
CDMTCS
Research
Report
Series

Finding the Chromatic Sums
of Graphs Using a D-Wave
Quantum Computer

Anuradha Mahasinghe
Department of Mathematics,
University of Colombo,
Sri Lanka

Michael J. Dinneen
Kai Liu
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-519
February 2018

Centre for Discrete Mathematics and
Theoretical Computer Science



Finding the Chromatic Sums of Graphs Using a D-Wave
Quantum Computer

Anuradha Mahasinghe, Michael J. Dinneen and Kai Liu

Abstract

In this paper we demonstrate how to solve the chromatic sum problem using a
D-Wave quantum computer. Starting from a BIP (binary integer programming) for-
mulation, we develop a D-Wave feasible QUBO (quadratic unconstrained binary op-
timisation) formulation of the chromatic sum problem. Our construction requires nk
qubits for a graph of n vertices and upper bound of k colours. Further, we present
the experimental results obtained by running several QUBOs on a D-Wave quantum
computer.

keywords: chromatic sum; graph colouring; QUBO formulation; adiabatic quantum
computing.

1 Introduction

The graph theoretic concept of the chromatic sum of a graph was introduced by Kubicka
and Schwenk in 1989 [25] and it has been suggested in 1987 from an application perspective
by Supowit in [33]. Given a legal vertex colouring of a graph, it is possible to represent each
colour by a positive integer, and to take the summation over all vertices. The minimum pos-
sible value for this summation is called the chromatic sum of the graph. Since its inception,
the concept of the chromatic sum has gained the attention of mathematicians and computer
scientists due to its computational hardness and application aspects.

As the well-known chromatic index (vertex colouring) problem, the chromatic sum prob-
lem too is NP–complete. Given an arbitrary graph, finding a valid assignment of colours
(having adjacent vertices with different colours) which minimises the total summation of as-
sociated colours over the vertex set is proven to be NP–complete [25]. However, it has been
proven that the problem is solvable in polynomial time for trees [25], unicyclic graphs [26]
and outerplanar graphs [24, 26]. Finding the chromatic sum for arbitrary graphs has also
been paid attention and the results indicate it is harder than the chromatic index problem
for several classes of graphs [32, 23, 19]. Certain theoretical bounds for the problem were
derived in [11, 15, 34, 29]. Different computational results were presented in [27, 4, 3, 10].
A descriptive survey of chromatic sum algorithms and results can be found in [20].

In the last decade, the paradigm of quantum computing emerged, dragging the atten-
tion of a wide-ranging community, including computer scientists, physicists, mathematicians
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and engineers. Though quantum computers have provided exponentially faster solutions to
several problems and led to a diverse range of applications, originally it was not aimed at pro-
viding efficient solutions to NP–complete problems. The particular quantum computational
framework of adiabatic computing was introduced in [13], in order to circumvent this issue.
Though it is still debatable whether quantum computers can solve NP–complete problems in
polynomial time, algorithms designed upon the adiabatic framework have provided efficient
solutions to several instances of NP–complete problems [14, 12, 7].

The adiabatic framework of quantum computing gained a significant distinction after the
invention of the D-Wave quantum computer. Despite the fact that the D-Wave machine is
not a universal quantum computer, it had been capable of generating efficient and accurate
solutions to several computational problems [5, 7]. The D-Wave quantum computer can be
considered a hardware heuristic which minimises an unconstrained objective function using a
physically realised version of a metaheuristic called quantum annealing, which is designed over
the adiabatic framework [22]. One form of problems the D-Wave quantum computer claims to
solve efficiently by quantum annealing is the class of QUBO (quadratic unconstrained binary
optimisation) problems [9]. In previous works, several graph problems were converted into
QUBO or similar optimisation problems and tested on the D-Wave computer. Examples
include graph isomorphism [7], vertex colouring [35], broadcast-time [6] and spanning tree
calculation [31] problems.

In this work, we solve the chromatic sum problem using a D-Wave quantum computer.
We first restate the problem as a D-Wave feasible QUBO formulation and then run it on a
D-Wave computer, and finally present our results with classically obtained verifications. Ac-
cordingly, the paper is organised as follows: Section 1 contains the introduction. In Section 2,
we present necessary definitions and describe the chromatic sum problem. Section 3 contains
the QUBO formulation with its proof of correctness. Section 4 contains our experimental
results and Section 5 finishes with a discussion.

