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Abstract

We review existing quantum computational methods for solving the Hamiltonian
cycle problem in different computational frameworks such as quantum circuits, quan-
tum walks and adiabatic quantum computation. Then we present a QUBO (quadratic
unconstrained binary optimization) formulation, which is suitable for the adiabatic
quantum computation for a D-Wave architecture. Further, we derive a physical Hamil-
tonian from the QUBO formulation and discuss its adequateness in the adiabatic frame-
work. Finally, we discuss the complexity of running the Hamiltonian cycle QUBO on
a D-Wave quantum computer, and compare it with existing quantum computational
methods.

1 Introduction

The Hamiltonian cycle problem (HCP) is one of the extensively studied problems in graph
theory and computer science. A Hamiltonian cycle is a cycle in a graph which passes through
every vertex of it. Given a graph, determining whether the graph contains a Hamiltonian
cycle is known as the HCP. This problem dates back to 1850’s where its origin is considered
the famous Icosian game proposed by Sir William Rowan Hamilton. The HCP is a well-
known problem in the list of NP-complete problems [36]. The original HCP was proposed
for undirected graphs, though the directed graph version is also extensively studied, and
these two problems are closely related. For simplicity, we consider the undirected graph
version of the HCP here.

Solving the HCP has always been a problem of interest. Different solution methods were
proposed in different computational frameworks. In the scope of conventional computing,
dynamic programming [6, 32], Markov chains [30] and Monte-Carlo methods [9] are note-
worthy among these. On the other hand, The problem was also addressed in unconventional
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computing paradigms [14] in the last decade. Accordingly, methods were proposed to solve
the HCP in DNA computing [38], optical computing [43] and quantum computing [28, 39].

Amongst unconventional computing frameworks, quantum computing could be consid-
ered the field which drew the attention of the widest-ranging community, including computer
scientists, physicists, mathematicians and engineers. Though it is still debatable whether
quantum computers can solve NP-complete problems in polynomial time, they have provided
exponentially faster solutions to several problems and led to a diverse range of applica-
tions [17, 29, 40]. Different quantum algorithms were developed in different quantum frame-
works with promising solutions for several real-world problems. These include the quantum
circuit framework, the quantum walk framework and the adiabatic quantum framework.

Since quantum circuit framework was the pioneering model for quantum computation,
early quantum algorithms were designed over circuit architectures. Being the quantum
counterpart of classical random walks, quantum walks also have provided bases for several
quantum algorithms. However, solving NP-complete problems remained unanswered in both
frameworks. A new paradigm of quantum computing, designed after the adiabatic theorem
in quantum physics, was proposed in [25], which particularly aimed at solving NP-hard
problems.

Considering the physical implementation of a quantum computer, significant progress was
achieved after the invention of the D-Wave computer, which was modeled after the adiabatic
quantum annealing. Despite the fact that the D-Wave machine is not a universal quantum
computer, it has provided efficient solutions for several instances of NP-hard problems[15, 16].
The operation of this computer is based on simulating a physical Hamiltonian, which is
derived from a quadratic unconstrained binary optimization (QUBO) problem. Therefore,
problems intended to be solved by the D-Wave quantum computer are usually transformed
into QUBO problems. However, not all QUBOs provide efficient solutions. Thus, given a
problem, reformulating it as a D-Wave feasible QUBO becomes a non-trivial task.

Given that the HCP has been addressed previously in other unconventional computing
paradigms including quantum computing, it is natural to ask how this problem should be
formulated for the D-Wave quantum computer. One of the main tasks of this paper is to
formulate the HCP as a QUBO which could efficiently work in the D-Wave architecture.
Thus, we provide essential ingredients for a quantum algorithm for the HCP in the adiabatic
quantum framework.

However, unlike other quantum computing frameworks, computational complexity of
an adiabatic quantum algorithm is not explicitly pre-determined. It has been found that
adiabatic algorithms could fail in certain circumstances [3, 24]. Also certain theoretical
bounds for adiabatic algorithms were suggested [35]. Therefore, a QUBO formulation which
perfectly suits the D-Wave architecture can be exponential in complexity due to physical
effects. Thus, after formulating a QUBO, it is worthwhile to explore the corresponding
physical Hamiltonian’s capacity to produce efficient solutions. The second task of this paper
is building a Hamiltonian based on our QUBO for the HCP in order to investigate its
adequateness.

Having different quantum methods for solving the HCP, a comparative survey would pro-
vide some intuition on which framework is more suitable for solving it. However, comparing
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adiabatic algorithms with other quantum algorithms could be questionable, as the computa-
tional complexity of the latter is defined explicitly while the former is not. A comparison is
justifiable only with certain bounds on the complexity of the adiabatic method. Therefore,
we use our QUBO formulation and its corresponding physical Hamiltonian to compare our
method with already existing quantum methodsfor solving the HCP. Accordingly, the third
task of this paper is putting together the existing quantum computational methods for solv-
ing the HCP along with our new method and making the way for an equitable comparison.

