GGG

CDMTCS
Research
Report
Series

Finding Maximum-sized Native
Clique Embeddings:
Implementing and Extending the
Block Clique Embedding
Algorithm

Puya Yao

Richard Hua

Department of Computer Science
University of Auckland

Auckland, New Zealand

CDMTCS-523
March 2018

Centre for Discrete Mathematics and
Theoretical Computer Science

Finding Maximum-sized Native Clique Embeddings:
Implementing and Extending the Block Clique
Embedding Algorithm

Puya (Amanda) Yao and Richard Hua
Department of Computer Science
University of Auckland, Auckland, New Zealand
{pyao017,rwan074}@aucklanduni.ac.nz

1 Introduction

Minor-embedding is one of the fundamental concepts in adiabatic quantum computing when
the hardware structure does not support arbitrary qubit interactions. In particular, when min-
imizing the energy of an Ising spin configuration, the corresponding graph must be minor-

embedded into a Chimera graph [1].

A minor embedding of a graph G; = (V1, E1) onto a graph G, = (V5, E») is a function
f: V4 — 22 that satisfies the following three conditions:
1. The sets of vertices {f (v)|v € V1} are disjoint.
2. For all v € Vj, there is a subset of edges E’ € E, such that G' = (f(v), E') is connected.
3. If {u, v} € E;, then there exist u/, v’ € V5 such that v’ € f(u), v' € f(v) and {¢/, '} is
an edge in E,.
Within the scope of a minor embedding, G; is referred to as the guest graph while G is called the

host graph [2].

This report follows closely to the paper, Fast clique minor generation in Chimera qubit connectiv-
ity graphs (1], and includes the implementation of the algorithm for finding one of the largest

clique minors of any given Chimera graph. The result on a D-Wave 2X machine is included as well.

Below are some of the key definitions from [1].

A block clique embedding is a set y of n ell blocks {(X3, ¢1), ..., (Xj, ¢,)} such that each X; contains
n unit cells (so ells have length 7 + 1), and every distinct pair X;, X; in y intersects at exactly one
unit cell, which is in the horizontal component of one ell block and the vertical component of
the other.

A native clique embedding respecting a block clique embedding y is a collection § of ell bundles
{Bi,..., By} such that for each i and for each [/ € B;, (X;, c;) = (X(1), c(])), i.e. (X;, ¢;) is the ell block
for each ell in B;.

Given a set of ell bundles g = {By, Bs, - -, B} where each B; is contained in the ell block (Xj, ¢;)
and y = {(X1, c1), (X2, ¢2),-++, (Xp, cn)}, we define || y [|= |UY, maxBundle(X;,c;)| = |UL | Bil.

A Chimera Cy, 1. consists of M x N interconnected complete bipartite graph K, ;. For a given
integer n, every native clique embedding respecting the corresponding block clique embedding
of size n has L * n vertices, since every ell block contains L ells. However, in practice, not all
physical qubits of the hardware structure are functional all the time so an algorithm is needed
to find the block clique embedding of size n that contains the maximum-sized native clique
embedding.

2 The NativeCliqueEmbed Algorithm and its Proof

The NativeCliqueEmbed algorithm uses dynamic programming to find the partial block clique
embedding that contains the maximume-sized partial native clique embedding for each working
rectangle R of height i, where i increases from 1 to n — 1, hence finding the maximum-sized
native clique embedding in polynomial time [1].

The correctness of the algorithm is proven using the following lemma and theorem (see [1] for a

complete proof).

Lemmal Lety ={(Xj,c1),..., Xy, cn)} be a block clique embedding in C,, ,, . Then the ell blocks
of X have distinct heights.

Theorem 1 InaC,, ,,; Chimera graph for n =2, there are 4! block clique embeddings that con-
tainn ell blocks. In particular, they are in natural bijection with the set {E, W}x{NE, NW, SE, SW}H2x
{N, §}.

The first working rectangle R; is placed after the placement of the first ell block X; and the i-th
ell block X; placed has height i and width n—i + 1. The first ell block X; has width n—1 and
height 1. The first working rectangle R; placed intersects all the unit cells except for the corner
cell. Every time another ell block is placed, the corresponding working rectangle gets one unit

taller and one unit narrower, and it never covers the corner cell.

Let Rrrom (X, ¢) denotes the working rectangle that is placed immediately after the placement
of the ell block (X, ¢). Let R;, (X, c¢) denotes the working rectangle that is placed right before the
placement of (X, ¢). From the proof of theorem one, each ell block (X, c¢) either has one unique

Rrom (X, c) or one unique Ry (X, ¢) or both.