2 Chromatic Sum Problem

Given an undirected graph G = (V,E) with a vertex set V and an edge set E, a legal colouring
of its vertices could be considered as a mapping of its vertex set to natural numbers so that
no two adjacent vertices are mapped into the same number. More precisely, a legal colouring
is a mapping c : V → N satisfying c(u) 6= c(v) for all (u, v) ∈ E. Let Γ(G) denote the
class of all legal colourings of the graph G. Then the chromatic sum Σ(G) of the graph G is
defined as Σ(G) = min{

∑
v∈V c(v) : c ∈ Γ(G)}.

A closely related problem is the problem of colourability or the chromatic index problem,
which has been studied extensively in graph theory and computer science. That is, finding
the legal colouring of the graph G with smallest number of different colours. The smallest
number of colours necessary for a legal colouring of some graph G is called the chromatic
index of that graph and it is denoted by χ(G). It is straightforward to see that Σ(G) ≥ χ(G).

The chromatic index problem is a well-known candidate in the list of NP–complete prob-
lems [21]. It is straightforward to see that the chromatic sum problem is different from the
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Figure 2.1: A tree T and two legal colourings.

chromatic index problem, as a colouring which would be optimal for the chromatic index
problems might not be optimal for the chromatic sum problem. This is illustrated in the
next example, which has been used to describe the notion of chromatic sum in [25].

2.1 Example

Consider the tree T in Figure 2.1 on 8 vertices with 6 leaves, for which a legal colouring
requires only two colours. The minimum summation of colours over the vertex of set of this
tree for such a colouring is

∑
v∈V c(v) = 12, as depicted in the colouring on the right of the

figure. In order to minimise the summation of colours over the vertex set, it is necessary to
use three colours, though a legal colouring requires only two colours. This is depicted in the
colouring on the left of the figure. For this colouring,

∑
v∈V c(v) = 11, which is the optimal

and hence Σ(T ) = 11. Thus, the chromatic sum problem and the vertex colouring problem
are not equivalent to each other.

2.2 An application

The chromatic sum problem has a direct application in distributed resource allocation [1].
Assume the vertices represent processors which execute tasks, using resources. If two proces-
sors require the same resource, they cannot operate at the same time and one processor may
have to wait until the other accomplishes the task. Suppose the execution time is constant
for each job. Then a processor to which the jth colour is assigned waits for j − 1 time units
to receive the resources. In order to minimise the total waiting time of the system, one
may need to find the optimal colour assignment, which gives the chromatic sum, when the
colours are labelled from 0 to k − 1. It is straightforward to see that a relabelling from 1 to
k with a shift of 1 for every vertex does not alter the optimal colour assignment. Thus, this
application of resource allocation is equivalent to the chromatic sum problem.

In a more realistic message passing setting, the assumption that each task requires a
constant time can be lifted. This results in a slightly different problem; and it has been the
motivation for VLSI design [30]. Also several other problems were derived from the chro-
matic sum problem, such as the drinking philosophers problem [8], optimum cost chromatic
partition problem [18] and sum multi-colouring problem [2].
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3 QUBO Formulation

In order to restate the chromatic sum problem in a D-Wave feasible format, it is important
to convert it to a QUBO problem. However, not all QUBOs are efficiently solvable by the
D-Wave computer. Therefore, the conversion to final QUBO is a non-trivial task, in which
the slack variables must be avoided and sparsity conditions must be paid attention. On the
other hand, formulating the chromatic sum problem as a binary optimisation problem is
straightforward. Thus, we first write it as a Binary Integer Programming (BIP) problem,
with the intention of converting it to a QUBO problem of the required format.

3.1 BIP formulation

Given a graph G = (V,E) on n vertices such that V = {v0, v1, . . . , vn−1} and k colours
(χ(G) ≤ k ≤ |V |), we define the binary variable xi,j where 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ k, as
follows.

xi,j =

{
1 if vertex i is assigned colour j,
0 otherwise.