Since many quantum methods for HCP are based on the brute-force classical method, we
describe the quantum version in Section 2.1 of this paper. Afterwards, starting in Section 2.2
we describe the standard quantum approach for HCP with its implementation in quantum
circuit, quantum walk and adiabatic quantum frameworks. In Section 3 we present our
QUBO formulation. Further, this section contains our results on the QUBO’s capability
of producing adequate physical Hamiltonians. Finally, we compare our results with other
quantum computational methods for solving the HCP.

2 Existing quantum methods

2.1 Quantum brute-force method

The most known quantum method for solving the HCP is the quantum brute-force algorithm,
which is known to provide a quadratic speed-up over the its classical counterpart. This
method is based on famous Grover’s algorithm which makes use of amplitude amplification
as the key ingredient. As described in [42], it is can be easily reconstructed from Grover’s
algorithm for searching a database with a given number of entries. We briefly describe this
method for completion.

Classical brute-force method:

It is straightforward to see that the HCP has a polynomial-time verifier. On an input
graph G on n vertices, the brute-force method enumerates all cycles of this graph. There
are n! possible arrangements of vertices of the graph. Given such arrangement, verifying
whether it contains the Hamiltonian cycle can be done using a p(n)-time polynomial verifier.
Thus, the brute force method has complexity p(n)n!. In order to express this complexity as
a power of 2 for the convenience of comparison, it is possible to use of Stirling’s formula

lg n! = n lg n− (lg e)n+O (lg n) , (1)

and to show that the complexity is O
(
p(n)2n lgn

)
.

Quantum speedup over classical brute-force method:

On an input graph G on n vertices, we index the vertices by v0, v1, . . . , vn−1. The state
space in this quantum algorithm consists of all possible orderings of the vertices of this graph.
In order to prepare this space, we represent each vertex by the quantum state |vi〉, which
is the ith element of the computational basis. Thus, each vertex can be stored using log n
qubits.
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For simplicity, we assume n to be a power of 2. If this is not the case, it is possible to
prepare 2dlgne states and make it a power of 2.

Now we permute the vertices and make the complete state space. More precisely, we
make a composite system in which an element takes the form |v0, v2, . . . , vn−1〉, the tensor
product of vertex states which is a Hilbert space spanned by 2n logn orthonormal states.
Physically, each vertex state occupies log n qubits; making the size of the composite system
equal to n log n qubits. This is the search space on which we apply Grover’s algorithm.

We apply the brute-force search with polynomial verifier (with run-time p(n)) for the
Hamiltonian cycle. That is, for each entry in the search space, we query an oracle which
has access to the polynomial verifier for Hamiltonian cycles. This oracle returns different
outputs based on the existence of Hamiltonian cycle in the relevant state. The action of the
oracular operator is expressible as follows.

O|v0, v1, . . . , vn−1〉 =

{
−|v0, v1, . . . , vn−1〉 if v0, v1, . . . vn−1 is a Hamiltonian cycle

|v0, v1, . . . , vn−1〉 otherwise
. (2)

It is a well-known fact that the speedup in Grover’s algorithm over classical algorithms is
achieved by simultaneous evaluation of a function at all entries in a search space. Thus, the
amplitudes of the states in which the vertices make a Hamiltonian cycle can be increased by
repeated application of Grover’s diffusion operator and the oracular unitary operation.

Given a state |x〉 in the search space of 2n lgn entries, the action of Grover’s diffusion

operator on a superposition of states
∑2n lgn

x=1 cx|x〉, can be expressed as follows.

Us

2n lgn∑
x=1

cx|x〉

 =
2n lgn∑
x=1

 2

2n lgn
(
2n lgn∑
y=1

cy)− cx

 |x〉 (3)

The operation in Equation (3) can be viewed as the rotation of the current state about
the current mean (with respect to amplitude) state. On the other hand, Equation (2) can
be considered a rotation about the solution; that is, rotation about an ordering of vertices
which makes a Hamiltonian cycle in the graph.

In Grover’s algorithm, a function is calculated on all values in the search space simulta-
neously, through a black box function operator. This is the operator given by Equation (2)
for the HCP. Thus, an amplitude change of the states which contain a Hamiltonian cycle
has been done by the oracular operator. Then, Grover’s diffusion operator in Equation (3)
rotates the state of the composite system about its mean, amplifying these amplitudes sig-
nificantly. It has been proven by Lov Grover in [27] that it is sufficient to apply these black
box and diffusion operators O(

√
N) times on a database with N elements, in order to find

the searched-for element.

The amplitude amplification of the composite vertex states which contains a Hamiltonian
cycle is followed by the well-known proof of Grover’s algorithm. Recall the search space is

spanned by 2n lgn orthonormal states. Therefore we apply Grover’s iteration O
(

2
n lgn

2

)
times,
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making the time complexity of the Hamiltonian cycle finding algorithm of the framework

equal to O
(
p(n)2

n lgn
2

)
. This is a quadratic speedup over classical brute-force algorithm.

Though exponential in complexity, this quantum brute-force method has been the mo-
tivation for a number of proposed quantum approaches and remains the standard quantum
method for solving the HCP.

2.2 Quantum circuit implementation

Since quantum effects of this algorithm are entirely due to Grover’s algorithm, the standard
quantum circuit implementation for Grover’s algorithm can be used to implement this in the
circuit framework.