Also, for each rectangle R, the sets Xr,om(R) := {(X, ©)IR = Ry(X, ¢)} and Xy0(R) := {(X,)[R =
Rrom(X,)} both have size at most four.

The algorithm is presented below:
Algorithm 1 The algorithm to find a maximum-sized native clique embedding in an induced
subgraph of a Chimera graph.

1: function NativeCliqueEmbed(G, n)

2 fori=1,..,n-1do

3 for each rectangle R of height i and width n—i do

4 maxPartialEmbedding(R) — ¢

5: for each ell block (X,c) of height i and width n—i + 1 do

6 B — maxPartialEmbedding(R:,(X, c)) U{(X, ¢)}

7 if | maxPartialEmbedding(Rsom(X,) <[B || then
8 maxPartialEmbedding(Rfrom(X,c)) — p

9 Pmax—¢

10: for each ell block (X,c) of height n and width 1 do

11: B — maxPartialEmbedding(R;,(X, c)) U{(X, c)}
12: if || Bmax <l B || then
13: Bmax — P

14: return {maxBundle(X,c,G)|(X,c) € Bmax}

maxPartialEmbedding(R) denotes the maximum partial block clique embeddings, y; =
{(X1, 1), ..., (X, ¢;)}, respecting working rectangle R of height i, where R = Ry om (X;, ¢;).

maxBundle(X, c, G) denotes the maximum collection of ells that are contained in the ell block
(X, ¢) in Chimera graph G.

Claim: At each iteration, all the maximum partial block clique embeddings respecting rect-
angles of height i are found.
At i =1, all the maximum partial block clique embeddings of rectangles of height 1 are found.
Suppose the claim is true for i = j,

fori=j+1,ssince Ryo(Xj+1,¢j+1) = Rerom(Xj, ¢j), therefore

atstep 6: "B — maxPartialEmbedding(R;,(X, c) Ui(X,0)}",

maxPartialEmbedding(R;,(X, c)) contains the maximum

partial block clique embedding respecting R;,(X, ¢) , since R, (X, ¢) is of height j.
The algorithm goes through all the ell blocks (X, ¢) of height j + 1. Then for each rectangle R of
height j + 1, it chooses the partial block clique embedding y ;.1 that contains the (Xj1,¢j+1)
which gives the maximum ||maxPartialEmbedding(R;,(Xj+1,¢j+1)) U{(Xj+1,¢j+1)} I out of
all ell blocks from X;,(R).
Let Xoprimar be an optimal partial block clique embedding respecting R, then x,p¢imq must
contain one (X, ¢) from X;,(R). Therefore xoprimar = (X,) U{some partial block embedding
respecting R;,(X, ¢)}. Since |maxPartial Embedding(R;,(X,c))|l = || {some partial block em-
bedding respecting R:o (X, O, Xoptimai = (X,c)UmaxPartialEmbedding(R;y(X,c)). And
since the algorithm selects the (X, ¢) that gives the maximum
lmaxPartialEmbedding(R:o(X,) U{(X, O}, Xj+1 = Xoprimal-
Hence for i = j +1 the claim is true as well.
Therefore by the end of step 8, the algorithm finds the maximum partial block clique embedding
respecting all rectangles of height n — 1.
From step 10 to 14, it iterates through all the ell blocks of height n and chooses the block (X, ¢)
which gives the maximum ||maxPartialEmbedding(R;,(X, ¢)) U{(X, c)}ll. Therefore it finds

the maximum-sized native clique embedding.

3 An Extension of the Algorithm and the Correctness Proof

Algorithm 2 The algorithm to find all maximum-sized native clique embeddings in an induced

subgraph of a Chimera graph.

1: function NativeCliqueEmbed M (G, n)
2: fori=1,..,n—-1do

3: for each rectangle R of height i and width n—i do

4: maxPartialEmbedding(R) < ¢

5: for each ell block (X,c) of height i and width n—i +1 do

6: p —maxPartialEmbedding(R;, (X, ¢)) U{(X, c)}

7 if | maxPartialEmbedding(Rfom(X,¢)) <] B || then

8: maxPartialEmbedding(Rfrom(X,c)) — f

9: for each ell block (X, c¢) of height i and width n—i+ 1 do

10: p —maxPartialEmbedding(Rfom(X, c))

