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Abstract

Despite rapid recent progress towards the development of quantum computers capa-
ble of providing computational advantages over classical computers, it seems likely that
such computers will, initially at least, be required to run in a hybrid quantum-classical
regime. This realisation has led to interest in hybrid quantum-classical algorithms al-
lowing, for example, quantum computers to solve large problems despite having very
limited numbers of qubits. Here we propose a hybrid paradigm for quantum annealers
with the goal of mitigating a different limitation of such devices: the need to em-
bed problem instances within the (often highly restricted) connectivity graph of the
annealer. This embedding process can be costly to perform and may destroy any
computational speedup. In order to solve many practical problems, it is moreover nec-
essary to perform many, often related, such embeddings. We will show how, for such
problems, a raw speedup that is negated by the embedding time can nonetheless be
exploited to give a real speedup. As a proof-of-concept example we present an in-depth
case study of a simple problem based on the maximum weight independent set prob-
lem. Although we do not observe a quantum speedup experimentally, the advantage
of the hybrid approach is robustly verified, showing how a potential quantum speedup
may be exploited and encouraging further efforts to apply the approach to problems
of more practical interest.

1 Introduction

Quantum computation has the potential to revolutionise computer science, and as a conse-
quence has, since its inception, received a great deal of attention from theorists and exper-
imentalists alike. Although much progress has been made through the concerted efforts of
the community, we are still some distance from being able to build sufficiently large-scale
universal quantum computers to realise this potential [1, 2].

More recently, however, significant progress has been made in the development of special-
purpose quantum computers. This has been driven by the realisation that, by dropping
the requirement of being able to efficiently simulate arbitrary computations and relaxing
some of the constraints that make large-scale universal quantum computing difficult (e.g.,
the ability to apply gates to arbitrary pairs of, possibly non-adjacent, qubits), such devices
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can be more easily engineered and scaled. The expectation is that with this approach
one may be able to exploit some of the capabilities of quantum computation—even if its
full abilities are for now beyond our reach—to obtain lesser, but nevertheless practical,
advantages in practical applications. Quantum annealers, which solve particular optimisation
problems, exemplify this approach, and significant progress has been made in recent years
towards engineering moderately large-scale such devices [3, 4]. This approach has been
pursued particularly zealously by D-Wave, who have developed quantum annealers with
upwards of 2000 qubits (e.g., the D-Wave 2000QTM machine [5]), and are thus of sufficient
size to tackle problems for which their performance can meaningfully be compared to classical
computational approaches.

In this paradigm, however, it is non-trivial to compare the performance of quantum solutions
to classical ones, since the focus is on obtaining practical gains in domains where heuristics
tend to be at the core of the best classical approaches. Indeed, this issue is at the heart
of recent debate surrounding the performance of D-Wave machines [6, 7]. In particular, in-
stead of focusing on asymptotic analyses, one must compare the performance of classical and
quantum devices empirically. But performing benchmarks fairly is difficult, especially when
there is often debate as to which classical algorithm should be taken for comparison [8–11].
This is further complicated by the crucial realisation that such special-purpose quantum
devices are operated in a fundamentally different way to the classical ones with which they
are often compared: typically, they operate in conjunction with a non-trivial pipeline of clas-
sical pre- and post-processing whose contribution is far from negligible on the performance
of the device, and may even be the difference between obtaining a quantum speed-up or
not. Note that such pre- and post-processing costs may also arise when generic classical
solvers (e.g. Integer Programming or SAT solvers) are used for optimisation problems, and
although such solvers may not be the fastest classical algorithms for a given problem they
are nonetheless of much practical interest and, when compared to quantum annealers, this
processing pipeline should similarly be taken into account.

In this paper, motivated by the need to take into account the cost of classical processing
in benchmarking quantum annealers, we propose a hybrid quantum-classical approach for
developing algorithms that can mitigate the cost of this processing. In particular, we focus
on D-Wave’s quantum annealers, where this processing involves a costly classical “embed-
ding” stage that maps an arbitrary problem instance into one compatible with D-Wave’s
limited connectivity constraints. This embedding is generally very time-consuming, and ex-
perimental studies indicate that its quality can have strong effects on performance [12, 13].
We formulate a hybrid approach that can mitigate this cost on problems where many related
embeddings must be performed by modifying the problem pipeline to reuse or modify em-
beddings already performed, thereby allowing any potential advantage to be accessed more
directly [14]. A similar type of approach has previously been suggested as a theoretical
means to exploiting Grover’s algorithm [15], and differs from recent hybrid approaches for
quantum annealing [16–19] and computing [20, 21] that instead aim to provide quantum ad-
vantages in situations where far fewer qubits are available than would be needed to execute
a complete quantum algorithm for the problem in question. Research thus far has focused
on using quantum annealing to solve problems for which only a single embedding is required.
The hybrid approach we propose therefore draws attention to the fact problems to which it
can be applied—which require many embedding steps—are more promising candidates for
observing practical quantum speedups, and hence serves also to help in guiding the search
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for problems suitable for quantum annealing.

Having outlined this hybrid computing approach, we then present a hybrid algorithm that is
based around a D-Wave solution to the maximum-weight independent set (MWIS) problem.
Although the problem this algorithm solves, called the dynamically weighted MWIS prob-
lem, perhaps has limited independent interest and represents a rather simple application of
our more general approach, it serves as a strong proof-of-concept for more complex algo-
rithms, and we reinforce this by implementing it experimentally on a D-Wave 2X (D-Wave
2X) machine [22]. The results of the experiment show a large improvement of the hybrid
algorithm over a standard quantum annealing approach, in which the embedding process
is naively repeated many times. We further compare the hybrid algorithm to a standard
classical algorithm. Although we do not observe an overall speedup using the hybrid algo-
rithm, the scaling behaviour of this approach compares favourably to that of the classical
algorithm, leaving open the possibility of future speedups for this problem.

The outline of this paper is as follows. In Section 2 we present an overview to (D-Wave’s
approach to) quantum annealing and benchmarking such devices. In doing so, we are delib-
erately thorough and pedagogical, since unfair or poor benchmarking has been the source
of much misunderstanding regarding quantum speedups, and is crucial to the approach we
outline. In Section 3 we present, in a general setting, our hybrid paradigm. In Section 4
we provide an illustrative case study, applying our approach to the dynamically weighted
maximum-weight independent set problem and compare its performance on a D-Wave 2X
machine to the standard quantum annealing pipeline. Finally, in Section 5 we present our
conclusions.

2 D-Wave’s quantum annealing framework

2.1 Quantum annealing

Quantum annealing is a finite temperature implementation of adiabatic quantum comput-
ing [23], in which the optimisation problem to be solved is encoded into a Hamiltonian Hp

(the quantum operator corresponding to the system’s energy) such that the ground state(s) of
Hp correspond(s) precisely to the solution(s) to the problem (of which there may be several).
The computer is initially prepared in the ground state of a Hamiltonian Hi, which is then
slowly evolved into the target Hamiltonian Hp. This computation can be described by the
time-dependent Hamiltonian H(t) = A(t)Hi+B(t)Hp for 0 ≤ t ≤ T , where A(0) = B(T ) = 1
and A(T ) = B(0) = 0. T is called the annealing time and the functions A and B determine
the annealing schedule (for details on D-Wave’s schedule, see [3, 24]).

If the computation is performed sufficiently slowly, the Adiabatic Theorem guarantees that
the system will remain in a ground state of Hp throughout the computation and the final
state will thus correspond to an optimal solution to the problem at hand [23]. In the ideal
adiabatic limit, the time required for such a computation scales as the inverse-square of the
minimum spectral-gap1 (i.e., the minimum difference between the ground and first excited

1Determining the minimum spectral gap, and thus the time required for computation, is unfortunately
itself a computationally difficult problem [25].
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states of H(t)). However, in the finite temperature regime of quantum annealing, a trade-off
must be found between evolving the system sufficiently slowly and avoiding the perturbing
affect of the environment. As a consequence, the final state is only a correct solution with a
certain probability, and the (hence probabilistic) computation must be repeated many times
to obtain the desired solution (or a sufficiently close approximation thereof) [3, 26].

2.2 Quadratic unconstrained Boolean optimisation

Although the adiabatic computational model is quantum universal [27], the recent success
of quantum annealing has come about by focusing on implementing specific types of Hamil-
tonians that are simpler to engineer and control, despite the fact they might not be capable
of efficiently simulating arbitrary quantum circuits. In particular, D-Wave’s devices can be
modelled by a two-dimensional Ising spin glass Hamiltonian, and it is thus capable of solving
the Ising spin minimisation problem, a well-known NP-hard optimisation problem [3, 28].
This problem is equivalent, via a simple mapping of spin values (±1) to bits (0 or 1), to the
Quadratic Unconstrained Boolean Optimisation (QUBO) problem [29]. In this paper we will
use this formulation, as it will allow us to represent in detail a little more compactly the
algorithms.

The QUBO problem is the task of finding the input x∗ that minimises a quadratic objective
function of the form f(x) = xTQx, where x = (x1, . . . , xn) is a vector of n binary variables
and Q is an upper-triangular n× n matrix of real numbers:

x∗ = arg min
x

xTQx = arg min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}. (1)

Note that arbitrary quadratic objective functions g can be converted to this form. Since
x2i = xi for xi = 0 or 1, linear terms of g can be encoded as the diagonal entries of a Q for f .
Furthermore, any constant terms in g can be ignored since they do not affect the objective
minimisation with respect to x.

In the quantum annealing model of the QUBO problem, each xi corresponds to a qubit
while Q defines the problem Hamiltonian Hp. Specifically, the non-zero off-diagonal terms
Q(i,j), i < j, correspond to couplings between qubits xi and xj, while the diagonal terms
Q(i,i) are related to the local field applied to each qubit. For a given QUBO problem Q,
these couplings may be conveniently represented as a graph GL = (VL, EL) representing the
interaction between qubits, where VL = {1, . . . , n} is the set of qubits and EL = {{i, j} |
Q(i,j) 6= 0, i < j} are the edges representing the couplings between qubits. For reasons that
will soon be apparent, we will refer to such a graph for a given QUBO problem as the logical
graph, and the set of qubits the QUBO problem is represented over the logical qubits.

2.3 Hardware constraints and embeddings

In practice, it remains exceedingly difficult to control interactions between qubits that are
not physically near to one another, and as a result it is not possible to directly implement
directly any instance of the QUBO problem: this would require directly coupling arbitrary
pairs of qubits, which is currently infeasible. Instead, the couplings possible on a quantum
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Figure 1: A portion of a Chimera graph, showing four K4,4 blocks. In general, the graph χk

consists of a k × k grid of such blocks, with connections between adjacent blocks as shown.

annealer are specified by a graph GP = (VP , EP ), where VP is the set of qubits on the device,
and an edge {i, j} ∈ EP signifies that qubits i and j can be physically coupled. The graph
GP is called the physical graph, and the qubits VP are the physical qubits [29, 30].