It must be noted that the problems of determining whether a given graph is Hamiltonian
and finding all Hamiltonian cycles are related but slightly different in both classical and
quantum frameworks. If the number of Hamiltonian cycles were known prior to implemen-
tation, standard Grover’s algorithm can be used for amplitude amplification. Since this is
not our case of interest, the unknown number of solutions version of Grover’s algorithm (also
known as quantum counting) in [11] must be used. This method provides a solution to the
question whether the graph is Hamiltonian, in addition enumerates its Hamiltonian cycles.
However, if we only need to determine whether the graph is Hamiltonian, quantum counting
algorithm might not be optimal. The modification to Grover’s search suggested as quantum
existence testing in [34] could be used to circumvent this issue.

Though the quantum brute-force method has complexity O
(
p(n)2

n lgn
2

)
and it is implic-

itly designed for the quantum circuit framework, we found another work suggesting a method
for finding the Hamiltonian cycle in [28] defined on the same framework. This method is
based on polynomial reduction of 3-SAT to HCP. Based on Grover’s algorithm, the authors

claim a complexity O
(
p(n)2

n(n−1)
2

)
, which is however higher than the complexity of the

standard quantum brute-force method.

2.3 Quantum walk implementation

The complexity in the circuit framework is defined in terms of the length of basic quan-
tum gates involved. Thus, one undeniable advantage of the circuit framework is its explicit
representation of the algorithm, which could easily be converted into mathematical expres-
sions. This makes the complexity analysis easier than the other frameworks of quantum
computation. On the other hand, it should also be mentioned that quantum circuits were
experimented only on a few qubits [5]. Contrastly, physicists have progressed significantly
in the quantum walk framework with more qubits, with strong experimental evidence on
computational capacity [49].

Discrete-time quantum walk takes place in the Hilbert space H, comprised of the tensor
product of the space spanned by orthonormal set of vertex states and the coin Hilbert space
spanned by orthonormal set of coin states, with di the degree of the ith vertex. The discrete-
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time quantum walk on the graph is then achieved via repeated application of the unitary
time-evolution operator

Û = Ŝ ·
(

1⊗ Ĉ
)
, (4)

where C is the coin operator, and S is the shift operator acting on the Hilbert space H as

Ŝ|vi, cj〉 = |vj, ci〉. (5)

The basic idea of quantum walk-based search is applying the coin version of Grover’s
diffusion operator in Equation (3). The d-degree Grover coin operator Ĉ

(d)
G ∈ Rd×d is defined

as follows,

(Ĉ
(d)
G )ij =

2

d
− δij (6)

Applying the d-dimensional Grover coin operator, combined with the shift operator, to a
d-degree regular graph. Then the discrete time quantum walk unitary evolution operator is
expressible as,

(U)ij,kl =
[
Ŝ ·
(

1⊗ Ĉ(d)
G

)]
ij,kl

=

{
2
dj
− δil, if j = k

0, otherwise
(7)

where (i, j), (k, l) ∈ E and dj denotes the degree of the jth vertex. Quantum walk-based
search could be considered a walk-version of Grover’s search. In this perspective, solving
the HCP in quantum walk framework was considered in [22] as an application of walk-based
search.

Grover-based quantum search in a d-dimensional grid on N vertices has time complexity

O
(
N

1
2

+ 1
d

)
as shown in [7]. This was improved to O

(
N

1
2

)
in [1]. Quantum search over the

hypercube was provable to be performed in O
(
N

1
2

)
[31]. A particular class of graphs on

which quantum walks were performed successfully is the Johnson graphs. The vertex set
of the Johnson graph J(n, r) represents the r-element subsets of an n-element set, and two
vertices are adjacent if and only if corresponding intersection set has exactly r elements.
The fact that Grover’s quantum search can be performed faster on Johnson graphs has been
identified in [4].

Based on this, improvement on the search has been suggested in [22] for the Hamiltonian
cycle problem. Using previously known results on quantum walk-based search on Johnson
graphs, it was suggested to use a Johnson graph as the search space in the brute-force search
in order to achieve better speedups over the classical algorithms. The run-time of a quantum
walk over some graph depends on the largest and second largest eigenvalue of an ergodic
Markov chain. The main idea of the proposal in [22] is to make use of the eigenvalue results
on Johnson graphs in [12] for quantum walk-based search. More precisely, if the quantum

search for a Hamiltonian cycle takes place on Johnson graph J
(
n2, n

2n
n+1

)
, then quantum

query complexity can be reduced to O
(
n

2n
n+1

)
.
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2.4 Adiabatic quantum implementation

The relatively new adiabatic quantum computing framework was introduced in [25] as an
alternative to the circuit framework. This framework makes use of the adiabatic theorem in
quantum mechanics as the key ingredient. While circuit framework is based on Heisenberg–
Born picture of quantum mechanics, the adiabatic framework is based on Schrödinger pic-
ture. According to the Heisenberg–Born matrix formulation, the (discrete) time evolution
of a quantum system is characterized by the application of a unitary matrix, which is an
individual gate in a quantum circuit. Contrastly, the Schrödingers equation describes the
(continuous) time evolution of a quantum system as the application of the Hermitian oper-
ator which acts as the energy Hamiltonian of the system.