11: if |[maxPartialEmbedding(R;o (X, c)) U{(X, o)} =l B || then

12: allMaxPartialEmbedding(Rfrom (X, c)).add (partialEmbeddingmqx UI(X, c)})

for all partialEmbedding,,» €allMaxPartialEmbedding(R;y(X,c))

13: ﬁmax «— ¢
14: for each ell block (X,c) of height n and width 1 do

15: B —maxPartialEmbedding(R;q (X, ¢)) U{(X, c)}
16: if | Bimax I<Il B || then
17: Bmax — P

18: for each ell block (X,c) of height n and width 1 do
19: B —maxPartialEmbedding(R;q (X, c))

20: if | Bimax =1l BULX, 0)} || then
21: maxClique . add(aU{(X, ¢)}) for all @ eallMaxPartialEmbedding(R;q (X, c))
22: return {maxBundle(X,c, G)|(X,c) € B} for all § € maxClique

Proof: Proof by induction.

Claim: For each value of i from 1 to n — 1, the algorithm finds all the maximum partial native

clique embeddings respecting to rectangles of height i.

Base case: Fori=1

Similar to Algorithm 1, when step 9 is reached, one maximum partial embeddingmaxPartialEmbedding(R)
for each rectangle R of height 1 is found.

For all ell blocks (X, ¢) of height 1, maxPartialEmbedding(R; (X, c)) = @ since R;,(X, c) does

not exist. So as allMaxPartialEmbedding(R;o (X, ¢)).

Therefore by the end of the 3rd inner loop (from step 9 to step 12), al1MaxPartialEmbedding(R)

contains all the ell blocks (X, ¢) where (X, ¢) € X;,(R) and || {(X, ¢)} |=|lmaxPartialEmbedding(R) ||

for all R of height 1.

Hence the claim is true for i = 1.

Inductive step: Suppose the claim is true for i = j

Fori=j+1where j+1<n-1, whenstep 9 is reached, one maximum partial embedding for
each rectangle R of height of j + 1 is found, denoted by maxPartialEmbedding(R).

Since the working rectangle R;, (X, c) is of height of j for each ell block (X, ¢) of height j + 1, for
each working rectangle R;,(X, ¢), al1lMaxPartialEmbedding(R;, (X, c)) contains all the maxi-
mum partial embeddings respecting that rectangle.

Suppose there is an optimal set optimalPartialEmbeddings(Rfrom (X, ¢)) that contains all the
maximum partial embeddings respecting R, (X, ¢) and al1MaxPartialEmbedding (R0 (X, ¢))
does not. Then we know that there is at least one maximum partial embedding that is contained
in optimalPartialEmbeddings(Rf;om (X, ¢)) but notin allMaxPartialEmbedding(R;o(X, ¢)).
Let a denotes that maximum partial embedding.

We know that || & || = [|maxPartialEmbedding(Rfom(X,c)) || and let (Xj1,cj+1) denotes the
ell block of height j +1 in a. Then a = one of the maximum partial embeddings respecting
Rio(Xj11,¢j+1) U{(Xj41,¢j+1)}. Since al1MaxPartialEmbedding(R) contains all the maximum
partial embeddings respecting R for every R of height j, one of the maximum partial embeddings
respecting R;o(X;+1,¢j+1) should be contained in al1MaxPartialEmbedding(R;o(Xj+1,Cj+1))-
Therefore a €al1lMaxPartialEmbedding(R;, (X, ¢)). Hence a contradiction.

Therefore the claim is true for i = j + 1.

Therefore when the algorithm reaches step 13, al1MaxPartialEmbedding(Rfrom (X, €)) contains
all the maximum partial native clique embeddings of size n — 1 for each rectangle R¢;, (X, ¢) of
height n—1.

When the algorithm reaches step 18, 3,,,4x denotes one of the maximum native clique embed-
dings as proven in the proof of Algorithm 1.

Suppose there exists a maximum embedding a that does not belong to maxClique. By definition,
| @l =l Bmax |- Let (X, ¢,) denotes the ell block of height 7 in @. a consists of one maximum
partial embedding respecting R;, (X}, ¢,;) and (X}, ¢,;). Since any maximum partial embedding
respecting R of height n—1 is contained in al1MaxPartialEmbedding(R) and R;,(X,, ¢,,) is of
height n -1, @ € maxClique following the algorithm. Hence a contradiction.

Therefore Algorithm 2 finds all the maximum native clique embeddings of size n given a Chimera

graph G and number 7.