The physical graphs implemented on D-Wave’s devices are Chimera graphs χk, which are
k×k grids of K4,4 graphs, with connections between adjacent “blocks” as shown in Figure 1.2

Specifically, each qubit is coupled with 4 other qubits in the same K4,4 block and 2 qubits
in adjacent blocks (except for qubits in blocks on the edge of the grid, which are coupled to
a single other block). See [32] for a more formal definition of the Chimera graph structure.

The Chimera graph is, crucially, relatively sparse and quasi-two-dimensional, with qubits
separated by paths of length no longer than 2k. Although the specific choice of hardware
graph is an engineering decision and may conceivably be changed in future devices, any
alternative physical graph is likely to have similar properties since the tradeoff between con-
nectivity and practicability is a core feature (and intrinsic limitation) of the current approach
to quantum annealing [30, 33]. It is therefore essential to take into account these limitations
of the hardware graph in any approach to solving problems with quantum annealers.

Since the logical graph GL for a QUBO problem instance Q will not, in general, be a subgraph
of the physical graph GP = χk, the problem instance on GL must be mapped to an equivalent
one on GP . This process involves two steps: first, GL must be embedded in GP , and secondly
the weights of the QUBO problem (i.e., the non-zero entries in Q) must be adjusted so that
valid solutions on GP are mapped to valid solutions on GL.

2It is possible to define a more general family of n×m×L Chimera graphs that are n×m grids of KL,L

graphs, as in [31]. However, all devices to date have been square grids of K4,4 graphs and, so that, in order
to talk more precisely about scaling behaviour, we adopt the convention of fixing L = 4 and n = m [25].
This is further justified by noting that increasing L involves increasing the density of qubit couplings, which
is technically much more difficult than increasing the grid size.
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The embedding stage amounts to finding a minor embedding of GL = (VL, EL) into GP =
(VP , EP ) [29, 34], i.e., an embedding function f : VL → 2VP such that

1. the sets of vertices {f(v) | v ∈ VL} are disjoint;

2. for all v ∈ VL, there is a subset of edges E ′ ⊆ EP such that G′ = (f(v), E ′) is connected;

3. if {u, v} ∈ EL, then there exist u′, v′ ∈ VP such that u′ ∈ f(u), v′ ∈ f(v) and {u′, v′}
is an edge in EP .

Typically, this involves mapping each logical qubit to “chains” or “blocks” of physical qubits.
In general, a QUBO instance using n logical qubits will require up to O(n2) physical qubits
since the smallest Chimera graph in which the complete graph K4k can be embedded in
is χk, requiring 4k(k + 1) physical qubits [25, 33]. The embedding thus already entails, in
general, a quadratic increase in problem size which needs to be taken into account when
benchmarking quantum annealers.

The problem of finding a minor embedding is itself computationally difficult [29]. Of course,
if one has sufficiently many physical qubits to embed Kn then any n-qubit logical graph can
trivially be embedded into the physical graph. However, this trivial embedding is generally
rather wasteful since qubits are precious resources as the practical limits of quantum anneal-
ing are still constantly being pushed. Perhaps more importantly, as more physical qubits
are required the amount of time needed to find a (sufficiently good) solution increases, so
even when such a naive embedding exists there may be a significant advantage in looking for
smaller embeddings (the feasibility of a problem may even depend on it). The embedding
process may thus, in light of its computational difficulty, contribute significantly to the time
required to solve a problem in practice. Currently, the standard approach to finding such an
embedding is to use heuristic algorithms (see, e.g., [35]).

The second stage, which ensures that the validity of solutions is preserved, involves deciding
on how to share the weights associated with each logical qubit v between the physical qubits
f(v) it it is mapped to. Since the weights must all fall within a finite range3 and there is
a limited analogue precision with which the weights can be set, this process can effectively
amplify the relative effects of such errors and thus decrease the probability of finding the
correct solution [25, 29, 36]. This stage thus further exemplifies the need to avoid unnec-
essarily large embeddings, but does not have the same intrinsic computational cost as the
embedding process proper.

2.4 Benchmarking quantum annealers

Although from a theoretical perspective it is expected that general purpose quantum com-
puters will provide a computational advantage over classical algorithms, there has been
much debate over whether or not quantum annealing provides any such speedup in prac-
tice [8, 14, 30]. Much of this debate has stemmed from disagreement over what exactly
constitutes a quantum “speedup” and, indeed, how to determine if there is one [8]. In
this paper we will focus primarily on the run-time performance in investigating whether a

3Physically, the quantum annealer requires that the QUBO weights satisfy |Q(i,j)| ≤ 1 for all i and j. An
arbitrary problem specified by Q must thus be scaled to satisfy this constraint.
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quantum speedup is present, rather than the (empirically estimated) scaling performance of
quantum algorithms.

One of the key points complicating this issue is the fact that, even in the standard circuit
model of quantum computation, it is not generally believed that an exponential speedup
is possible for NP-hard problems such as the QUBO problem [37]. Leading quantum al-
gorithms instead typically provide a quadratic or low-order polynomial speedup [38]. In
practice, heuristic algorithms are generally used to solve such optimisation problems and
the probabilistic nature of quantum annealing means that it is also best viewed in this
light [8, 25]. This means that, rather than theoretical algorithmic analysis, empirical mea-
sures are essential in benchmarking quantum annealing against classical approaches.

2.4.1 Measuring the processing time

Good benchmarking will, first of all, need to make use of fair and comprehensive metrics
to determine the running time of both classical and quantum algorithms for a problem. In
particular these need to properly take into account not only the “wall-time” of different stages
of the quantum algorithm, but also its probabilistic nature. To understand how this can be
done, we first need to outline the different stages of the quantum annealing process [25].

1. Programming: The problem instance is loaded onto the annealing chip (QPU), which
takes time tprog.

2. Annealing: The quantum annealing process is performed and then the physical qubits
are measured to obtain a solution; this takes time4 ta.

3. Repetition: Step 2 is performed k times to obtain k potential solutions.

The quantum processing time (QPT) is thus

tproc = tprog + k ta.

For any given run of a quantum annealer, there is a non-zero probability of obtaining a correct
solution to the problem at hand, which depends on both the annealing time ta and the number
of repetitions k. Moreover, for any specific problem instance, the optimal values of these
parameters are not known a priori, so the performance of a quantum annealing algorithm
will be determined by the optimal values of these parameters for the hardest problems of a
given size n [8]. On D-Wave 2X (and earlier) devices, however, the minimal annealing time
of 20µs has repeatedly been found to be longer than the optimal time [8, 25, 39, 40].

A relatively fair and robust way to measure the quantum processing time is the “time to
solution” (TTS) metric [8, 41], which is based on the expected number of repetitions needed
to obtain a valid solution with probability p (one typically takes p = 0.99).5 If the probability

4Note that this is sometimes referred to as the “wall clock time” in the literature. For simplicity, we
choose to englobe all times associated with an annealing cycle (e.g. readout and inter-sample thermalisation
times) along with the annealing time per se into ta.

5It is possible to generalise the TTS method to a time-to-target (TTT) method [9], where one is interested
in the expected time to obtain a solution that is sufficiently good with respect to some (perhaps problem-
dependent) measure. Although this approach is likely to be very useful in benchmarking larger practical
problems, we focus on the TTS approach here (which can be seen as a specific case of TTT).
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per annealing sample of obtaining a solution is s (which can be estimated empirically), then
this is calculated as

kp =
log(1− p)
log(1− s)

, (2)

and the quantum processing time is thus calculated with this k as tproc = tprog + kp ta.
Throughout the rest of the paper we will fix p = 0.99 as is typically done, and thus consider
k99.

In practice, unfortunately, even for moderate problem sizes, quantum annealing (and, indeed,
classical annealing) simply does not find a correct solution to many problem instances [8,
41, 42]. Thus, although no worst case running time for such problems can be calculated,
it is often instructive to look at the QPT for restricted classes of problems of particular
interest or of limited difficulty. In particular, several authors have applied this to difficulty
“quantiles”, calculating the QPT for, e.g., the 75% of problems that can be solved the
quickest. Investigating how the QPT scales with problem difficulty in this way permits
some comparison with classical algorithms where it would otherwise be difficult or even
impossible [8, 41].

Existing investigations have primarily focused on comparing directly the QPT with the
processing time of a classical algorithm in order to look for what we call a “raw quantum
speedup”. However, it is essential to realise that the time used by the QPU and measured by
the QPT refers only to a subset of the processing required to solve a given problem instance
using a quantum annealer. Specifically, a complete quantum algorithm for a problem instance
P involves, as a minimum requirement, the following steps:

1. Conversion: The problem instance P must be converted into a QUBO instance Q(P ),
typically via a polynomial-time reduction taking time tconv.

2. Embedding: The QUBO problem Q(P ) must be embedded into the Chimera hardware
graph taking time tembed.

3. Pre-processing: The embedded problem is pre-processed, which involves calculating
(appropriately scaled) weights for the embedded QUBO problem, taking time tpre.

4. Quantum processing: The annealing process is performed on the QPU, taking time
tproc.

5. Post-processing: The samples are post-processed to choose the best candidate solution,
check its validity, and perform any other post-processing methods to improve the solu-
tion quality6 [25, 36] taking time tpost. The QUBO solution must finally be converted
back to a solution for the original problem P .

The total processing time is thus7

TQ = tconv + tembed + tpre + tproc + tpost. (3)

6On D-Wave’s annealer, for example, a local search may optimally be performed to improve the solution
quality. The k repetitions that are performed in the quantum processing step are broken into fixed “batches”
of k/b samples (where b depends on the problem but not on k) and batches are post-processed in parallel
with the annealing of the following one; this justifies the consideration of this post-processing as contributing
towards the constant overhead tpost, as only the post-processing of the final batch contributes to TQ. Note
that such post-processing already constitutes a form of hybrid quantum-classical approach.

7As a convention, we will use lower case letters t for the timings of subtasks, and upper case T ’s to denote
overall times of computation.
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The realisation that these other steps must be included in the analysis is emphasised by
the fact that in practical problems the embedding time often dominates the time used by
the annealer itself. Previous investigations have largely avoided this by focusing on artificial
problems “planted” in the Chimera graph so that no embedding is necessary [6, 8, 39, 41, 42].
Although finding a raw speedup in such situations is clearly a necessary condition for a
quantum speedup, it does not guarantee that any corresponding speedup will carry over into
practical problems.

It is therefore the time TQ which should be used in a fair comparison with classical algorithms.
Note that this still makes use of the TTS approach discussed above, except one must now
take into account the tradeoff between the quality of an embedding and the time spent
finding it in order to determine the optimal annealing parameters.

2.4.2 Comparing classical and quantum algorithms

To properly benchmark quantum annealing against classical algorithms it is necessary not
only to have fair measures of the cost of obtaining a solution, but one must also compare
fairly the quantum annealer to a suitable classical algorithm.