The adiabatic framework is based on preparing this Hamiltonian. In this preparation
process, it uses the adiabatic theorem [10] as the key ingredient. This theorem suggests
that, if a quantum system is its ground (zero-energy) state and undergoes a sufficiently slow
evolution, then the system will end up in high probability at a ground state. The adiabatic
framework relies on preparing a ground state which encodes the solution to an NP-hard
problem in a problem Hamiltonian. During the adiabatic process, an easy-to-prepare initial
Hamiltonian is slowly evolved along an adiabatic path to the problem Hamiltonian. Thus,
an adiabatic quantum algorithm consists of three components: an initial Hamiltonian HI , a
problem Hamiltonian HP and an adiabatic evolution path s(t) from the starting time t = 0
to terminating time t = T [41]. The physical Hamiltonian H(s) in the adiabatic evolution
can be expressed as

H(s) = sHI + (1− s)HP , (8)

where s(t) is a smooth function that decreases from 1 to 0 over [0, T ]. The natural selection
for the adiabatic path is the linear curve 1− t

T
.

After the introduction of the adiabatic quantum framework, analogous algorithms were
designed for certain quantum algorithms in the circuit framework such as adiabatic Grover’s
algorithm [26], period finding [33], Deutschs algorithm [20] and factorization [44].

Although polynomial equivalence of the circuit and adiabatic frameworks has been proved
under certain conditions [2, 25], the run-time of adiabatic algorithms can become exponential
due to physical effects. For instance, the quadratic speedup in Grover’s algorithm in the
circuit version does not apply equally in general for its analogous adiabatic version. It was
proved in [45] that ordinary adiabatic Grover’s algorithm has an exponentially small spectral
gap, and hence ends up with no speedup over classical search.

Therefore, an attempt to solve for the HCP in the adiabatic framework using adiabatic
Grover’s algorithm has the above mentioned disadvantage, and ends up with complexity
O
(
2n lgn

)
unless the modification in [45] is applied to adiabatic Grover’s algorithm. This

is the same as classical brute-force complexity. Therefore, in order to reduce complexity of

adiabatic HCP to O
(
p(n)2

n(n−1)
2

)
, the modified Grover’s algorithm must be applied.
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3 Solution for a D-Wave architecture

In the preceding section, we have discussed already proposed quantum methods for solv-
ing the HCP in the circuit, walk and adiabatic frameworks. Now, we propose a different
quantum method for solving the HCP. Although our method is designed for the adiabatic
framework, it is based on optimization rather than amplitude amplification. Our method
is particularly designed for the D-Wave quantum setting, which belongs to the adiabatic
framework. In the adiabatic framework, quantum annealing is a meta-heuristic for finding
the global minimum of a given objective function over a given set of candidate solutions.
The D-Wave quantum computer can be considered a hardware heuristic which minimizes
an unconstrained objective function using a physically realized version of quantum anneal-
ing [37]. One form of problems the D-Wave quantum computer is claimed to solve efficiently
is QUBO (quadratic unconstrained binary optimization) problems [21].

QUBO is an NP-hard mathematical problem consisting in the minimization of a quadratic
objective function f(x) = xTQx, where x is a n-vector of binary variables and Q is an upper-
triangular n× n matrix:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}. (9)

For notational convenience and consistency, we will index i and j by integers in range from
0 to n− 1.

Since the invention of the D-Wave computer, several decision and optimization prob-
lems were reformulated in D-Wave feasible formats. Examples include broadcast-time [15],
Boolean satisfiability [46], graph isomorphism [16], graph covering [21], graph partition-
ing [47] and job-shop scheduling [48] problems. It is well-known that many real problems
have integer programming formulations. Further, it is possible to convert an integer program-
ming problem to a QUBO problem by a simple transformation. However, not all QUBOs
generate accurate results in D-Wave architecture. Adding slack variables to a QUBO prob-
lem could makes the computation inaccurate [13], thus the generic conversion from an integer
program is very likely to produce inaccurate solutions. Also it is quite natural to try and use
a small number of variables. Thus, it becomes a non-trivial task to reformulate a problem
as a D-Wave feasible QUBO.

3.1 QUBO formulation of HCP

Given a graphG = (V,E) of order n, a Hamiltonian cycle can be interpreted as a permutation
of its n vertices, say v0, v1, . . . , vn−1, such that for all consecutive pairs of vertices vi, vi+1 in
the permutation, we have an edge (vi, vi+1) in E. We also require {v0, vn−1} to be an edge in
E so we could have a complete cycle. Since there are n! permutations, if we assume that all
variables are binary, then we need min{k | 2k ≥ n!} = dlg(n!)e binary variables to represent
any of the n! permutations, that is about ndlg ne bits. However, this theoretical lower bound
seems difficult to be realized and we provide a QUBO formulation of HCP with n2 variables.
Our construction is similar to the one sketched by Lucas in [39].
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We consider the arrangements of vertices in graph G and define a binary variable xi,j
with vertex index i ∈ {0, 1, . . . n− 1} and position index j ∈ {0, 1, . . . n− 1} as follows.

xi,j =

{
1 if vertex i is at position j of the sequence

0 otherwise
. (10)

Let x denote the binary vector consisting of all n2 variables. We also need some mecha-
nism to map a given x to a vertex sequence by the definition of Equation (10). For notational
convenience, we will use a mapping d(x) to denote the sequence of vertices. This sequence
will have an undefined value if x can not be decoded in a meaningful way (e.g. two vertices
appearing at the same index).