4 Conclusion

The actual D-Wave 2X hardware we have access to have faulty couplers as well as faulty qubits
so the algorithm is modified as suggested in [1] to take into consideration the faulty couplers.
However, this improvement is highly restricted, it will only work when there is at most one
intra-cell faulty coupler per unit cell. For more general cases, a more sophisticated algorithm is
needed. The NativeCliqueEmbed algorithm is also extended to find all the maximum native
clique embeddings instead of just one maximum native clique embedding. Implementations for

both algorithms are included in the appendix.

Acknowledgements

This report was based on Amanda Yao's research done as a Science Faculty Summer Scholarship
at the University of Auckland under the supervision of Cristian Calude and Michael J. Dinneen.
The CDMTCS version of the final report was edited by Richard Hua.

References

[1] Tomas Boothby, Andrew D. King, and Aidan Roy. Fast clique minor generation in Chimera
qubit connectivity graphs. Quantum Information Processing, 15(1):495-508, 2016.

[2] Cristian S. Calude, Michael J. Dinneen, and Richard Hua. QUBO formulations for the graph

isomorphism problem and related problems. Theoretical Computer Science, 701:54-69, 2017.

Appendix

Python Program that Implements NativeCliqueEmbed Algorithm

import sys

from dwave_sapi2.util import get_chimera_adjacency
import networkx as nx

from itertools import product, combinations

from collections import Counter

from dwave_sapi2.util import chimera_to_linear_index
from dwave_sapi2.util import linear_index_to_chimera
import random

import math

import itertools

import json

order=int (input ())

[M,N,L]=[int (math.sqrt (order/8)), int(math.sqrt(order/8)), 4]
A=get_chimera_adjacency (M,N,L)

G = nx.empty_graph (order)

G.add_edges_from(A)

#code taken from chimera_graph.py

C = nx.empty_graph(order)

for value in range (order):
b = raw_input ()
b b.split ()
for value2 in b:

C.add_edge(value, int(value2))

faultyQubits = [v for v in C.nodes() if len(C[v])==0]
missingE = []
for u in range(order-1):
if u in faultyQubits: continue
for v in range(u+l,order):
if v in faultyQubits: continue

if v in G[u]l] and v not in C[ul: missingE.append([u,v])
missingEdges = []
for e in missingE:
ins = linear_index_to_chimera(e, M, N, L)
missingEdges .append (ins)

n = int(sys.argv[1])

def maxBundle(X,c, faultyQubits, missingEdges, M, N, L):

xCoordinate = c[0]
yCoordinate = c[1]
hList = []
vList = []
for i in X:
if i[0] == xCoordinate:

vList.append (i)
if i[1] == yCoordinate:
hList.append (i)

0
0

for e in hList:

directionH

directionV

if e[0] > xCoordinate:
directionH = 1
break
for e in vlist:
if e[1] > yCoordinate:
directionV = 1
break
posHFaultyQubits = []

for e in hlList:

for i in range(L):

x = [e[0]]

y = [e[1]]

u = [1]

k = [i]

ind = chimera_to_linear_index(x,y,u,k,M,N,L)

ind = int(’’.join(map(str,ind)))
if ind in faultyQubits and i not in posHFaultyQubits:
posHFaultyQubits.append (i)
posVFaultyQubits = []
for e in vlList:

for i in range(L):

x = [e[0]]

y = [e[1]]

u = [0]

k = [i]

ind = chimera_to_linear_index(x,y,u,k,M,N,L)

ind = int(’’.join(map(str,ind)))
if ind in faultyQubits and i not in posVFaultyQubits:
posVFaultyQubits.append (i)

Difference starts here
counterH = 0
for i in range(L):
if i1 not in posHFaultyQubits:
if directionH == 1:
maxBH[counterH] = [(x, yCoordinate, 1, i) for x in range(
xCoordinate, xCoordinate + len(hList))] #depends on direction

for h in missingEdges:

if tuple(h([0]) in maxBH[counterH] and tuple(h[1]) in

maxBH [counterH]:

maxBH [counterH] = []
counterH = counterH - 1
break
else:
maxBH [counterH] = [(x, yCoordinate, 1, i) for x in range(
xCoordinate - len(hList) + 1, xCoordinate + 1)]

for h in missingEdges:
if tuple(h[0]) in maxBH[counterH] and tuple(h([1]) in

maxBH [counterH]:

maxBH [counterH] = []
counterH = counterH - 1
break

counterH = counterH + 1

noH = counterH

maxBV = {}
counterV = 0
for i in range(L):
if i not in posVFaultyQubits:
if directionV == 1:
maxBV [counterV] = [(xCoordinate, y, O, i) for y in range(
yCoordinate, yCoordinate + len(vList))] #depends on direction
for h in missingEdges:
if tuple(h([0]) in maxBV[counterV] and tuple(h[1]) in