Ideally, the performance of a quantum annealer should be compared against the best clas-
sical algorithm for the problem being solved. In practice, such an algorithm is rarely, if
ever, known, especially for problems where heuristics dominate, and certain algorithms may
perform better on certain subsets of problems. The best one can do in practice, then, is to
look for a “potential quantum speedup” [8] by comparing against the best available classical
algorithm for the problem at hand.

Often, however, quantum annealers are also tested against specific classical algorithms of
interest; a speedup in such benchmarking has been termed a “limited speedup” in [8]. Such
studies are important since a limited speedup is, of course, a necessary condition for a real
quantum speedup to be present. This type of benchmarking has often been used, e.g., to
compare quantum annealing to simulated annealing or simulated quantum annealing [6,
41, 42], and such comparisons have the extra benefit of comparing similar use cases—i.e.,
generic optimisation solvers rather than algorithms tailored to a particular problem and
which might require significant development time. Nonetheless, care should be made in
interpreting results when benchmarking in this way, since much of the controversy regarding
potential speedup with quantum annealing has arisen when “limited” speedups are claimed
to have more general relevance.

Finally, it is important to make sure the performance measures for both quantum and classi-
cal algorithms are compatible. That is, the classical processing time TC should be calculated
using a TTS metric as for TQ (if the classical algorithm is deterministic, this simply reduces to
the computation time), and should include all aspects of the classical computation, including
pre- and post-processing and reading input. Note that by including the cost of embedding
in the quantum and classical processing times, we make sure that what we calculate is a
function of the problem size n and not the number of physical qubits.
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3 Hybrid quantum-classical computing

As we discussed in the previous section, most of the effort in determining whether or not
quantum annealing can, in practice, provide a computational speedup has focused purely
on determining the existence of a raw quantum speedup, which does not take into account
the associated classical processing that is inseparable from a quantum annealer. Such a raw
speedup is certainly a necessary condition for practical quantum computational gains, and
its study is therefore well justified. However, even if there is a raw speedup there are many
reasons why this might not translate into a practical quantum speedup.

A practical speedup is possible for a problem if we are able to give a quantum algorithm such
that TQ < TC , where (we recall) TC is the classical processing time for the best available
classical algorithm for the problem. From the definition of TQ in (3), it is clear than, even if
tproc < TC , the conversion, embedding and pre/post-processing may provide obstructions to
obtaining a practical speedup. In practical terms, the pre- and post-processing tend to add
relatively minor (or controllable) overheads, but the conversion and embedding costs pose
more fundamental problems.

The conversion stage can be problematic for two reasons. First, if the conversion is slow,
tconv may be sufficiently large to negate any speedup. However, asymptotically tconv should
be polynomial in the problem size n, and, in practice for problems suitable for annealing,
tconv seems to be relatively small compared to tproc and thus has negligible impact on the
ability to find an absolute speedup.

More importantly though is the fact that the QUBO instance resulting from the conversion
may be significantly larger than the original problem instance, and thus it can be too large
to solve with current quantum annealers. For example, [31] studies the QUBO formula-
tion of the well-known Broadcast Time Problem obtained through a reduction from Integer
Programming. For instances of this problem on graphs with less than 20 vertices, the corre-
sponding QUBO formulation required up to 1000 binary variables (and thus logical qubits)
which, especially once the problem is embedded in the physical graph, is beyond the reach
of current quantum annealing hardware.

The computational cost of embedding the QUBO instance in the hardware graph is, in
absolute terms, even more of an obstruction to successful applications of quantum annealing
in its current state. As mentioned earlier, when using standard heuristic algorithms the
embedding time tembed is generally (at best) comparable to tproc (and, indeed, TC) and often
much longer. Like the issues associated with the conversion, if sufficiently many qubits are
available (i.e., quadratic in the QUBO problem size) and can reliably be annealed, then
this embedding can be done quickly and this problem could be neglected. However, this is
certainly not the current situation, and ways to mitigate the dominant effect of tembed will
be needed if quantum annealing is to be successfully applied in its current state or imminent
future.

These difficulties in turning a raw quantum speedup into a practical advantage have led to
significant interest in “hybrid classical-quantum” approaches (also called “quassical” com-
putations by Allen, see [14]): hopefully, by combining quantum annealing with classical
algorithms may allow otherwise inaccessible speedups to be exploited.8 Several such hybrid

8We note that hybrid approaches have been also proposed (explicitly and implicitly) in other models of

10



approaches have aimed to overcome the resource limitation arising from the fact that practi-
cal problems typically require more qubits than are available on existing devices (as a result
of the expansion in number of variables during the conversion stage discussed above) [16, 17].
Such proposals instead provide algorithms that utilise quantum annealing on smaller, more
manageable subproblems before combining the results classically into a solution for the larger
problem at hand. Other hybrid approaches have aimed to combine quantum annealing with
classical annealing and optimisation techniques, in particular by using quantum annealing
to perform local optimisations and classical techniques to guide the global search direc-
tion [18, 19]. These approaches aim to make the most of both quantum advantages (e.g.
tunnelling) and classical ones (the ability to read and copy intermediate states).

3.1 Hybrid computing to mitigate minor-embedding costs

Although hybrid approaches have also looked at improving the robustness and quality of
embeddings [45], to the best of our knowledge such approaches have not been used to try
and mitigate the cost of performing the embedding itself, which, we recall, is often prohibitive
to any speedup. In this paper we propose a general hybrid approach to tackle precisely this
problem. In particular we aim to show how a raw speedup that is negated by the embedding
time (i.e., in particular when tproc < TC but TQ > TC) can nonetheless be exploited to give
a practical speedup to certain computational problems.

Our approach is motivated by another hybrid quantum-classical algorithmic proposal which
predates the rise of quantum annealing and was introduced with the aim of exploiting
Grover’s algorithm—the well-known black-box algorithm for quantum unordered database
search [46]—in practical applications [15]. The motivation in this case was the realisa-
tion that, although Grover’s algorithm offers a provable quantum speedup, it applies in
rather artificial scenarios: it assumes the existence of an unsorted quantum database, when
generally a more practical database design would allow for even better speedups, and in
most conceivable practical scenarios a costly pre-processing step is needed to prepare the
database which immediately negates the quantum speedup. The authors showed, however,
that some more complex practical problems can be approached by solving a large number
of instances of unstructured database searches on a single database—precisely the problem
that Grover’s algorithm is applicable to. Specifically, they looked at practical problems in
computer graphics, such as intersection detection in ray-tracing algorithms.9 The need to
run Grover’s algorithm many times to solve such problems means that the cost of preparing
and pre-processing the database can be averaged out over all the runs, thus allowing the
theoretical quantum speedup to be recovered. An important aspect of the hybrid approach
of [15] is that it is not just an algorithmic paradigm for using a quantum computer, but
it is also concerned with determining which problems we should try and use the quantum
computer to solve.

Although their hybrid approach applies to a very different situation than that of quantum

quantum computation too. For example, measurement based computation can be seen a hybrid approach:
one starts with a quantum state and performs iterative rounds of quantum measurements and classical
computations determining future measurements [43, 44].

9Here, one must determine the intersections between large numbers of a priori unordered three-
dimensional objects, which can be rephrased as a search for an initially unknown number of items in an
unordered database.
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annealing, there are some clear similarities between the prohibitive costs of preparing the
database for Grover’s algorithm, and that of performing the embedding prior to annealing.
We thus suggest adopting an analogous approach of using a quantum annealer to solve more
complex problems that require solving sets of related (sub)problems whose potential quantum
speedup is hidden behind the cost of the embedding required to solve the (sub)problem. In
particular, it might be easier to observe (and thus take advantage of) a quantum speedup
by looking at algorithms that require a large number of calls to a quantum annealer as
a subroutine, rather than trying to observe a speedup for solving an individual problem
instance on an annealer (e.g., a single instance of an NP-complete problem such as the
Independent Set problem via a reduction to a single QUBO instance) as previous attempts
to use quantum annealing have done.

The crucial condition for a problem to be amenable to this hybrid approach is that the
repeated calls to the quantum annealer should be made with the same logical graph embedding,
or permit an efficient method to construct the embedding for one call from the previous ones.
If this condition is satisfied, the cost of the embedding, tembed, can thus be spread out over the
several calls, allowing a raw quantum speedup to be exploited. There are several conceivable
ways such a scenario could naturally occur in realistic algorithmic problems, and we will
discuss and analyse an example in detail in the following sections. Perhaps the most trivial
would be that where all (or most) solutions to a highly-degenerate problem are required
to be found, rather than simply a single one. Although such a scenario is clearly suitable
for quantum annealing, given its intrinsic ability to randomly sample solutions, there are
other, perhaps more subtle, situations where this hybrid approach could be applied. For
example, one may need to solve a large number of instances of a problem, P1, . . . , Pm,
where the instances Pi differ in some parameters, but where the embedding is independent
of these parameters (e.g., if they are encoded in the weights rather than couplings of the
logical graph), or if the logical graphs Gi of each instance Pi differ only slightly and are
all subgraphs of a single logical graph G that can be embedded.10 These examples are
certainly not definitive, and other situations suitable for this hybrid approach are bound to
be uncovered.

In order to see how this hybrid approach can help exploit a quantum speedup, we will consider
the particularly simple case with the following general description of a quantum annealing
algorithm based on the hybrid approach described above (a more precise analysis would
necessarily depend in part on the algorithm in question): some initial classical processing
is performed, the embedding of a logical graph into the physical graph is computed, m
instances of a QUBO problem are solved on a quantum annealer, with some classical pre-
and post-processing occurring between instances, and some final classical computation is
optionally performed. We emphasise, however, that the same approach can be applied to
cases where the embedding is reused in a less trivial manner, so long as the cost to go from
the embedding of one subproblem to the next is small. Indeed a key part of the challenge—
and future research—is finding suitable problems or criteria for which this is the case; here,
our goal is to simply outline the underlying paradigm.

More formally, let us call the overall problem the hybrid algorithm solves R, and the m
problem instances that must be solved to do so, P1, . . . , Pm. Recall that the time to solve a

10Of course, one would want G to be not much larger than the Gi, otherwise the embedding of G is unlikely
to allow one to compute good embeddings of the Gi.

12



single instance Pi on an annealer is TQ(Pi); as we noted earlier this is, in practical situations,
generally dominated by the cost of the embedding and the quantum processing, so TQ(Pi)
can be approximated, for simplicity, as

TQ(Pi) = tconv(Pi) + tembed(Pi) + tpre(Pi) + tproc(Pi) + tpost(Pi)

≈ tembed(Pi) + tproc(Pi),

where we have explicitly included the dependence on the problem instance. The hybrid
algorithm will thus take time

TH(R) ≈ t1(R) + tembed(P1) +
∑
i

(
tproc(Pi) + t2(Pi)

)
≈ t1(R) + tembed(P1) +

∑
i

tproc(Pi), (4)

where t1(R) encapsulates any initial and final classical processing associated with combining
the solutions Pi, and t2(Pi) is the classical calculation associated with each iteration, which
we have assumed to be small compared to tproc(Pi) since this should simply encompass minor
pre- and post-processing between annealing runs, and thus be negligible if the problem is
amenable to the hybrid approach.11 Note that we have made use of the assumption that
tembed(P1) ≈ temded(Pi) for i > 1, which is a criterion on the suitability of a problem for this
hybrid approach.