Thus, we define a binary vector x ∈ Znk
2 of decision variables for our formulation. It is

straightforward to see that the function to be minimised can be written as

G(x) =
n−1∑
i=0

k∑
j=1

jxi,j, (1)

subject to the constraints,

k∑
j=1

xi,j = 1 for all i ∈ {0, 1, . . . , n− 1}, (2)

and
xi1,j + xi2,j ≤ 1 for all (vi1 , vi2) ∈ E. (3)

The constraint given by Equation (2) guarantees that each vertex is assigned a unique colour.
The condition of legality of the colouring is imposed as the constraint in Equation (3). This
BIP formulation is very similar to that of the standard chromatic index problem, and it has
been presented previously in [32].

3.2 QUBO formulation

Motivated from the BIP formulation, we now formulate a D-Wave feasible QUBO for the
chromatic sum problem. Although there is a generic conversion of BIP into QUBO, we do
not adopt this method, as including slack variables or redundant decision variables is proven
to affect the optimality of D-Wave solutions [5].
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QUBO is an NP–hard mathematical problem of minimising a quadratic objective func-
tion xTQx, where x = (x, x, . . . , xn−) is a vector of binary variables and Q is a diagonal
symmetric matrix. In this work, all QUBOs considered are of the following form.

x∗ = min
x

∑
xiQ(i,j)xj,where xi, xj ∈ {0,1}. (4)

Now we state the QUBO objective function to be minimised in the chromatic sum prob-
lem.

F (x) =
n−1∑
i=0

k∑
j=1

jx2i,j + A (P1(x) + P2(x)) (5)

where,

P1(x) =
n−1∑
i=0

(
1−

k∑
j=1

xi,j

)2

(6)

and

P2(x) =
∑

(i1,i2)∈E

k∑
j=1

xi1,jxi2,j. (7)

Once the optimal solution of the objective function is obtained, the chromatic sum is given
by F (x∗) and the respective optimal colour assignment by x∗.

The term
∑n−1

i=0

∑k
j=1 jx

2
i,j in the objective function sums up the numbers used for colour-

ing V while P1 and P2 serve as a penalties. This summation term is a simply the quadratic
version of the linear objective function (Equation 1) in the BIP formulation in Section 3.1,
since for all variables xi ∈ {0, 1} we have xi = x2i . The term P1 penalises if some vertex
is coloured by more than one colour or not coloured by any as follows: If some vertex i in
V is assigned with more than one colour, we have

∑k
j=1 xi,j > 1, thus 1 −

∑k
j=1 xi,j 6= 0.

Similarly, if a vertex is not coloured then also 1−
∑k

j=1 xi,j 6= 0. Last term P2 in the QUBO
objective function penalises whenever the colouring is illegal. That is, for any pair of vertices
(u, v) ∈ E, if they share the same colour j, we have xu,j = xv,j = 1. Since all variables are
binary, xu,jxv,j > 0. A penalty scalar A is finally applied to P1 and P2, according to the fact
that A ≥ n is sufficient for this formulation to be correct.

3.3 Proof of correctness

Now we establish the precise relation between the chromatic sum problem and our QUBO
problem.

Given a variable assignment x for the QUBO, it is possible to define the corresponding
relation cx : V → N as cx(vi) = j if and only if xi,j = 1. This becomes a legal colour scheme
of vertices due to the constraints in the formulations. Once the optimal variable assignment
for F (x) is done, we get the corresponding colour scheme with the chromatic sum. In order
to prove this, we first need to show that the penalties in Equation (6) and Equation (7)
ensure a legal vertex colouring of the graph.
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Lemma 1. cx is a legal vertex colouring if and only if P1(x) = P2(x) = 0.

Proof. Suppose the relation cx : V → N is a legal vertex colouring. Then it is well defined
and therefore for each vi ∈ V , there exists a unique j ∈ N such that cx(vi) = j. That is,
given i ∈ {0, 1, . . . , n − 1}, there is one and only one j satisfying cx(vi) = j or equivalently
xi,j = 1. Therefore, for each i ∈ {0, 1, . . . , n − 1}, 1 −

∑k
j=1 xi,j = 1 − 1 = 0. Therefore,

P1(x) = 0. Secondly, since cx is a legal vertex colouring, for all i1, i2 ∈ {0, 1, . . . , n − 1}, if
(vi1 , vi2) ∈ E then cx(vi1) 6= cx(vi2). That is, given some j, not both cx(vi1) and cx(vi2) equal
to j. This implies xi1,j = 0 or xi2,j = 0. From Equation (7) it follows that P2(x) = 0.