maxBV [counterV]:

maxBV [counterV] = []
counterV = counterV - 1
break
else:
maxBV [counterV] = [(xCoordinate, y, O, i) for y in range(

yCoordinate - len(vList) + 1, yCoordinate + 1)]
for h in missingEdges:
if tuple(h[0]) in maxBV[counterV] and tuple(h([1]) in

maxBV [counterV]:

maxBV [counterV] = []
counterV = counterV - 1
break

counterV = counterV + 1

10

noV = counterV

size = min([noV,noH])
maxB = {}
missinglndex = -1

#fCount = O
sizeF = 0
for i in range(size):
maxB[i] = maxBV[i] + maxBH[i]
for h in missingEdges:
if tuple(h[0]) in maxB[i] and tuple(h[1]) in maxB[i]:
maxB[i] = []

missingIndex = i
break
if size > 1 and missingIndex !'= -1:
if missinglIndex == O:
maxB [0] = maxBV[0] + maxBH[1]
maxB[1] = maxBV[1] + maxBH[0]

else:

maxB[missingIndex] maxBV[missingIndex] + maxBH[missingIndex
- 1]
maxB[missingIndex - 1] = maxBV[missingIndex - 1] + maxBH[
missingIndex]
sizeF = len(maxB)
else:
if size == 1 and missinglIndex != -1:
if noV > 1
maxB [0] = maxBV[1] + maxBH[O]
sizeF = len(maxB)
else:
if noH > 1:
maxB [0] = maxBV[0] + maxBH[1]

sizeF = len(maxB)
else:
sizeF =
maxB = {}
else:
sizeF = len(maxB)

return (maxB, sizeF)
def size(lis):

res = 0

for e in lis:

11

res
[1]

return res

maxPartialEmbedding {r
R = {}

From =

{3

Rto

Rfrom

Enumerate and store all rectangles
for i in range(l,n):
for j in range(M-n+i+1):

for k in range(N-i+1):

res + maxBundle(e[0],e[1],faultyQubits ,missingEdges ,M,N,L)

and ell blocks

R[i,j,k] = ((j,k),(j+n-i-1,k+i-1))
cur = R[i,j, k]
Tolcur] = []
if j-1 >= 0:
cl = (j-1, k)
c2 = (j-1, k+i-1)
X1 = list(set().union(*[[(j-1,b) for b in range(k, k+i)
1,[(a,k) for a in range(j-1, j+n-i)11))
X2 = list(set () .union(*[[(j-1,b) for b in range(k, k+i)
1,[(a,k+i-1) for a in range(j-1, j+n-i)11))
To[cur].append ((X1, c1))
Rfrom[(tuple(X1),cl1)] = cur
To[cur].append ((X2, c2))
Rfrom[(tuple (X2),c2)] = cur

if j+n-i <= M - 1:
cl = (j+n-i, k)
c2 = (j+n-1i, k+i-1)
X1 =
1,[(a,k) for a in range(j,
X2 =

1,[(a,k+i-1) for a in range(j,
To[cur].append ((X1,
Rfrom [(tuple (X1),c1)]
To[cur]. append ((X2,
Rfrom[(tuple (X2),c2)]

Tolcur].sort ()

To[cur]

curl]))

list(set () .union(*[[(j+n-i,b) for b in range(k, k+i)
j+tn-i+1)11))

list(set() .union(*x[[(j+n-i,b) for b in range (k,
jn-i+1)11))

cl))

k+1)

cur

c2))

cur

list(To[cur] for Tolcur],_ in itertools.groupby(Tol

12

From[cur] = []
if k-1 >= 0:
cl = (j,k-1)
c2 = (j+n-i-1, k-1)
X1 list(set () .union(*[[(j,b) for b in range(k-1, k+i)
1,[(a,k-1) for a in range(j, j+n-1i)11))
X2 = list(set().union(*[[(j+n-i-1, b) for b in range(k-1,

k+i)],[(a,k-1) for a in range(j, j+n-1i)1]1))
From[cur].append ((X1, c1))
Rto[(tuple(X1),c1)]
From[cur].append ((X2, c2))
Rto [(tuple (X2),c2)]

if k+i <= N - 1:

cl = (j, k+i)
c2 = (j+n-i-1, k+i)
X1 = list(set().union(*[[(j, b) for b in range(k, k+i+1)

cur

cur

1,[(a, k+i) for a in range(j, j+n-1i)11))
X2 = list(set () .union(*[[(j+n-i-1, b) for b in range(k, k+
i+1)]1,[(a, k+i) for a in range(j, j+n-i)11))
From[cur].append ((X1, c1))
Rto[(tuple(X1),c1)]
From[cur].append ((X2, c2))
Rto [(tuple (X2),c2)]