We note immediately that a standard approach with a quantum annealer, performing the
embedding for each instance Pi, would take time

Tstd(R) ≈ t1(R) +
∑
i

(
tembed(Pi) + tproc(Pi)

)
.

In practice, one could envisage exploiting classical parallelism to reduce the cost of performing
the embedding m times by a constant factor. For simplicity, we will assume that such
parallelism is not used, and as long as m is large enough the same conclusions hold. Thus,
since in practice tembed is comparable to, if not larger, than tproc, we already have

TH(R)� Tstd(R).

Although this conclusion may seem somewhat trivial, it is important in that it shows al-
ready how annealing can provide much larger practical gains for such complex algorithmic
problems. Indeed, one may view this result as emphasising the need to choose problems that
allow the classical overheads of quantum annealing to be negated. Thus far, the focus has
been on traditional algorithmic problems that are difficult to subdivide; by using quantum
annealing in more complex algorithms, this hybrid paradigm allows the real performance of
a quantum annealer to be more directly accessed.

11More precisely, one expects the annealing time to be exponential in general, and if an exponential amount
of classical processing is also required, it seems likely that no speedup will be possible. This condition could
nonetheless be relaxed to obtain an advantage with the hybrid approach, as long as a raw speedup is still
present when the annealing and processing times are combined (i.e., tproc+t2), but negated by the embedding
if the annealer is used in the standard, more naive, way; however, we make this assumption to simplify our
analysis.
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More importantly, it may allow a raw quantum speedup to be exploited practically. To see
this, let us consider the case when the best classical algorithm can solve a single instance Pi

in time TC(Pi).
12 We are interested, in particular, in the case when a raw quantum speedup

(i.e., tproc(Pi) < TC(Pi)) is negated by the embedding (i.e., TQ(Pi) > TC(Pi)). Although the
standard classical approach to solving R is to use the classical algorithm to solve each Pi,
and would thus take time t1(R) +

∑
i TC(Pi), we should not assume this is the best classical

approach to solving R, and for a fair comparison the hybrid approach should be benchmarked
against the best known classical algorithm for R.

It is, of course, possible that, for certain problems, a much more efficient classical algorithm
exists for solving R when m is large enough (e.g., there might be an efficient way to map
solutions of Pi to Pj). Such problems are thus not suitable for such a hybrid approach, and
so are not of particular interest to us. Nonetheless, in general a classical algorithm for R may
be more intelligent than the standard approach as certain, necessarily minor,13 parts of the
computation are likely to be common to solving several Pi. Specifically, we can thus rewrite
TC(Pi) = t3(Pi) + t4(Pi), where t3 is small compared to t4. The best classical algorithm can
then, rather generally, be considered to take time

T best
C (R) = t5(R) + t3(P1) +

∑
i

t4(Pi) = t6(R) +
∑
i

t4(Pi),

where t6(R) = t5(R) + t3(P1) and t5(R) encapsulates any additional global processing (in
analogy to t1(R) for the quantum approaches). Crucially, unless the raw quantum speedup
is small, we will also have tproc(Pi) < t4(Pi).

It is thus easy to see that,

for large enough m (i.e., number of Pi to be solved), we have TH(R) < T best
C (R),

and thus the raw quantum speedup will translate into an absolute speedup for the hybrid
algorithm. The precise value of m for which such a speedup is obtained will, of course, depend
on the problem instances themselves, since the runtime can in practice depend heavily on
this. Moreover, although m depends on the problem R (it may, for example, scale with the
problem size, or be fixed), this analysis shows that there are problems for which this hybrid
approach can turn a raw quantum speedup into a practical one.

It is important to reiterate that the quantum (and, if applicable, classical) times should
be calculated using the TTS metric for each problem instance in order to correctly take
into account the probabilistic nature of the quantum (and, potentially, classical) algorithms,
just as when benchmarking the performance of an annealer on individual problem instances.
The performance of the overall hybrid algorithm is thus itself probabilistic and assessed in
a similar fashion.

Finally, we reiterate that such a hybrid approach can, of course, only provide a quantum
speedup if a raw quantum speedup exists. The existence of such speedups for practical
problems remains heavily debated, but the purpose of the hybrid approach is to exploit such
an advantage when or if it is present.

12We emphasise that, since we are interested in practical, not only asymptotic, gains, we can not easily
assume that TC(Pi) = TC(Pj) for i 6= j.

13If not, then again the problem is not suitable for the hybrid approach, as a much more efficient classical
algorithmic approach exists.
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4 Case study: Dynamically weighted maximum-weight

independent set

To illustrate the proposed hybrid approach, we discuss in detail a concrete example both from
a theoretical and experimental viewpoint. We first present the problem, which is intended
as a proof-of-concept example rather than one of any particular practical application, before
discussing an experimental implementation on a D-Wave quantum annealer and analysing
the results of this experiment.

Our problem is based on a variant of the well-known independent set problem, the maximum-
weight independent set (MWIS) problem. More precisely, we consider the question of solving
many instances of this problem with different (dynamically assigned) weights on the same
graph.

4.1 Maximum-weight independent set

Recall that an independent set V ′ of vertices of a graph G = (V,E) is a set V ′ ⊆ V such
that for all {u, v} ∈ E we have {u, v} 6⊆ V ′.

Maximum-Weight Independent Set (MWIS) Problem:

Input: A graph G = (V,E) with positive vertex weights w : V → R+.
Task: Find an independent set V ′ ⊆ V such that maximises

∑
v∈V ′ w(v)

over all independent sets of G.

Note that the number of vertices in a maximum weighted independent set may be of smaller
size then the number for its maximum independent set. For example, consider the weighted
graph shown in Figure 2(a). The vertices {v2, v4} have total weight 9, while the larger set
{v0, v1, v3} has only total weight 8.

2

3

3 18

v0

v1

v3 v4v2

v0 v1 v2 v3 v4

v0 -2 0 12 0 0

v1 0 -3 12 0 0

v2 0 0 -8 12 0

v3 0 0 0 -3 12

v4 0 0 0 0 -1

(a) (b)

Figure 2: An example of (a) a vertex-weighted graph and (b) its MWIS QUBO matrix (cf.
Section 4.3).

The general MWIS problem is NP-hard since it encompasses, by restriction, the well-studied
non-weighted version [47]. One should note, however, that for graphs of bounded tree-
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width, the MWIS problem is polynomial-time solvable using standard dynamic programming
techniques (see [48]).

We finish the presentation of the MWIS problem by mentioning an important application of
it that was studied in [49, 50]. Hence, although the example we presented is intended simply
as a proof-of-concept, it is not far removed from computational problems of interest. Suppose
we have a wireless network consisting of several nodes and each node has a certain amount
of data it needs to transfer. The problem consists in finding the set of nodes that should
be given permission to transfer so that the total amount of data output is maximised under
the condition that none of the transmissions can interfere with each other. If the vertices
of the graph G = (V,E) are devices in the network, the weight associated with each node
represents the amount of data it needs to transfer and each edge in E codes the potential
interference between its two endpoints (so that only one of them can be transferring at a
given time), then finding the optimal schedule for transmission is equivalent to finding the
maximum-weight independent set of G.

4.2 Dynamically weighted MWIS

Although the MWIS can be readily transformed into a QUBO problem (as we show below),
by itself it is not directly suitable for the hybrid approach we proposed. However, a simple
variation that we propose here is indeed suitable.

Consider the network scheduling problem presented in the previous subsection. Suppose
that each node in the network now has multiple messages it needs to send with various sizes,
but the underlying structure of the graph remains the same (i.e., the same set of devices
with unchanged potential interference), but the weight associated with each node will now
change over time. Finding the optimal transmission schedule over time in this network is the
same as finding the maximum weighted independent set of the graph with multiple weight
functions.

Formally, we have the following problem:

Dynamically Weighted Maximum-Weight Independent Set (DWMWIS) Prob-
lem:

Input: A graph G = (V,E) with a set of weight functions W = {w1, w2, . . . , wm}
where wi : V → R+ for 1 ≤ i ≤ m.

Task: Find independent sets Vi ⊆ V that maximise
∑

v∈Vi
wi(v) for each 1 ≤ i ≤ m.

This problem is to solve the MWIS problem on G for each of the m weight assignments
wi ∈ W .

For m = 1 we obtain again the MWIS problem, but for larger m the problem is suitable for
our hybrid approach.

4.3 Quantum solution

We now provide a QUBO formulation for the MWIS Problem. Fix an input graph G = (V,E)
with positive vertex weights w : V → R+. Let W = max{w(v) | v ∈ V } and let S > W be
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a “penalty weight”. We build a QUBO matrix of dimension n = |V | such that:

Q(i,j) =


0, if i > j or {i, j} 6∈ E,

−w(vi), if i = j,
S, if i < j and {i, j} ∈ E.

(5)

Theorem 1. The QUBO formulation given in (5) solves the MWIS Problem.

Proof. Let x be a Boolean vector corresponding to an optimal solution to the QUBO for-
mulation (5). Let D(x) = {vi | xi = 1} be the vertices selected by x.

If D(x) is an independent set then −x∗ = −xTQx is its weighted sum. For two different
solutions x1 and x2, which correspond to independent sets, the smallest value of xT

1Qx1 and
xT
2Qx2 is better.

Now assume D(x) is not an independent set. We will show that the objective function
corresponding to D(x) can be improved. Indeed, since D(x) is not independent there must
be two vertices vi and vj in D(x) such that {vi, vj} is an edge in the graph. Let x1 = x
but set xi = 0, i.e. D(x1) = D(x) \ {i}. We have xT

1Qx1 < xTQx −W + w(vi) ≤ xTQx.
(Note the second inequality is saturated if and only if vi is a pendant vertex attached to vj.)
We can repeat this process on improving x to x1 until we get an independent set. Thus the
optimal value of the QUBO holds for some independent set. By the conclusion of the second
paragraph of this proof, we know that a maximum weighted independent set corresponds to
x∗.

In Figure 2(b) we give the QUBO matrix for the example in Figure 2(a) with penalty entries
P = 12 > W = 8, [31, 51]. It is easy to see that with x = (0, 0, 1, 0, 1) we have the minimum
value x∗ = xTQx = −9. The maximum total weight is thus indeed −x∗ = 9, as expected.

As a sanity check of the practicality of this solution on real quantum annealing machines,
we implemented it on a D-Wave 2X device. For this example it is easy to see that the graph
in Figure 2(a) is a subgraph of K4,4, hence a trivial embedding is possible.14 The algorithm
gave the expected optimal answer of {v2, v4} approximately two-thirds of the time, and the
non-optimal answer of {v0, v1, v3}, a third of the time; occasionally other results, such as {v2}
or {v0, v1, v4} were obtained, although such occasional incorrect solutions are not unexpected
for quantum annealers. Further details of the implementation are given in Appendices B
and C.

