered (reduced, increased), or whether the lapse of cycles
is arbitrarily exchanged or even inverted: as long as there are still “su�cient”
patterns and number states emergence could “process” and “use,” lawfulness
and consciousness will always ensue [27].

8 Summary

According to Heidegger [37], the most profound and foundational metaphysi-
cal issue is to think the existent as the existent (“das Seiende als das Seiende
denken”). Here the existent is metaphorically interpreted as a sequence of
bits. Rather than answering the primary question [38] of why there is exis-
tence rather than nothingness, this paper has been mostly concerned with
the formal consequences of existence under the least amount of extra as-
sumptions [41]. As it turns out, existence implies an intrinsic and unusual
mixture of meaningful and (spurious) emerging laws, in which the emergent
laws outnumber the meaningful ones, a picture which is compatible with
both lawfulness and lawless hypotheses. Furthermore, the axioms in math-
ematics find their correspondents in the laws of physics as a sort of “lógos”
upon which the respective mathematical universe is “created by the formal
system” and, by analogy, our own universe might be based upon.

As in biological living systems, the dynamics described above is not a mat-
ter of stable or unstable equilibrium, but of far from equilibrium processes
which are “structurally stable”. This “duality” is supported in physics by the
hierarchical layers theory [3, 50]. The simultaneous structural stability and
non-conservative behavior in biology, which is a blend of stability and insta-
bility is due to the coexistence of opposite properties such as order/disorder
and integration/di↵erentiation [10].

Such an active and mindful (some might say self-delusional and projec-
tive) approach to order in and purpose of the universe may be interpreted
in accord with the ancient Greek theogony [39] by saying that lógos, the
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Gods and the laws of the universe, originate from “the void,” or, in a less
certain interpretation, from xáos. Very similar concepts were developed in
ancient China probably around the same time as Homerus and Hesiod: the
I Ching utlizes relational properties of symbols from sophisticated stochas-
tic procedures providing inspiration, meaning and advice on what has been
understood as divine intent and the way the universe operates.
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Appendix

Causation and correlation: Two formal models

To understand better the di↵erence between causation and correlation we
present two simple models. In the first model we have two hypotheses, x
and y which can true or false and we denote by x � y the proposition “x
is a cause for y” and by C(x, y) the proposition “x and y are correlated”.
The logical representations of the new propositions are enumerated in the
following table:

x y x � y C(x, y)
0 0 0 1
0 1 0 0
1 0 0 0
1 1 1 1

Causation versus correlation: a logical model

Indeed, x � y = 1 if x is true, then y is true, that is, x = y = 1. Note
that x � y is a “more restrictive” operator than the logical implication which
is true also when 0 ! y = 1, for every y 2 {0, 1}. We have C(x, y = 1) if
and only if both x and y are either true or false, that is, x = y. If follows
that x � y implies C(x, y) = 1, but the converse is false.

For the second model we assume that data is represented by two sets X
and Y . If f : X ! Y is a function from X to Y , then we denote the graph of
f by Gf = {(x, f(x)) 2 X ⇥ Y | f(x) = y}. A relation R between X and Y
is a set R ✓ X ⇥ Y . We say that x 2 X is an f -cause for y 2 Y if f(x) = y
and we write x �f y. The elements x, y are correlated by the relation R,
in writing, CR(x, y), if (x, y) 2 R. Assume that Gf ⇢ R; if x �f y, then
CR(x, y) but the converse implication is not true.

Both models show that correlation is symmetric, but causation is not.
However, the models above do not reflect a crucial di↵erence between cau-
sation and correlation: the former contributes to the understanding, in an
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imperfect way, of the phenomenon, but the second is just a syntactical obser-
vation. Causation invites testing, revision, even abandonment; correlation is
static and without further analysis could be misleading, see [1].
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