From[cur].sort ()

cur

cur

From[cur] = list(From[cur] for From[cur],_ in itertools.

groupby (From [cur]))

Algorithm 1
for i in range(l,n):
for j in range(M-n+i+1):
for k in range(N-i+1):
cur = R[i,j,k]
maxPartialEmbedding[cur] = []
for e in Tol[cur]:
if i == 1:
Beta = [e]
else:
Beta = maxPartialEmbedding[Rto[(tuple(e[0]),e[1]1)]1]1+[e

if size(maxPartialEmbedding[Rfrom[(tuple(e[0]),e[1]1)]1]) <
size (Beta):
maxPartialEmbedding [Rfrom [(tuple(e[0]) ,e[1]1)]] = Beta
BetaMax = []

13

for

j in range (M):
for k in range(N-n+2):
cur = R[n-1,j,kl]
for e in From[cur]:
Beta = maxPartialEmbedding[Rto[(tuple(e[0]),e[1]1)]1]1+[e]
if size(BetaMax) < size(Beta):

BetaMax = Beta

print ("Chain length: " + str(mn + 1) + "\n")
print ("Max clique order: " + str(size(BetaMax)) + "\n")
for e in BetaMax:

temp = []
print ("E1l block: " + str(e) + "\n")
b = maxBundle(e[0] ,e[1],faultyQubits ,missingEdges ,M,N,L) [0]
for j in b.values():

temp.append(chimera_to_linear_index(j, 12, 12, 4))
print ("Ells: " + str(temp) + "\n")

pythonForIncompleteEdges_1_.py

Python Program that Implements NativeCliqueEmbedM Algorithm

impo
from
impo
from
from
from
from
impo
impo
impo

impo

orde
[M,N

rt sys
dwave_sapi2.util import get_chimera_adjacency
rt networkx as nx
itertools import product, combinations
collections import Counter
dwave_sapi2.util import chimera_to_linear_index
dwave_sapi2.util import linear_index_to_chimera
rt random
rt math
rt itertools

rt json

r=int (input ())
,L1=[int (math.sqrt(order/8)), int(math.sqrt(order/8)), 4]

A=get_chimera_adjacency (M,N,L)

G =

nx.empty_graph (order)

G.add_edges_from(A)

#cod
C =

e taken from chimera_graph.py

nx.empty_graph (order)

14

for value in range (order):
b = raw_input ()
b = b.split ()
for value2 in b:

C.add_edge (value, int(value2))

faultyQubits = [v for v in C.nodes() if len(C[v])==0]
missingE = []
for u in range(order-1):
if u in faultyQubits: continue
for v in range(u+l,order):
if v in faultyQubits: continue

if v in G[u]l] and v not in C[ul]: missingE.append([u,v])
missingEdges = []
for e in missingE:
ins = linear_index_to_chimera(e, M, N, L)
missingEdges .append (ins)

n = int(sys.argv[1])

def maxBundle(X,c, faultyQubits, missingEdges, M, N, L):

xCoordinate = c[0]
yCoordinate = c[1]
hList = []
vList = []

for i in X:
if i[0] == xCoordinate:

vList.append (i)

if i[1] == yCoordinate:
hList.append (i)
directionH = 0
directionV = 0

for e in hList:
if e[0] > xCoordinate:
directionH = 1
break
for e in vList:
if e[1] > yCoordinate:
directionV = 1
break
posHFaultyQubits = []

15

for e in hList:

for i in range(L):

x = [e[0]]

y = [el[1]]

u = [1]

k = [i]

ind = chimera_to_linear_index(x,y,u,k,M,N,L)

ind = int(’’.join(map(str,ind)))
if ind in faultyQubits and i not in posHFaultyQubits:
posHFaultyQubits.append (i)
posVFaultyQubits = []
for e in vlList:

for i in range(L):

x = [e[0]]

y = [e[1]]

u = [0]

k = [i]

ind = chimera_to_linear_index(x,y,u,k,M,N,L)

ind = int(’’.join(map(str,ind)))
if ind in faultyQubits and i not in posVFaultyQubits:
posVFaultyQubits.append (i)