The objective function to be minimized has the following form:

F (x) = H(x) + P1(x) + P2(x) (11)

where,

H(x) =
∑

(i1,i2)∈V×V−E(G)

(
xi1,0xi2,n−1 +

n−2∑
j=0

xi1,j xi2,j+1

)
, (12)

P1(x) =
n−1∑
i=0

(
1−

n−1∑
j=0

xi,j

)2

(13)

and

P2(x) =
n−1∑
j=0

(
1−

n−1∑
i=0

xi,j

)2

. (14)

Each of the three terms of F (x), serves as a penalty term which becomes strictly positive
only when the condition of Hamiltonicity is violated. Equation (13) and (14) ensure that
d(x) is a permutation of n vertices, while Equation (12) check whether all pairs of consecutive
vertices in the sequence have an edge connecting them. Together, they impose all the
necessary conditions for a Hamiltonian cycle.

3.2 Proof of correctness

Given a graph G, if we assume x∗ is the vector of n2 binary variables which yields the optimal
value x∗ = minF (x), then G has a Hamiltonian cycle if and only if x∗ = 0. If x∗ = 0, we
can also find the sequence of vertices which form the cycle by computing d(x). Formally, we
have the following theorem.

Theorem 1. Assume x∗ and x∗ are the optimal variable assignments and its value in F (x),
respectively. Then, G has a Hamiltonian cycle if and only if x∗ = 0. Furthermore, the
sequence of vertices which forms the cycle is d(x).

It is easier to prove the correctness of Theorem 1 with the following two lemmata.
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Lemma 1. For each possible variable assignment x, P1(x) + P2(x) = 0 if and only if d(x)
is a permutation of n vertices.

Proof. Since both P1 and P2 are sums of quadratic functions, P1(x) + P2(x) = 0 if and only
if P1(x) = 0 and P2(x) = 0.
First, by construction of P1(x),

∑n−1
i=0 (1−

∑n−1
j=0 xi,j)

2 = 0 if and only if for each vertex i in

range 0 ≤ i ≤ n − 1, 1 −
∑n−1

j=0 xi,j = 0. So it means that exactly one variable in the set
{xi,j | 0 ≤ j ≤ n− 1} has value 1. Hence each vertex must appear at exactly one position of
the sequence defined by d(x).

The second penalty term, P2(x) is of a similar structure. We have
∑n−1

j=0 (1−
∑n−1

i=0 xi,j)
2 =

0 if and only if for each j in range 0 ≤ j ≤ n − 1, there is exactly one variable in the set
{xi,j | 0 ≤ i ≤ n− 1} has a value of 1. Hence, there is only one vertex at each position index
of the sequence defined by d(x).
Together, the two conditions make sure that each vertex appears exactly once in the sequence
and each index of the sequence has exactly one vertex assigned to it. By assumption, we
assume that the number of vertices is the same as the length of d(x) and therefore d(x) is a
permutation of n vertices.

Lemma 2. Let d(x) be a permutation of n vertices, then H(x) = 0 if and only if d(x) is a
cycle.

Proof. Suppose H(x) = 0 and consider two consecutive positions j and j+1. Let the vertices
at these positions in the permutation d(x) be i1 and i2 respectively. If (i1, i2) ∈ V ×V −E(G),
then

∑n−2
j=0 xi1,j xi2,j+1 > 0. Then H(x) = 0 by its definition, and leads to a contradiction.

Therefore, we conclude that (i1, i2) ∈ E(G).

A similar argument shows that the vertices at the two positions with indices 0 and n− 1
also are adjacent. Therefore, it follows that the permutation d(x) makes a cycle.

Now suppose H(x) 6= 0. Therefore at least one term in the form xi1,jxi2,j+1 or xi1,0xi2,n−1

must be equal to one. That is, there exists at least two positions in the permutation d(x)
(including the first and last) such that the corresponding vertices (i1, i2) ∈ V × V − E(G).
Thus, d(x) is not a cycle.

Now, we present the proof of Theorem 1.

Proof. The objective function F (x) consists of three parts H(x), P1(x) and P2(x). It is
important to note that all three parts are made of a sum of quadratic terms. And since all
variables are binary, we have F (x) = 0 if and only if H(x) = P1(x) = P2(x) = 0.

Given a graph G, let us construct the corresponding objective function F (x). Suppose
x∗ = 0. This means that we must have H(x∗) = P1(x∗) = P2(x∗) = 0 and hence by Lemma 1
and 2, we know d(x∗) must be a permutation of the n vertices of G which is also a cycle.
That is, there exists a permutation d(x∗) of vertices of G which is a cycle. Therefore, the
graph G is Hamiltonian and d(x) is a Hamiltonian cycle.