Now suppose cx : V → N is not a legal vertex colouring. Then it is not well-defined
or it assigns the same colour to some pair of adjacent vertices. Considering the case it is
not well-defined, there exists some i ∈ {0, 1, . . . , n − 1} and j1, j2 ∈ N such that xi,j1 =

xi,j2 = 1. That is, 1 −
∑k

j=1 xi,j 6= 0, which implies P1(x) 6= 0. On the other hand, if cx
assigns the same natural number to some pair of adjacent vertices, then there exists some
i1, i2 ∈ {0, 1, . . . , n− 1} and j ∈ N such that xi1,j = xi2,j = 1, making P2(x) 6= 0.

Theorem 2. x∗ is an optimal variable assignment of the objective function F (x) if and only
if cx∗ is a legal colouring of vertices such that F (x∗) = Σ(G).

Proof. First suppose that cx∗ is a legal colouring of vertices with F (x∗) = Σ(G). From
Lemma 1, P1(x

∗) = P2(x
∗) = 0. Then, from Equation (5) it follows that

F (x∗) =
n−1∑
i=0

k∑
j=1

jx∗i,j
2 .

Therefore, Σ(G) =
∑n−1

i=0

∑k
j=1 jx

∗
i,j

2. Assume x∗∗ to be an optimal variable assignment
of the objective function F (x). Then, by the definition of the chromatic sum, Σ(G) ≤∑n−1

i=0

∑k
j=1 jx

∗∗
i,j

2. Combining these relations together, we have F (x∗∗) =
∑n−1

i=0

∑k
j=1 jx

∗∗
i,j

2 ≥
Σ(G) = F (x∗). Therefore, x∗ is an optimal variable assignment.

Now consider the case where cx∗ is not a legal colouring of vertices. Also consider the
colouring cy∗ , which corresponds to the chromatic sum of the graph. Since cy∗ must be
a legal colouring, by Lemma 1, P1(y

∗) + P2(y
∗) = 0. Further, by Equation (5), F (y∗) =∑n−1

i=0

∑k
j=1 jy

∗
i,j

2 = Σ(G). Now, we consider a step-by-step procedure of forming the colour-
ing cx∗ from cy∗ . That is, at each step, we consider a single vertex of the graph coloured
according to cy∗ and check its colour in cx∗ . If it is different, we change the colour of the
vertex; keep it unchanged otherwise. Further, at each step, we update the corresponding
objective functions in Equation (5).

If the colour of the relevant vertex is changed at some step of this process, the corre-
sponding term

∑n−1
i=0

∑k
j=1 jy

∗
i,j

2 in the objective function can be reduced by at most n− 1.
On the other hand, this increases the term P1(y

∗) + P2(y
∗) by at least 1. Recall we select

A ≥ n, the term A(P1(y
∗)+P2(y

∗)) is increased by at least n due to this. Thus, the objective
function in Equation (5) is increased at least by 1, if the colour of the vertex is changed at
a single step. Applying this repeatedly, we end up with the colouring cx∗ and the updated
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Table 1: Chromatic sum QUBO matrix for the tree T of Figure 2.1 with k = 3.
variables x0,1 x0,2 x0,3 x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3 x4,1 x4,2 x4,3 x5,1 x5,2 x5,3 x6,1 x6,2 x6,3 x7,1 x7,2 x7,3
x0,1 -7 8 8 8 0 0 8 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0
x0,2 8 -6 8 0 8 0 0 8 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0
x0,3 8 8 -5 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0
x1,1 8 0 0 -7 8 8 0 0 0 0 0 0 0 0 0 8 0 0 8 0 0 8 0 0
x1,2 0 8 0 8 -6 8 0 0 0 0 0 0 0 0 0 0 8 0 0 8 0 0 8 0
x1,3 0 0 8 8 8 -5 0 0 0 0 0 0 0 0 0 0 0 8 0 0 8 0 0 8
x2,1 8 0 0 0 0 0 -7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2,2 0 8 0 0 0 0 8 -6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2,3 0 0 8 0 0 0 8 8 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3,1 8 0 0 0 0 0 0 0 0 -7 8 8 0 0 0 0 0 0 0 0 0 0 0 0
x3,2 0 8 0 0 0 0 0 0 0 8 -6 8 0 0 0 0 0 0 0 0 0 0 0 0
x3,3 0 0 8 0 0 0 0 0 0 8 8 -5 0 0 0 0 0 0 0 0 0 0 0 0
x4,1 8 0 0 0 0 0 0 0 0 0 0 0 -7 8 8 0 0 0 0 0 0 0 0 0
x4,2 0 8 0 0 0 0 0 0 0 0 0 0 8 -6 8 0 0 0 0 0 0 0 0 0
x4,3 0 0 8 0 0 0 0 0 0 0 0 0 8 8 -5 0 0 0 0 0 0 0 0 0
x5,1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 -7 8 8 0 0 0 0 0 0
x5,2 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 8 -6 8 0 0 0 0 0 0
x5,3 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 8 8 -5 0 0 0 0 0 0
x6,1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 8 8 0 0 0
x6,2 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 -6 8 0 0 0
x6,3 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 8 8 -5 0 0 0
x7,1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 8 8
x7,2 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 -6 8
x7,3 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 -5