Difference starts here
maxBH = {}
counterH = 0
for i in range(L):
if i1 not in posHFaultyQubits:
if directionH == 1:

maxBH [counterH] = [(x, yCoordinate, 1, i) for x in range(
xCoordinate, xCoordinate + len(hList))] #depends on direction

for h in missingEdges:

if tuple(h[0]) in maxBH[counterH] and tuple(h([1]) in

maxBH [counterH]:

maxBH [counterH] = []
counterH = counterH - 1
break
else:
maxBH [counterH] = [(x, yCoordinate, 1, i) for x in range(
xCoordinate - len(hList) + 1, xCoordinate + 1)]

for h in missingEdges:
if tuple(h([0]) in maxBH[counterH] and tuple(h[1]) in

maxBH [counterH]:

16

maxBH [counterH] = []
counterH = counterH - 1
break

counterH = counterH + 1
noH = counterH

maxBV = {}
counterV = 0
for i in range(L):
if i not in posVFaultyQubits:
if directionV == 1:
maxBV [counterV] = [(xCoordinate, y, O, i) for y in range(
yCoordinate, yCoordinate + len(vList))] #depends on direction
for h in missingEdges:
if tuple(h[0]) in maxBV[counterV] and tuple(h([1]) in

maxBV [counterV]:

maxBV [counterV] = []
counterV = counterV - 1
break
else:
maxBV [counterV] = [(xCoordinate, y, 0, i) for y in range(

yCoordinate - len(vList) + 1, yCoordinate + 1)]
for h in missingEdges:
if tuple(h([0]) in maxBV[counterV] and tuple(h[1]) in
maxBV [counterV]:

maxBV [counterV] = []
counterV = counterV - 1
break
counterV = counterV + 1

noV = counterV

size = min([noV,noH])

maxB = {}

missingIndex = -1

sizeF = 0

for i in range(size):
maxB[i] = maxBV[i] + maxBH[i]
for h in missingEdges:
if tuple(h([0]) in maxB[i] and tuple(h([1]) in maxB[il]:
maxB[i] = []
missingIndex = i

break

17

if size > 1 and missinglndex

if missingIndex == O:
maxB [0] = maxBV[0] +
maxB[1] = maxBV[1] +

else:

maxB[missingIndex]
- 1]

maxB[missingIndex -

missingIndex]

1]

1= -1:
maxBH [1]
maxBH [0]

maxBV[missingIndex] + maxBH[missingIndex

1] + maxBH[

maxBV[missingIndex -

-1:

maxBV[1] + maxBHI[O]

maxBV [0] + maxBHI[1]

sizeF = len(maxB)
else:
if size == 1 and missingIndex
if noV > 1
maxB [0] =
sizeF = len(maxB)
else:
if noH > 1:
maxB [0] =
sizeF = len(maxB)
else:
sizeF =
maxB = {}
else:
sizeF = len(maxB)

return (maxB, sizeF)

def size(lis):
0

for e in lis:

res

res
[1]

return res

{3

allMaxPartialEmbedding {3

maxPartialEmbedding
R = {}

From =

{3}

Rto

Rfrom

res + maxBundle(e[0],e[1],faultyQubits ,missingEdges ,M,N,L)

#Enumerate and store all rectangles and ell blocks

for i in range(1l,n):

18

for j in range(M-n+i+1):

for k in range(N-i+1):

R[i,j,k]l = ((j,k),(j+n-i-1,k+i-1))
cur = R[i,j,k]
Tol[cur]l = []
if j-1 >= 0:
cl = (-1, k)
c2 = (j-1, k+i-1)
X1 = list(set () .union(*[[(j-1,b) for b in range(k, k+i)
1,[(a,k) for a in range(j-1, j+n-1i)11))
X2 = list(set().union(*[[(j-1,b) for b in range(k, k+i)
1,[(a,k+i-1) for a in range(j-1, j+n-i)11))
To[cur].append ((X1, c1))
Rfrom[(tuple(X1),cl1)] = cur
To[cur].append ((X2, c2))

Rfrom [(tuple (X2),c2)]

if j+n-i <=M - 1:
cl = (j+n-i, k)
c2 = (j+n-i, k+i-1)
X1 =
1,[(a,k) for a in range(j,
X2 =

1,[(a,k+i-1) for a in range(j,

To[cur].append ((X1,

Rfrom[(tuple (X1),c1)]

To[cur].append ((X2,

Rfrom [(tuple (X2),c2)]