Conversely, if F (x∗) 6= 0 then at least one of the terms H(x∗), P1(x∗) or P2(x∗) is not
equal to 0. If P1(x∗) or P2(x∗) is not equal to 0, then by Lemma 1 we know d(x∗) is not a
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permutation of n vertices so it can not be a Hamiltonian cycle. If P1(x∗) = P2(x∗) = 0 and
H(x∗) 6= 0, then by Lemma 2, d(x∗) is not a Hamiltonian cycle again.

3.2.1 A K3 example

We now provide an example with the complete graph of order 3. The vertices of the graph are
V = {0, 1, 2} and the edges are E = {(0, 1), (0, 2), (1, 2)}, it can be visualized as a triangle
where each corner is a vertex.

According to Equation (10), there will be nine variables xi,j for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2,
so the first thing we do here is to map each variable to an index in range from 0 to 8. In
theory, any arbitrary mapping is fine as long as the indexes and the variables have a one-to-
one correspondence. Here, we define the mapping by a function c(xi, j) which maps variable
xi,j to index c(xi,j) = 2i+ j.

Note that objective function (11) does not entirely fit the definition of the QUBO problem.
Namely, there are two problems. First, there are constant terms in Equation (13) and (14).
These constants can be safely ignored as removing a constant value from all different value
assignment will not change the optimality of x∗. However, it does affect x∗, and we get
an offset of value 6. Second, there are linear terms in Equation (13) and (14). Since all
variables are binary, we have xi,j = x2

i,j so we can replace all linear terms by its square
without changing the value of F (x). We then compute the coefficient of all quadratic terms
in the objective function. The coefficient of an quadratic term x1x2 corresponds to the value
of Q(c(x1),c(x2)). The complete matrix is shown below.

Q (K3) =



−2 2 2 2 0 0 2 0 0
0 −2 2 0 2 0 0 2 0
0 0 −2 0 0 2 0 0 2
0 0 0 −2 2 2 2 0 0
0 0 0 0 −2 2 0 2 0
0 0 0 0 0 −2 0 0 2
0 0 0 0 0 0 −2 2 2
0 0 0 0 0 0 0 −2 2
0 0 0 0 0 0 0 0 −2


Now K3 obviously has a Hamiltonian cycle, however, if we consider the cycle as a permu-

tation of the vertices then there are several different optimal solutions. Visually, the cycle
can start at any corner of the triangle and then it can take two different orientations. Hence
there are six different optimal solutions in this case. For example, the sequence 0 − 1 − 2
would be encoded by the vector x = [1, 0, 0, 0, 1, 0, 0, 0, 1]. Note that due to the value of the
offset, xTQx = −6 in this case, since −6 + 6 = 0. A Python program that generates the
QUBO matrix is given in Appendix A.
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3.3 Adequateness of QUBO for the adiabatic framework

Since quantum annealing is based on the adiabatic quantum model, after forming a D-Wave
feasible QUBO, it is worthwhile to examine how suitable that formulation is in producing
capable physical Hamiltonians. That is, in order to produce efficient solutions, theoretically,
a QUBO must produce a capable problem Hamiltonian HP as in Equation (8).

Given a QUBO in the form xTQx, the binary decision variable xi, which can take 0 or 1,
can be directly transformed into the (Ising) spin decision variable si, through si = 1 − 2xi.
Thus, the spin variable si takes the value 1 or -1 as xi is 0 or 1. According to Schrödinger
picture of quantum mechanics, possible outcome of a measurement of the observable are
the eigenvalues. Considering the spin, one could consider σz, Pauli z-matrix, which has
eigenvalues ±1. Accordingly, a physical Hamiltonain can be derived from the QUBO, in
the form of interactions between the ith and jth qubits of the physical system [41]. This
represents the relation between xi and xj of the original problem. Thus, it is possible to
formulate the problem Hamiltonian HP of dimensions 2n2 × 2n2

. Following the steps in [8],
it is straightforward to see that the problem Hamiltonian can be expressed as follows.

HP =
∑
i

hiσ
(i)
z +

∑
i<j

Ji,jσ
(i)
z σ

(j)
z , (15)

where,

hi =
1

4

n2∑
k=1

(qi,k + qk,i) , (16)

Ji,j =

{
qi,j+qj,i

4
if i < j,

0 otherwise
(17)

and, σ
(i)
z σ

(i)
z denotes that Pauli z-matrices

(
1 0
0 −1

)
are acting on the ith and jth qubits of

the physical system.

This problem Hamiltonian encodes the objective function so that the ground state of Q is
an eigenstate of it, corresponding the minimum eigenvalue [41]. Recall the adiabatic process
evolves from an initial problem Hamiltonian Hp along an adiabatic path. It is important to
select an easy-to-prepare initial Hamiltonian. The standard choice for HI is

HI =
∑
i

σ(i)
x , (18)

where σx is the Pauli x-matrix

(
0 1
1 0

)
.