In order to adapt the MWIS solution above to the DWMWIS problem, note that the locations
of the non-zero entries of the QUBO formulation (5) depend only on the structure of the
graph and not on the weight function w. Thus, in order to solve the DWMWIS problem,
for each weight assignment wi the same embedding of the graph into the D-Wave physical
graph can be used, meaning that a hybrid algorithm based around the MWIS solution above
can readily be implemented (see Appendix D).

More specifically, following the hybrid algorithm described in Section 3.1 for instances
P1, . . . , Pm (where each Pi uses weight function wi), we perform the embedding once (en-
tailing a time tembed(P1)) and then solve the MWIS problem for each weight assignment wi

14We took, for example, the embedding [v0 → 0, v1 → 1, v2 → 4, v3 → 2, v4 → 7] into the first bipartite
block of the Chimera graph shown in Figure 1.
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(taking times tproc(Pi)) using the QUBO solution outlined above. Note that the iteration
times t2(Pi), 1 ≤ i ≤ m, in Eq. (4) thus correspond to the time to read in and alter the
coupling weights in the QUBO matrix.

4.4 Classical baseline

The main objective of studying the DWMWIS example in detail is to exhibit experimen-
tally the advantage that the hybrid approach can provide over a standard annealing-based
approach. Nonetheless, it is helpful to further compare this to the performance of a classical
baseline algorithm for comparison and to help highlight this advantage, even if we do not
necessarily expect to see an absolute quantum speedup from the hybrid algorithm.

As we discussed in detail in Section 2.4.2, one should ideally compare the hybrid algorithm
against the best available classical algorithm for the same problem. However, since our
primary concern is not to show an absolute quantum speedup, and studying more closely
the performance of various classical algorithms for the DWMWIS problem is somewhat
beyond the scope of the present article, we will use a generic classical algorithm based
on a Binary Integer Programming (BIP) formulation of the MWIS problem for illustrative
purposes. Both quantum annealing and BIP can be seen as types of generic optimisation
solvers. By using such a baseline, we also mimic how an engineer would map a new hard
problem to a well-tuned optimisation solver (a SAT-solver or IP-solver being two natural
generic choices). This process mimics the D-Wave model of requiring a polynomial-time
reduction to the Ising/QUBO problem, which the quantum hardware solves, and allows us
to compare similar approaches, even if for certain problem instances their very genericity
may make them suboptimal.

To this end, for a given input graph G = (V,E) with positive vertex weights w : V → R+,
we construct a BIP instance with n = |V | binary variables as follows. To each vertex vi
in G we associate the binary variable xi, and for notational simplicity we will denote the
collection of variables xi by a binary vector x = (x0, x1, · · · , xn−1). We thus have the BIP
problem instance:

maximise
∑
vi∈V

w(vi)xi

subject to xi + xj ≤ 1 for all {vi, vj} ∈ E.
(6)

Each constraint in (6) enforces the property that no adjacent vertices are chosen in the in-
dependent set while the objective function ensures an independent set with maximum sum
value is chosen. Assuming we have the binary vector x which yields the optimal value of
objective function (6), we take D(x) = {vi | xi = 1} to be the set of vertices selected as the
maximum weighted independent set.

Theorem 2. The BIP formulation given in (6) solves the MWIS problem.

Proof. First, we show that D(x) is an independent set if and only if all the constraints in (6)
are satisfied. This is indeed the case as if all the constraints are satisfied, then for each
{vi, vj} in E, at most one of them is in D(x) by its definition. On the other hand, if any one
of the constraint is not satisfied, then it means vi and vj are both chosen, thus D(x) is not
an independent set.

18



Now, let x be a binary vector corresponding to an optimal solution of BIP formulation (6).
Let D(x) = {vi | xi = 1} be the vertices selected by x. Since x is the optimal solution, we
already have all the constraints of (6) satisfied and D(x) is therefore a valid independent
set. The objective function will ensure that the selected independent set has the maximum
value sum.

The classical baseline15 we use in the analysis presented in the remainder of this section
is based on an implementation of the BIP formulation in Sage Math [52], which has a
well developed and optimised Mixed Integer Programming library. To ensure that a fair
comparison with the hybrid algorithm is possible, we formulate the classical algorithm for
the overall DWMWIS problem such that the set of constraints in the BIP formulation is
only computed once (cf. the discussion in Section 3.1). This is possible since (in analogy
with the need to only perform the embedding once in the quantum solution) the changing
weights do not change the constraints of the BIP formulation, and we make use of this to
reuse parts of the computation where possible. Note that the Sage environment contains a
simple Python front-end interface to one of many (Mixed) IP-solvers which are often written,
optimised and compiled from C. We used the default Gnu GLPK as the back-end library
but many popular commercial solvers like COIN-OR, CPLEX or GUROBI could be equally
used. For our small input instances, the classical solver choice would not matter much; the
scaling behaviour would be the same for our chosen illustrative NP-hard problem.

4.5 Experimental definition and procedure

To study experimentally the performance of the hybrid DWMIWS algorithm, we compare the
performance of three algorithms on a selection DWMWIS problem instances: the “standard”
quantum algorithm, in which the embedding is re-performed for each weight assignment; the
hybrid DWMWIS algorithm; and the classical BIP-based solution described above.

To this end we analyse the algorithms on a range of different graphs, in particular choosing
155 graphs from a variety of common graph families with between 2 and 126 vertices. The
full list of graphs and some of their basic properties (order, size) can be found in the summary
of results in Appendix A. Each graph was used to generate a single DWMWIS problem in-
stance with m = 100 weight assignments, each randomly generated as floating point numbers
rounded to 2 decimal places within the range [0.0, 1.0) using the default pseudo-random gen-
erator in Python.16 Although the choice of m of weight assignments is somewhat arbitrary,
our choice was made by the need to balance the ability to solve sufficiently large problems
to be able to negate the embedding time against the limited access we had to the quantum
annealer. The problem instances were generated as standard adjacency list representations
using SageMath [52] with random weights assigned as per the details in Appendix F.

The hybrid DWMWIS algorithm outlined in Section 4.3 was implemented on a D-Wave
2X quantum annealer with 1098 active physical qubits [22]; see Appendix D for the code.

15Our local linux machine, running Fedora 25 OS, consisted of an Intel Haswell i7 4.0GHz (overclocked to
4.5GHz) with 32GB DDR3 2400MHz RAM.

16This choice of weight distribution was made for simplicity, but one would expect similar behaviour for
other distributions. In practice, using the full range of possible weights leads to better quantum anneal-
ing performance, so other distributions might require rescaling to optimise performance, adding additional
technical—but not fundamental—complications.
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The same procedure is used for the “standard” quantum algorithm, except the cost of the
embedding is incurred for each weight assignment (as per Section 3.1). Full details of the
implementations, data and results (i.e., source code, problem instances and outputs) are
available along with this CDMTCS research report.

Since we are primarily interested in negating the impact of the embedding process in general
applications, we made use of D-Wave’s heuristic embedding algorithm [53] to embed each
logical graph in the physical graph. While specialised embedding algorithms may be more
effective in certain scenarios, the overall hybrid approach would still be applicable, and by
adopting a generic algorithm our results have wider relevance. Each graph was embedded 10
times to estimate tembed for each problem instance. Unfortunately, due to the large number of
samples often required to be run for each problem and restrictions on access to the annealer,
we were unable to perform a full analysis with each embedding (recall the embedding is non-
deterministic). This introduces a potential systematic error since the embedding generally
affects the solution quality to some degree; we will discuss this further in the analysis that
follows.

Operational parameters for the D-Wave 2X device were determined via an initial testing
round (see [54, 55] for further information on D-Wave timing parameters). In line with
previous research [8, 25, 39, 40] (cf. Section 2.4.1) we found the minimal annealing time of
20µs to be optimal for all the graphs considered. The programming thermalisation time,
which specifies how long the quantum processor is allowed to relax thermally after being
programmed with a QUBO problem instance, was chosen as its default value of 1000µs, as
this was seen to produce satisfactory results. Between anneals, the processor must similarly
be allowed to thermalise, and the default 50µs delay was used. Reading out the result of
each anneal takes 309µs on the D-Wave 2X device, so this readout time (and to a lesser
extent the thermalisation) dominated the actual annealing time. With minor additional low
level processing taken into account, each annealing “sample” has a fixed time of 380.2µs.
Although the actual annealing time of 20µs was a minor part of each annealing cycle, this is
likely to change in the future as larger problems necessitating longer annealing times become
accessible. Moreover, future generations of the machine could have shorter relaxation periods
and faster readout times (at least relative to the annealing time, if not in absolute terms) as
the physical engineering of the processor is better developed [25, 56].

Finally, our tests were run with D-Wave’s post-processing optimisation enabled. While this
adds a small overhead in time, this is well within the spirit of hybrid quantum-classical
computing, and allowed us to solve more problems. This post-processing method processes
small batches of samples while the next batch is being processed [57]. This ensures that it
only contributes a constant overhead in time for each MWIS problem instance independent
of the number of samples (and thus of k99).

To estimate the TTS times TH and Tstd described in Section 3.1, one must first estimate
k99, as defined in Eq. (2), for each weight assignment wi. This is done by estimating the
probability of success si for each such case as Nopt/Ntotal, where Ntotal is the number of
annealing cycles performed, while Nopt denotes the number of times an optimal solution was
found. To determine this ratio accurately for each weight assignment, each problem instance
was initially run twice with 1000 samples. Problem instances for which an optimal solution
was not found several times for every weight assignment were run a further 5 times; the
hardest instances were eventually run a further two times with 2000 samples per run and,
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for one difficult graph (the bipartite complete graph K12,12) a further 14 runs of 2000 sam-
ples. By performing many runs (and since each weight assignment is considered separately),
random noise due primarily to analogue programming accuracy is largely reduced, and k99
is estimated more accurately.

Some problem instances remained unsolved after these runs (i.e., there was at least one weight
assignment wi for which an optimal solution was never found so that k99 was undefined) and
such problem instances had to be abandoned. As a result, the initial 155 graphs were reduced
to 124 for which a running time could be computed and analysed. The fact that such cases
were not uncommon despite the relatively modest size of the graphs highlights limitations
of the current state of quantum annealing on more traditional (and, potentially, practical)
computational problems.