To[cur].sort ()

Tolcur] =
cur]))
From[cur] = []
if k-1 >= 0:
cl = (j,k-1)
c2 = (j+n-i-1, k-1)
X1 =
1,[(a,k-1) for a in range(j,
X2 =

k+i)],[(a,k-1) for a in range(j,
From[cur].append ((X1
Rto[(tuple (X1),c1)]
From[cur].append ((X2
Rto[(tuple (X2),c2)]
if k+i <= N 1:

list(set () .union(*x[[(j+n-i,b) for b in range (k,
j+n-i+1)11))
list(set () .union(*[[(j+n-i,b) for b in range(k, k+i)

cur

k+1)

j+n-1i+1)11))

c1))

cur

c2))

list(set () .union(*x[[(j,b) for b in range(k-1,
j+n-1)11))
list(set () .union(*[[(j+n-i-1, b) for b in range(k-1,

j+

>

19

cur

list(To[cur] for Tolcur],_ in itertools.groupby(Tol

k+1i)

n-1)11))
c1))

cur

c2))

cur

cl = (j, k+i)

€2 = (j+n-i-1, k+i)

X1 = list(set () .union(*[[(j, b) for b in range(k, k+i+1)
1,[(a, k+i) for a in range(j, j+n-1)11))

X2 = list(set().union(*[[(j+n-i-1, b) for b in range(k, k+
i+1)]1,[(a, k+i) for a in range(j, j+n-i)]11))

From[cur].append ((X1, c1))

Rto[(tuple(X1),c1)] = cur

From[cur].append ((X2, c2))

Rto[(tuple (X2),c2)]

From[cur].sort ()

cur

From[cur] = list(From[cur] for From[cur],_ in itertools.

groupby (From[cur]))

#Algorithm 2
for i in range(l,n):
for j in range(M-n+i+1):
for k in range(N-i+1):
cur = R[i,j,k]
maxPartialEmbedding[cur] = []
for e in Tolcur]:
if 1 == 1:
Beta = [e]
else:

Beta = maxPartialEmbedding[Rto[(tuple(e[0]),e[1]1)]1]1+[e

if size(maxPartialEmbedding [Rfrom[(tuple(e[0]),e[1]1)]]) <
size (Beta):
maxPartialEmbedding [Rfrom [(tuple(e[0]) ,e[1]1)]] = Beta
for j in range(M-n+i+1):
for k in range(N-i+1):
cur = R[i,j,k]
allMaxPartialEmbedding[cur] = []
for e in To[cur]:
Beta = maxPartialEmbedding[Rfrom[(tuple(e[0]),e[11)1]
if 1 == 1:
if size([e]) == size(Beta):
allMaxPartialEmbedding [Rfrom [(tuple (e [0]) ,e[1]1)]].
append ([e])
else:
if size(maxPartialEmbedding[Rto[(tuple(e[0]),e[11)]11+[

e]) == size(Beta):

20

for maxP in allMaxPartialEmbedding[Rto[(tuple (e
[01),el11)11:
allMaxPartialEmbedding [Rfrom [(tuple (e [0]) ,e
[1]1)]1].append (maxP + [e])
BetaMax = []
maxClique = []
for j in range(M):
for k in range(N-n+2):
cur = R[n-1,j,kl]
for e in From[cur]:
Beta = maxPartialEmbedding[Rto[(tuple(e[0]),e[1]1)]1]1+[e]
if size(BetaMax) < size(Beta):
BetaMax = Beta
for j in range(M):
for k in range(N-n+2):
cur = R[n-1,j,k]
for e in From[cur]:
Beta = maxPartialEmbedding[Rto[(tuple(e[0]),e[1])1]]
if size(BetaMax) == size(Beta + [e]):
for maxP in allMaxPartialEmbedding[Rto[(tuple(e[0]) ,e[1])
17:
maxClique.append (maxP + [e])

c =1
print ("Chain length: " + str(m + 1) + "\n")
print ("Max clique order: " + str(size(BetaMax)) + "\n")
for beta in maxClique:
print ("Maximum Clique Embedding " + str(c) + ": \n")
print
for e in beta:
temp = []
print ("E1l block: " + str(e) + "\n")
b = maxBundle (e[0],e[1],faultyQubits ,missingEdges ,M,N,L) [0]
for j in b.values():
temp.append (chimera_to_linear_index(j, 12, 12, 4))
print ("Ells: " + str(temp) + "\n")
print
print

c =c + 1

pythonForIncompleteEdges_1_E.py

21