3.3.1 The K3 example revisited

Consider the QUBO matrix Q (K3) in Section 3.2.1. Following Equations (16) and (17), it
can be seen that hi = 1 for i = 1, 2, . . . , 9. Also, J1,2 = J1,3 = J1,4 = J1,7 = J2,3 = J2,5 =
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J2,8 = J3,6 = J3,9 = J4,5 = J4,6 = J4,7 = J5,6 = J5,8 = J6,9 = J7,8 = J7,9 = J8,9 = 0.5 and
Ji,j = 0 for all other i, j’s. The term in the Equation for problem Hamiltonian for K3 which
corresponds to Equation (15) indexed by (2, 3) is 0.5I ⊗ σz ⊗ σz ⊗ (I⊗6).

3.4 D-Wave experiments

We used a D-Wave 2X computer which consists of 1098 active physical qubits (out of a pos-
sible of 1152). We performed several trials of Hamiltonians on each graph with and without
D-Wave post-processing optimization. That is, we considered the embeddings, physical QU-
BOs and D-Wave outputs, for which we used a post-processing script to check if the answers
were compatible with our expectations. The D-Wave runs confirmed all our graph Hamilto-
nians were correct. For instance, we tested the Hamiltonians for all connected graphs on 4
vertices, which includes C4 and K4 with Hamiltonian cycles and the star graph S3, Tadpole
graph T3,1 and the line graph P4 as non-Hamiltonian graphs. Accordingly, the D-Wave runs
did distinguish these graphs from the other graphs of the same order.

3.4.1 Remarks on complexity

There is no general theory to predict the runtime of a given quantum adiabatic algorithm.
Rough estimates suggest the condition T > 1

∆2 , where ∆ is the minimum spectral gap, or,
the gap between the two lowest eigenvalues of the physical Hamiltonian over the adiabatic
path s = 0 to s = 1 [23]. Physically, the lowest eigenvalue corresponds the ground state
energy and the second lowest eigenvalue the first excited state. In order to obtain the answer
in adiabatic quantum computing, it is necessary for the process to remain in ground state
throughout the whole time the computation takes place. This time is found to satisfy the
condition T > 1

∆2 , which is now considered as the condition for adiabatic computing [18].

Once a QUBO formulation for adiabatic framework is stated, it is worth to check this
adiabatic condition. That is, the adequateness of the QUBO formulation to produce compe-
tent physical Hamiltonians for adiabatic quantum computation depends upon the minimum
spectral gap over the interval [0, 1]. In other words, if the minimum spectral gap ∆ be-
comes exponentially small with the size of the problem, the corresponding formulation is
not suitable for adiabatic quantum computation. This has been the case for some adiabatic
algorithms [45], which is discussed in detail in [45, 24].

Recall that the QUBO formulation must have minimum slack variables and constants.
Even with a careful selection of parameters, there is a possibility for the adiabatic computa-
tion to take exponentially large runtime due to the spectral gap. Therefore, it is important
to consider the spectrum of the final Hamiltonian. Accordingly, we evaluated the eigenvalues
of the final Hamiltonian H(s) over the standard adiabatic path for several instances of HCP.

Our results indicate that HCP Hamiltonian derived by our QUBO does not decrease
exponentially with problem size. However, small spectral gaps were observed for some graphs,
though the gap does not decrease exponentially with number of vertices. For example,
the spectral gap for our QUBO Hamiltonian for the complete graph Kn decreases from
n = 1 to n = 6 but it increases significantly for n = 7. However, the gap for n = 6
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was considerably smaller, though the decrease does not show an exponential decay. See
Table 1. We have tested several other graphs on small numbers of vertices, and observed no
exponential decrease over the order (number of vertices) of the graph.

Table 1: Variation of the spectral gap for complete graphs K3 to K7.

Graph
Spectral gaps of Hamiltonian for

s=0 s=0.1 s=0.2 s=0.3 s=0.4 s=0.5 s=0.6 s=0.7 s=0.8 s=0.9 s=1.0
K3 1.00 0.95 0.93 0.89 0.78 0.61 0.83 1.12 1.41 1.70 2.00
K4 2.00 0.20 0.41 0.62 0.83 1.02 1.20 1.30 1.50 1.77 2.00
K5 2.00 1.07 0.22 1.6 2.2 0.95 1.86 1.36 1.99 1.76 0.71
K6 0.12 0.08 0.08 0.06 0.09 0.08 0.10 0.08 0.06 0.07 2.00
K7 0 0.12 0.31 1.02 0.73 0.94 1.15 1.35 1.56 1.77 2.0

In certain adiabatic instances, a decrease of the minimum spectral gap occurred at a
fixed point in the interval [0, 1]. For instance, in ordinary adiabatic Grover’s algorithm, the
minimum spectral gap occurs at s = 0.5 for all instances, irrespective of the size of the
problem, which showed an exponential decrease with the size. Contrastingly, the point at
which the minimum spectral gap occurs in our QUBO Hamiltonian changes with problem
size. For instance, this occurs at 0.5 for K3 and it shifts to s = 0.1 in K4.