4.6 Results and analysis

For each DWMWIS problem instance (i.e., for each graph G) the times TH and Tstd were
calculated, following the approach described in Section 3.1, as

TH = tembed +
∑
i

(
tprog(Pi) + k99(Pi)tanneal + tpost(Pi)

)
and

Tstd =
∑
i

(
tembed + tprog(Pi) + k99(Pi)tanneal + tpost(Pi)

)
,

where k99(Pi) is the k99 value for weight assignment wi and tanneal = 309µs. As noted in
Section 3.1, Tstd may be reduced by a small constant factor by exploiting classical parallelism,
so Tstd as defined here constitutes an upper bound on the time of a traditional quantum
annealing approach. Both tprog(Pi) and tpost(Pi) are of the order of 20ms (although the latter
varies by an order of magnitude more than in the former over different problem instances
and runs). Note that the processing time tproc defined earlier is, for this approach to the
DWMWIS problem, given by

tproc = tprog(Pi) + k99(Pi)tanneal + tpost(Pi).

The classical time TC was taken as the processor time for the classical algorithm described
earlier.

A detailed summary of the overall times for each graph is given in Appendix A. These results
are summarised in Figures 3(a) and 3(b), which show how the hybrid times TH compare to
both Tstd and TC . Error bars are calculated from the observed variation in tembed, the number
of optimal solutions found Nopt, and the post-processing time tpost. Of these, the error in tpost
is the dominant factor, and largely arises from the uncontrollability of the post-processing
environment, which is performed remotely within the D-Wave processing pipeline. However,
this variation did not result in any significant variation in success probability of the annealing,
so it seems the computational effort expended on post-processing was nonetheless constant.
Indeed, we note that in some earlier runs the post-processing was performed 20 times faster
with no noticeable change in the quality of solution. Given that post-processing contributes
non-negligibly to TH and Tstd, this could significantly effect the overall times. We discarded
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(a) (b)

Figure 3: Plots of (a) an upper bound for Tstd against TH ; and (b) TC against TH for each
DWMWIS problem instance. All times are in ms.

these results to present a conservative analysis and the overall conclusions are not affected by
this, but we note that, with increased control of the classical post-processing, the quantum
times could be significantly reduced.

As noted in the previous section, practical and logistical constraints prevented us from taking
the variation due to different embeddings of each graph fully into account. To assess the
possible magnitude of this effect, we tested one relatively difficult graph (Shrikhande) and
found that consideration of the embedding roughly tripled the error in TH , changing the
value from 12, 800+370

−240µs to 15, 300± 1, 280µs. While this variation would thus generally be
a significant source of error, the variation it induces will not be large enough to affect any
of our conclusions significantly, even if the inability to take this into account is admittedly
regrettable.

First and foremost, from the results shown in Figure 3(a) the extent of the advantage of the
hybrid approach is evident. Indeed, this is to be expected given that, for a given DWMWIS
problem, they differ (by definition) by 99 × tembed. Although this might seem a trivial
confirmation of this fact, the results help illustrate the extent of the advantage that the
hybrid approach can have for such problems, a consequence of the absolute cost of the
embedding. This is visible in Figure 4, showing tembed as a function of the number of vertices
in a graph. Although there is a large variation in the embedding times (since, naturally, some
graph families are easier to embed than others), a nonlinear regression analysis shows that
the dependence on graph order is most consistent with an exponential scaling, as expected.
Moreover, from the figure one sees that, even for these relatively small graphs, tembed quickly
approaches 1s.

From Figure 3(b) it is also evident that no absolute quantum speedup was observed using
the hybrid algorithm, and indeed there is a vast difference in scale between TC and TH : the
“hardest” problem was solved classically in less than 200ms, whereas the hybrid algorithm
required almost 60 times as much time to solve it correctly. The inability to observe any raw
speedup is hardly surprising when one notes that, even if k99 = 1 and tembed = tpost = 0, the
fact that tprog ≈ 20ms means that that one would have TH > 2000ms. The programming
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Figure 4: Plot of graph order |V | against the embedding time tembed on a logarithmic time
scale.

time thus adds an essentially constant overhead, which would have less of an impact as larger
problems (for which k99 is much larger) become solvable.

Although no overall raw speedup was observed, the experiment nonetheless illustrated the
advantage of the hybrid approach over the standard quantum one which, we recall, was
the primary goal. It is nonetheless interesting to examine the scaling behaviour of the
hybrid algorithm in comparison to the classical one, to see whether there is any tentative
evidence that a speedup might be obtainable once the overheads (such as the embedding and
programming times) are sufficiently negated. To analyse this more carefully, it will be useful
to look at the “classical speedup ratio” RC = TH/TC , which provides a clearer measure of
any potential speedup: a value of RC < 1 thus indicates an absolute speedup for the hybrid
algorithm.17

In Figure 5 we show the scaling behaviour of RC against the graph order |V |, which is pro-
portional to the problem size, and the classical time TC . These two quantities are reasonable
proxies of problem difficulty and thus allow the relationship between the performance of the
hybrid algorithm and problem difficulty to be investigated. While the scaling of an algorithm
is generally studied with respect to problem size, the fact that our examples span a range
of graph families, which might all present different scaling behaviour, means that examining
the scaling in terms of problem difficulty, as measured by TC , has empirical merit.

These figures highlight once more the discrepancy between the hybrid and classical times,
with the minimum classical speedup observed being RC = 40 ± 2. Both figures, however,
show that RC decreases with problem size and difficulty, indicating that, for the problem
instances tested, the hybrid algorithm exhibited better scaling behaviour than the BIP-
based classical algorithm. Both quantum annealing algorithms and the classical baseline
we use (due to it being a relatively generic BIP algorithm) are expected to exhibit some
form of exponential scaling, even if the precise complexity of the algorithms is a priori
unknown. A nonlinear regression analysis shows that the scaling behaviour of RC is indeed,
with respect to both |V | and TC , most consistent with RC ∝ exp(kH ·n`H )/ exp(kC ·n`C ), for

17We could equally look at the hybrid speedup TC/TH = 1/RC , but we choose RC because it is slightly
easier to interpret visually.
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Figure 5: Logarithmic plots of the scaling behaviour of the classical speedup ratio RC for
the DWMWIS problem instances: (a) graph order |V | against RC ; and (b) classical time TC
against RC .

constants kH , `H , kC , `C , with the hybrid algorithm scaling slower. Due to the large variation
in performance over different graph families, however, there is significant uncertainty in the
precise form of this scaling. Indeed, one may wish to extrapolate these fits to estimate
when one would obtain RC = 1, at which point the hybrid and classical algorithms require
the same amount of time. The uncertainty in the scaling behaviour means that any such
extrapolation is equally uncertain, with relatively minor changes in the parameters meaning
that any estimated point of “hybrid equality” can vary by at least 50% (the uncertainty is
particularly large on the upper end of the scale, meaning that such estimates should at best
be taken to provide a lower bound). Moreover, one should caution that the scaling may
also change for larger problems; indeed, while the minimum annealing time of tanneal = 20µs
was used for all problem instances here, for larger problems this is no longer likely to be
optimal [41, 56]. The consequent need to consider the scaling of tanneal in addition to k99 is
likely to change future scaling behaviour, as are developments and improvements in future
devices (e.g. by decreasing errors arising from noise and limits on the control of qubits).
Nonetheless, extrapolation allows a lower bound to be placed on the problem size required
for a quantum advantage: we find that such an advantage is not expected until one can at
least solve graphs of order |V | = 1, 600 or problems requiring 1, 470ms to solve with the
BIP-based classical algorithm.

These numbers are undoubtedly large and some way off what is currently tractable. However,
the ability to solve a graph with 1, 600 vertices will depend crucially on the size of the
embedding. The worst case of the complete graph K1600 would require hundreds of thousands
of physical qubits, whereas for other graphs an embedding might be more feasible. It is also
worth noting that much of the variance in RC visible in Figure 5 is due to the data being
drawn from several different graph families, and individual graphs that result in outliers.
To make more informed estimates, we thus look at the scaling behaviour for different graph
families individually. In Figure 6 we show this for the Cycle graphs Cn, Star graphs Sn and
the complete graphs Kn (each plotted as a function of n) [52].

Again the scaling behaviour is found to be consistent with a ratio of exponentials, but with
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Figure 6: Plots of the classical speedup ratio RC against n for three families of graphs
parameterised by n: (a) the Cn graphs; (b) the Sn graphs; (c) the Kn graphs.

much less uncertainty (note that, nonetheless, the log-scale used in Figure 6 makes the
uncertainty look smaller that it remains). From these fits, we estimate lower bounds on the
point of “hybrid equality” (i.e., when RC = 1) for these three families as being obtained
for C580, S5618 and K38, respectively. For such families it is possible to give more precise
estimates of how many physical qubits would be required to realise such computations. Cycle
graphs permit small embeddings, and C580 can be embedded in the Chimera graph χ10 with
800 physical qubits.18 As mentioned earlier in Section 2.3, K38 can also be embedded in
χ10. However, S5618 would require a much larger χ31 graph.19 It is thus noteworthy that, at
least for certain families of graphs, the prohibitory factor to obtaining a potential quantum
speedup is not the number of physical qubits, but the stability and control one has over
those qubits. This is pointedly highlighted by noting that many problems that are easily
embeddable in D-Wave 2X’s physical graph nonetheless fail to be solved by it [13].

As mentioned previously, such estimates as those provided above should only be taken as
very conservative lower bounds for when a hybrid speedup may become obtainable: not
only may the scaling behaviour change for larger problem instances, but one should also
recall that a speedup over a particular classical algorithm—here the BIP-based solver—only
proves a potential quantum speedup. For simple families of graphs such as those discussed
above, one expects much more efficient classical algorithms to exist. For example, the MWIS
of a complete graph is simply maxv∈V w(v) since the only independent sets are singletons.
Compared to the generic classical algorithm used, one might approach RC = 1 at the points
estimated above should therefore only be taken as general indicators of improved performance
of the quantum annealer. Nonetheless our results show that a “potential” quantum speedup
remains plausible in the future for the DWMWIS problem, even if it is currently beyond the
capabilities of the D-Wave annealer.

While our results failed to find a quantum speedup and produced only tentative evidence that
such a speedup might be obtainable in the future for the DWMWIS problem, the experiment
was a successful proof-of-concept for the hybrid paradigm we have presented. In particular,
the hybrid algorithm we presented provided large absolute gains over the standard quantum

18A simple argument shows that there exists at cycle of length at least 7
8 |χn| by finding a cycle connecting

the bipartite blocks, where at least 7 of 8 vertices of each K4,4 are spliced into a bigger cycle.
19Another argument shows that we can construct in χn a spanning caterpillar with 2n2 spine vertices with

6n2 leaves. Contracting the spine vertices. gives a minor embedding of S6n2 .
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approach and showed good scaling behaviour. As larger and more efficient devices become
available and more problems of practical interest are studied, it will become clearer if/when
a quantum speedup might be obtainable in practise.

5 Conclusion

In this paper, we presented a hybrid quantum-classical paradigm for exploiting raw quantum
speedups in quantum annealers. Our paradigm is relevant in particular for devices in which
physical qubits have limited connectivity, where a problem of interest must be embedded into
the graph this connectivity imposes. This problem is a major, but often neglected, hurdle
to practical quantum computing. Indeed, not only does the need to find such an embedding
often contribute significantly to the overall computational costs, but the quality or size of
embedding used can often significantly affect the performance and accuracy of the quantum
algorithm itself [30, 45].