Further, our results indicate another distinct characteristic of the spectral gap of our
QUBO Hamiltonian in contrast to adiabatic Grover and several other adiabatic quantum
algorithms. That is, the spectral gap in our problem may not necessarily have a unique local
minimum in the domain [0,1]. For instance, we observed that the spectral gap for K6 reaches
minimum at both s = 0.3 and s = 0.8. However, for many instances we tested numerically,
the minimum occurred at a single point.

4 Discussion

We considered different solutions proposed for HCP in different quantum frameworks and
presented a QUBO formulation, with proof of correctness, from which feasible Hamiltonians
could be derived for the D-Wave architecture. Though designed upon different quantum
computational frameworks, all existing quantum methods for solving HCP depend on brute-
force approach, thus on enumerating all possible cases and checking for a Hamiltonian cycle.
Contrastly, our QUBO formulation is derived using the notion of Hamiltonicity. Also, it was
particularly designed to be feasible on the D-Wave architecture.

The best efficiency gained through existing quantum algorithms is the complexity of

quantum brute-force method which has complexity O
(
p(n)2

n logn
2

)
, where p(n) is a polyno-

mial of n. This is a polynomial speedup over classical brute-force method. We note that the
Held-Karp algorithm [32] can be applied to find a Hamiltonian cycle in complexity O (2nn2).
Thus, brute-force quantum method and its implementations in different frameworks do not
result in an efficiency gain for solving the HCP. The QUBO formulation for a HCP produces
a Hamiltonian for the D-Wave architecture, which is designed over the adiabatic quantum
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framework. Since there is no general theory to predetermine the complexity of adiabatic
quantum algorithms, it is not straightforward to conclude an efficiency gain. One major
instance where adiabatic algorithms fail is with the spectral gap, which might decrease ex-
ponentially with the size of the problem. We evaluated several Hamiltonians numerically,
and our results indicate that the QUBO Hamiltonian for HCP does not possess an exponen-
tially decreasing spectral gap, although very small spectral gaps were observed for several
instances of HCP.

It must be noted that the spectral results derived numerically give a general overview
on the adequateness of our QUBO formulation in adiabatic quantum computations. If
one needs to consider the exact physical process that take place in a D-Wave quantum
computer, certain assumptions must be lifted and further analysis is required. For example,
our numerical computations are based on the assumption that the adiabatic process takes
place over a linear path in the quantum computer. According to some recent works, D-Wave
uses a different annealing path [41]. Further, D-Wave uses a Chimera graph as its hardware
topology. Therefore, given a QUBO instance in n variables, it has to be minor-embedded
onto the Chimera graph, effecting the complexity of the problem, as it requires additional
qubits. An efficient technique for minor-embedding a complete graph onto Chimera was
proposed in [19]. It would be an interesting task to take these physical and engineering
aspects into account and to make a complete analysis to check the adequateness of the
QUBO to be used on a realistic D-Wave platform.
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A Python Program to Generate QUBO Formulation

of the Hamilton Cycle Problem

1 import networkx as nx

import sys , math , time

# we assume the input graph is in standard adjacency list format

def read_input ():

6 n=int(sys.stdin.readline ().strip ())

G1=nx.empty_graph(n,create_using=nx.Graph())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors:

11 G1.add_edge(u,int(v))

return G1

def generate_qubo(G):

n = G.order ()

16 varsDict = {}

index = 0

for i in range(n):

for j in range(n):

21 varsDict [(i,j)] = index

index += 1

# initialize Q

Q = {}

26 for i in range(n*n):

for j in range(n*n):

Q[i,j] = 0

# p_1

31 for i in range(n):

for iprime in range(n):

index = varsDict [(i,iprime)]

Q[index ,index] -= 2

36 for iprime1 in range(n):

for iprime2 in range(n):

index1 = varsDict [(i,iprime1)]

index2 = varsDict [(i,iprime2)]

Q[index1 , index2] += 1

41

# p_2

for iprime in range(n):

for i in range(n):

index = varsDict [(i,iprime)]

46 Q[index ,index] -= 2

for i1 in range(n):

for i2 in range(n):
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index1 = varsDict [(i1 ,iprime)]

51 index2 = varsDict [(i2 ,iprime)]

Q[index1 , index2] += 1

# f

for i_1 in range(n):

for i_2 in range(n):

56 if not(i_2 in G.neighbors(i_1)) and not(i_1 == i_2):

for j in range(n-1):

index_1 = varsDict[i_1 ,j]

index_2 = varsDict[i_2 ,j+1]

Q[index_1 , index_2] += 1

61

index_1 = varsDict[i_1 , n-1]

index_2 = varsDict[i_2 , 0]

Q[index_1 , index_2] += 1

66

# Making Q uppertriangular

for i in range(n*n):

for j in range(n*n):

if (i > j) and (not(Q[i,j]==0)):

71 Q[j,i] += Q[i,j]

Q[i,j] = 0

return Q,varsDict ,n*n

76 G = read_input ()

qubo = generate_qubo(G)

Q = qubo [0]

n = qubo [2]

81 print n

for i in range(n):

for j in range(n):

print Q[i,j],

print

86 print ’offset =’, 2*G.order ()

listings/hamiltonCycleQUBO.py
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