The paradigm we presented is not simply an algorithmic approach, but also aims to identify
types of problems that are more amenable to quantum annealing. In particular, we identify
those problems that require solving a large number of related subproblems, each of which can
be directed solved via annealing, may permit a hybrid approach. This is obtained by reusing
and modifying embeddings for the related subproblems. Previous applications of quantum
annealers have focused on problems that are not easily subdivided in this way, so even when
only very simple reuse of embeddings is required—as in the case study we presented—the
realisation that quantum annealing may be more advantageous for such problems is already
important. One can, however, envisage problems where the reuse of embeddings is more
involved, such as small perturbations to the logical graph [58, 59]. More research is needed
to identify such problems of interest where the hybrid paradigm is applicable.

To exemplify the hybrid approach in an experimental setting, we identified a simple but
suitable problem, called the dynamically-weighted maximum weight independent set prob-
lem. We experimentally solved a large number of such instances on a D-Wave 2X quantum
annealer, and observed the expected advantage of the hybrid algorithm over a more tradi-
tional approach in which a known embedding is not reused. We failed to observe a quantum
speedup over classical algorithms, although this was not the main goal of the proof-of-concept
experiment. This is perhaps unsurprising given that many examples of quantum annealing
competing well with classical algorithms are on problems specifically constructed so that
embedding is not an issue [6, 8, 39, 41, 42]. We note that another recent experimental study
of the (unweighted) maximum independent sets problem conducted on the D-Wave 2000Q
machine (the generation following the D-Wave 2X device we utilised, for which the number
of qubits has been doubled), was similarly restricted to graphs with no more than 70 vertices
and also failed to observe a speedup [13]; in principle, the weighted version of the problem
should be even harder for D-Wave devices because of analogue programming errors and the
extra constraints the weights impose. Nonetheless, our hybrid algorithm showed good scal-
ing behaviour, providing tentative evidence that a quantum speedup might be obtainable in
the future.

Our hybrid approach, along with its proof-of-principle implementation, sets the groundwork
for addressing more complex problems of practical interest. Choosing correctly suitable
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problems is a major step in finding practical uses for quantum computers in the near term
future, and with deft choices, quantum speedups from hybrid approaches might soon be
realisable.
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A Summary of results for MWDWIS instances

All the standard graphs were produced using SageMath [52] and descriptions of them can be
found in the corresponding API; the sole exception is the Dinneen Graph, which is described
in [60].

Table 1: Table summarising the 124 graphs defining the DWMWIS problem instances and the
average times for the hybrid algorithm, the classical BIP-based algorithm, and the standard
quantum annealing approach.

Graph G = (V,E) |V | |E| TH (ms) TC (ms) Tstd (ms)
Bidiakis Cube 12 18 4635± 102 26.6± 0.4 22851± 184
First Blanusa Snark 18 27 5799± 120 39.2± 0.8 28846± 591
Second Blanusa Snark 18 27 6280± 139 38.9± 0.7 28802± 405
Brinkmann 21 42 12988+861

−363 66.8± 0.6 42876+1047
−698

Bucky Ball 60 90 12491+599
−286 123.1± 3.3 83128+4462

−4431
Bull 5 5 4379± 90 16.4± 0.3 18427± 99
Butterfly 5 6 4405± 91 17.3± 0.3 19137± 99
C4 4 4 4441± 89 15.1± 0.2 19162± 447
C5 5 5 4785± 109 16.6± 0.3 19209± 133
C6 6 6 4781± 103 17.5± 0.3 19532± 140
C7 7 7 4785± 102 18.9± 0.4 20110± 176
C8 8 8 4743± 102 19.8± 0.4 20375± 174
C9 9 9 4927± 107 20.9± 0.3 21084± 149
C10 10 10 6453± 161 21.9± 0.5 22877± 194
C20 20 20 5788± 142 35.0± 0.7 28330± 640
C30 30 30 5436± 135 48.5± 1.3 33394± 512
C40 40 40 5490± 123 62.6± 2.0 41743± 1043
C50 50 50 5644± 123 78.9± 2.2 50867± 1190
C60 60 60 5560± 120 94.1± 3.3 58397± 2378
C70 70 70 6122± 117 111.8± 4.3 70066± 2245
C80 80 80 6084± 123 128.4± 4.7 79117± 3279
C90 90 90 6006± 120 148.8± 5.6 98769± 4681
Chvatal 12 24 5899+124

−122 35.4± 0.4 26372+439
−438

Clebsch 16 40 8527+172
−160 60.2± 0.6 35207+818

−816
Coxeter 28 42 8424+205

−181 53.9± 1.3 39807+575
−567

Desargues 20 30 6160+126
−124 37.3± 0.7 30861± 672

Diamond 4 5 4783± 106 16.0± 0.2 19089± 111
Dinneen 9 21 6072± 126 29.6± 0.6 24724± 285
Dodecahedral 20 30 6128+124

−122 45.6± 0.9 31373+997
−996

Double Star Snark 30 45 8527+214
−192 58.0± 1.3 40801+773

−767
Durer 12 18 4643± 100 30.3± 0.3 23076± 254
Dyck 32 48 10562+673

−275 55.6± 1.6 44380+1185
−1013

Ellingham Horton 54 54 81 8043+232
−152 93.5± 3.0 63265+2007

−1999
Errera 17 45 9543+201

−182 90.1± 0.9 39738+867
−863

Flower Snark 20 30 5589± 105 39.5± 0.7 28992± 341
Folkman 20 40 10293+471

−258 39.5± 0.7 38964+853
−757
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Franklin 12 18 5030± 99 25.3± 0.4 23127± 165
Frucht 12 18 4842± 101 29.5± 0.5 23791± 349
Goldner Harary 11 27 5716+132

−119 28.2± 0.4 26486+381
−377

2× 3 Grid 6 7 5073± 140 17.6± 0.2 19972± 162
3× 3 Grid 9 12 5336± 150 21.1± 0.3 21948± 258
3× 4 Grid 12 17 5122± 107 25.0± 0.4 24100± 447
4× 4 Grid 16 24 5409± 140 31.7± 0.6 27605± 551
4× 5 Grid 20 31 6999+155

−153 37.2± 1.0 32956± 693
6× 6 Grid 36 60 7743+195

−184 65.7± 3.3 54679+2383
−2382

6× 7 Grid 42 71 10252+1122
−287 76.6± 4.4 64583+2739

−2516
7× 7 Grid 49 84 8591+213

−183 85.2± 2.3 75158+4197
−4195

Grotzsch 11 20 5793± 133 29.7± 0.3 24741± 324
Heawood 14 21 7663+197

−193 29.0± 0.6 27542+380
−379

Herschel 11 18 5871± 145 24.3± 0.3 24394± 349
Hexahedral 8 12 4803± 106 20.6± 0.3 20920± 145
Hoffman 16 32 7010+168

−167 33.2± 0.6 29453± 433
House 5 6 4700± 110 16.9± 0.3 19292± 113
Icosahedral 12 30 7177+138

−125 50.0± 0.4 29413+422
−418

K2 2 1 4607± 109 12.7± 0.3 4607± 109
K3 3 3 4821± 118 14.6± 0.3 4821± 118
K4 4 6 5875± 131 17.7± 0.3 5875± 131
K5 5 10 5210± 119 22.0± 0.2 5210± 119
K6 6 15 6101± 143 26.8± 0.3 6101± 143
K7 7 21 6546+158

−157 33.5± 0.2 27296± 2667
K8 8 28 7293± 180 41.2± 0.4 28836± 290
K9 9 36 6883± 164 49.0± 0.5 30247± 457
K10 10 45 6726+153

−148 59.3± 0.6 33090+856
−855

K2,3 5 6 5570± 142 16.3± 0.2 19083± 152
K3,3 6 9 4486± 103 17.7± 0.3 4486± 103
K3,4 7 12 5147± 125 19.3± 0.3 19641± 487
K4,4 8 16 5036± 123 21.4± 0.3 5036± 123
K4,5 9 20 5729± 131 23.6± 0.3 20173± 136
K5,5 10 25 7470± 215 25.4± 0.3 7469± 215
K5,6 11 30 8619± 212 26.8± 0.3 23805± 216
K5,7 12 35 6563± 155 28.7± 0.4 28026± 292
K5,8 13 40 4789± 74 30.4± 0.4 27103± 214
K5,9 14 45 6705+154

−151 30.9± 0.5 31346+352
−351

K6,6 12 36 6992.0± 159 28.9± 0.3 23674± 231
K6,7 13 42 6279.8± 125 31.4± 0.4 30079± 305
K6,8 14 48 6353.1± 131 33.3± 0.5 32331± 539
K6,9 15 54 7089+192

−168 33.9± 0.5 38878+5248
−5247

K7,7 14 49 6480± 132 33.5± 0.4 32279± 941
K7,8 15 56 6563± 154 35.8± 0.5 33432± 599
K8,8 16 64 6319± 150 38.4± 0.6 34722± 761
K8,9 17 72 6416+145

−137 40.8± 0.8 44115± 5996
K9,9 18 81 6424± 134 44.1± 0.6 40895± 712
K10,10 20 100 5711± 109 50.0± 1.0 47113± 1408
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K11,11 22 121 6782+134
−130 57.4± 1.1 53698± 1458

K12,12 24 144 33536+1674
−852 67.2± 0.7 86818+2241

−1717
Kittell 23 63 11920+427

−217 177.8± 8.2 52401+1959
−1924

Krackhardt Kite 10 18 5048± 99 29.3± 0.4 22155± 263
Markstroem 24 36 5547± 130 59.0± 1.2 32525± 568
McGee 24 36 7309+155

−148 48.6± 1.2 35504+1003
−1002

Moebius Kantor 16 24 6420± 155 31.4± 0.6 27170± 361
Moser Spindle 7 11 5326± 131 23.4± 0.4 21473± 241
Nauru 24 36 7862+180

−171 43.2± 1.1 34622+702
−700

Octahedral 6 12 5461± 133 21.1± 0.3 21262± 219
Pappus 18 27 6618± 179 34.1± 0.7 28259± 398
Petersen 10 15 5069± 108 24.5± 0.4 22275± 183
Poussin 15 39 8621+195

−182 64.6± 0.8 35846+529
−525

Q3 8 12 5153± 99 20.7± 0.2 22597± 1180
Q4 16 32 6091± 121 33.0± 0.6 28643± 391
Robertson 19 38 9635+220

−187 59.9± 0.5 36633+764
−755

S2 3 2 4858± 127 13.6± 0.2 18580± 147
S3 4 3 4849± 105 14.7± 0.2 18738± 171
S4 5 4 4506± 85 15.7± 0.3 18406± 93
S5 6 5 4977± 103 17.7± 0.8 19204± 178
S6 7 6 4766± 102 17.7± 0.3 20319± 899
S7 8 7 4819± 98 18.8± 0.3 22570± 1238
S8 9 8 4807± 94 20.0± 0.4 20251± 225
S9 10 9 4994± 125 20.9± 0.3 20042± 159
S10 11 10 5290± 156 23.5± 0.9 20457± 222
S11 12 11 4738± 92 23.3± 0.4 23587± 3131
S12 13 12 4814± 100 24.4± 0.4 21258± 281
S13 14 13 4896± 98 25.6± 0.4 21003± 300
S14 15 14 4772± 90 26.3± 0.6 20860± 211
S15 16 15 4738± 104 27.3± 0.6 21627± 270
S16 17 16 4432± 84 30.6± 1.9 21143± 216
S17 18 17 4444± 84 29.5± 0.8 22650± 361
S18 19 18 6113± 122 31.1± 0.8 24339± 471
S19 20 19 6020± 123 32.9± 0.7 23474± 443
S20 21 20 5569± 121 34.3± 0.8 24497± 619
Shrikhande 16 48 12803+367

−244 86.1± 0.7 45275+1106
−1072

Sousselier 16 27 7231+171
−169 38.9± 0.8 29675+531

−530
Thomsen 6 9 5220± 137 17.7± 0.2 20555± 190
Tietze 12 18 4927± 113 27.6± 0.3 23380± 216
TutteCoxeter 30 45 8566+191

−179 52.5± 1.2 40058+594
−591

Wagner 8 12 4817± 111 22.0± 0.3 21004± 191
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B Script to run MWIS instances on D-Wave

#!/usr/bin/env python2

# QUBO (with embedding) -> Ising -> DWave

# usage: IS_hardware_preembed.py < QUBOfile

import sys , time , math , traceback

from dwave_sapi2.remote import RemoteConnection

from dwave_sapi2.util import get_hardware_adjacency

from dwave_sapi2.embedding import embed_problem , unembed_answer

from dwave_sapi2.util import qubo_to_ising

from dwave_sapi2.core import solve_ising

from sys import exc_info

# the coupler strength for embedded qubits of same variable

s,s2=1.0 ,1.0

if (len(sys.argv )==2): s = float(sys.argv [1])

if (len(sys.argv )==3): s,s2 = float(sys.argv [1]), float(sys.argv [2])

print ’Embed scale=’,s,s2

assert 0 <= s <= 1

# read input QUBO

line=sys.stdin.readline (). strip (). split()

n=int(line [0])

print(’Logical qubits used=’, n)

Q = {}

for i in range(n):

line=sys.stdin.readline (). strip (). split()

for j in range(n):

t = float(line[j])

# only the upper -triangular part of the matrix is used

if j>=i and t!=0: Q[(i,j)]=t

print ’Q=’,Q

# convert the QUBO to its hardware compatible Ising form

(H,J,ising_offset) = qubo_to_ising(Q)

print ’H=’,H

print ’J=’,J

print ’ising_offset=’,ising_offset

# scale by maxV

maxH =0.0

if len(H): maxH=max(abs(min(H)),abs(max(H)))

maxJ=max(abs(min(J.values ())),abs(max(J.values ())))

maxV=max(maxH ,maxJ)

for i in range(n):

if len(H)>i:

H[i]=s2*H[i]/maxV

for j in range(n):

if j>=i and (i,j) in J:

J[(i,j)]=s2*J[(i,j)]/ maxV
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embedding=eval(sys.stdin.readline ())

print ’embedding=’, embedding

print ’Physical qubits used= %s’ % sum(len(embed) for embed in embedding)

# create a remote connection using url and token then connect to solver

#

url = "something"

token = "secret"

solver_name = "DW2X"

print(’Attempting to connect to network ...’)

try:

remote_connection = RemoteConnection(url , token)

solver = remote_connection.get_solver(solver_name)

except:

print(’Error: %s %s %s’ % sys.exc_info ()[0:3])

traceback.print_exc ()

A = get_hardware_adjacency(solver)

# Embed problem into hardware

(h0, j0, jc, new_emb) = embed_problem(H, J, embedding , A, \

h_range =[-2.0, 2.0], j_range =[-1.0, 1.0] )

h1= [val*s for val in h0]

j1 = {}

for (key , val) in j0.iteritems ():

j1[key]=val*s

j1.update(jc)

print ’new_emb=’,new_emb

print ’h1=’,h1

print ’j1=’,j1

# call the solver

annealT ,num =20 ,1000

print ’annealT=’,annealT ,’num=’,num

result = solve_ising(solver , h1 , j1 , num_reads=num , annealing_time=annealT)

print ’result:’, result

newresult = unembed_answer(result[’solutions ’], new_emb , \

broken_chains=’discard ’, h=H, j=J)

print ’newresult:’, newresult

for i, (embsol , sol) in enumerate(zip(result[’solutions ’], newresult )):

weight =0

for j in range(n):

if sol[j]==1: weight -= Q[(j,j)]

print ’solution ’, i, ’size=’, sum(x==1 for x in [sol[j] for j in range(n)]), \

’weight=’, weight , [(1+ sol[j])/2 for j in range(n)]

C Program to create MWIS QUBO instances

#!/usr/bin/env python2

# Max Independent Set of graph to QUBO Hamiltonian objective

# usage: MWIS2QUBO.py < graphfile
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import sys , networkx as nx

# the function for reading the input graph

# the input can be either a file or the standard input stream

# graphs are expected to be in the standard adjacency format

def read_graph(infile=sys.stdin):

n=int(infile.readline (). strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=infile.readline (). split ()

for v in neighbors: G.add_edge(u,int(v))

return G

if len(sys.argv )==2:

gfile=open(sys.argv[1],’r’)

G=read_graph(gfile)

# reading the weights of vertices in the graph

# the weights are formatted as a single line of floats

W=[float(w) for w in gfile.readline (). split ()]

gfile.close()

else:

G=read_graph ()

W=[float(w) for w in sys.stdin.readline (). split ()]

n=G.order ()

S=max(W)+1

# construct the QUBO matrix based on Equation (5)

print n

for u in range(n):

for v in range(n):

if u==v: print -W[u],

elif u in G[v]: print S,

else: print 0,

print

D Modifications of MWIS script to run DWMIS in-

stances on D-Wave

#!/usr/bin/env python2

# Dynamic MWIS solver

# usage: DWMIS_preembed.py weightfile

< MWIS preamble script code here >

assert len(sys.argv )==2

weightfile=open(sys.argv[1],’r’)

# read and process each weight assignment vector

while True:
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line=weightfile.readline (). strip()

if len(line )==0: break

W = [round(float(x),2) for x in line.split ()]

print ’W=’,W

for i in range(n):

Q[(i,i)]=-W[i]

(H,J,ising_offset) = qubo_to_ising(Q)

< rest of MWIS body script code here >

weightfile.close ()

E Sage Script for DMWIS Problem

#!/usr/bin/env sage

# Sage script for solving the DWMWIS Problem

# usage: MWIS_IP.py graphfile weightfile

import sys , networkx as nx

import datetime

# the function reading the input graph

# the input can be either a file or the standard input stream

# graphs are expected to be in the standard adjacency format

def read_graph(graphFile ):

n=int(graphFile.readline (). strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=graphFile.readline (). split ()

for v in neighbors: G.add_edge(u,int(v))

return G

total_start_time = datetime.datetime.now()

assert len(sys.argv )==3

graphFile=open(sys.argv[1],’r’)

G=read_graph(graphFile)

n=G.order ()

graphFile.close()

# standard Sage solver for IP

p=MixedIntegerLinearProgram(solver="GLPK")

x=p.new_variable(binary=True)

# generate the set of constraints according to Equation (6)

for (u,v) in G.edges ():

p.add_constraint(x[u]+x[v], max=1)

# weights file are lines of floats

# each line contains n floats separated by space
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weightFile=open(sys.argv[2],’r’)

while True:

line=weightFile.readline (). strip()

if len(line )==0: break

W = [round(float(w),2) for w in line.split ()]

print ’W=’,W

# set the objective function of Equation (6)

p.set_objective(sum(W[j]*x[j] for j in range(n)))

try:

solve_start_time = datetime.datetime.now()

sz=p.solve()

solve_finish_time = datetime.datetime.now()

except sage.numerical.mip.MIPSolverException as e:

pass

else:

print p.get_values(x).items ()

print "size", sz

# record the time for solving each weight case

print "time", (solve_finish_time -solve_start_time)

print

weightFile.close ()

# record the total amount of time to solve all weight cases

total_end_time = datetime.datetime.now()

print ’Total time is’, (total_end_time - total_start_time)

F Python Script for Generating Random Weights

#!/usr/bin/env python3

# Generate random weights for graphs

# usage: rand_w_gen.py n [cnt]

import sys ,random

# n is the number of vertices of the graph

n = int(sys.argv [1])

# cnt is the number of cases , the default value is 1

cnt = 1

if len(sys.argv) > 2:

cnt = int(sys.argv [2])

for x in range(cnt):

for y in range(n-1):

# weights are generated using the default random number generator in Python 3

print(random.random(), end=’ ’)

print(random.random ())
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G Sample output of Appendix B applied to example

of Figure 2

Embed scale= 1.0 1.0

’Logical qubits used=’, 5

’Q=’, {(1, 2): 12.0, (0, 0): -2.0, (3, 3): -3.0, (4, 4): -1.0, (1, 1): -3.0,

(2, 3): 12.0, (2, 2): -8.0, (3, 4): 12.0, (0, 2): 12.0}

’H=’, [2.0, 1.5, 5.0, 4.5, 2.5]

’J=’, {(1, 2): 3.0, (2, 3): 3.0, (3, 4): 3.0, (0, 2): 3.0}

’ising_offset=’, 3.5

embedding= [[0], [1], [4], [2], [7]]

Physical qubits used= 5

Attempting to connect to network ...

new_emb= [[0], [1], [4], [2], [7]]

h1= [0.4, 0.3, 0.9, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, ...

j1= {(2, 7): 0.6, (2, 4): 0.6, (1, 4): 0.6, (0, 4): 0.6}

annealT= 20 progT= 100 readT= 100 num= 1000

result: {’timing ’: {’total_real_time ’: 490474 ,

’anneal_time_per_run ’: 20,

’post_processing_overhead_time ’: 548,

’readout_time_per_run ’: 309,

’total_post_processing_time ’: 548,

’run_time_chip ’: 470180} ,

’energies ’: [-2.5, -2.3, -1.9000000000000001] ,

’num_occurrences ’: [666, 333, 1]

’solutions ’: ...

}

newresult: [[-1, -1, 1, -1, 1], [1, 1, -1, 1, -1], [1, 1, -1, -1, 1]]

solution 0 size= 2 weight= 9.0 [0, 0, 1, 0, 1]

solution 1 size= 3 weight= 8.0 [1, 1, 0, 1, 0]

solution 2 size= 3 weight= 6.0 [1, 1, 0, 0, 1]
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