objective function equal to F (x∗), which is strictly greater than the original objective func-
tion F (y∗), since cx∗ is not a legal colouring of vertices. That is, F (x∗) > F (y∗), proving
the non-optimality of x∗.

Further, if cx∗ is a legal colouring of vertices with F (x∗) 6= Σ(G), by definitions it follows
straight away that F (x∗) > Σ(G). Considering again the colouring cy∗ , which gives Σ(G),
non-optimality of x∗ is proven.

3.4 Example: the tree T revisited

Consider the example tree T in Figure 2.1. The vertex set of T is given by V = {0, 1, . . . , 7}
and the edge set by E = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 5), (1, 6),
(1, 7)}. As described in 3.2, all non-quadratic terms are removed, all constant terms are
ignored, and all linear terms are replaced by the squares of those terms. With the selection
A = 8, we compute the coefficients of the each quadratic term and generate the matrix form
in Table 1.

The variable assignment of our previous two solutions in Figure2.1:

xa = [0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

xb = [0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

Decoding xa gives a legal colouring cxa = {(0, 2), (1, 3), (2, 1), (3, 1), (4, 1), (5, 1),
(6, 1), (7, 1)} with the optimal solution

∑
cxa (v) = 11 and xb gives a valid colouring cxb

=
{(0, 2), (1, 1), (2, 1), (3, 1), (4, 1), (5, 2), (6, 2), (7, 2)} with the summation

∑
cxb (v) = 12.
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4 Computational Results

Given a QUBO, the binary decision variable xi can be directly transformed into a spin de-
cision variable si, through the simple transformation si = 1 − 2xi. Thus, the spin variable
si takes the value 1 or −1 as xi is 0 or 1. These spin variables form a physical Hamiltonian,
which is the key ingredient in D-Wave quantum computer [28]. Thus, we say the decision
variable xi represents the ith logical qubit of the problem. Considering the physical pro-
cess, the Hamiltonian can be stated in the form of interactions between the ith and jth
qubits of the physical system which represents the relation between xi and xj of the original
problem. In adiabatic computing, an initial Hamiltonian which is easy to prepare under-
goes a sufficiently slow process to become the problem Hamiltonian mentioned above, giving
the solutions of the problem. The D-Wave machine is a hardware heuristic which uses a
metaheuristic resembling this adiabatic process.

We tested our QUBO formulation of the chromatic on a D-Wave quantum computer for
several graphs. We used a D-Wave 2X computer which consisted of 1098 active physical
qubits. The physical qubit architecture of D-Wave 2X computer is a Chimera graph, which
makes an embedding on the hardware for our QUBO instance a necessity, before we run any
QUBO instance on it.

We experimented 14K trials on each graph with and without D-Wave post-processing
optimisation. The experimental results are summarised in Table 2. Columns order and size
indicate the number of vertices and edges of graphs. The column chromatic number indicates
the smallest number of colours needed for a valid vertex colouring and selection of k is the k
for our QUBO formulation of chromatic sum in Equation 5. Results in Table 2 are generated
by assigning k = χ(G) + 2. The column logical qubits contains the number of variables of
the QUBO formulation while physical qubits gives the number of actual qubits working on
the D-Wave computer after embedding. The column embedding max chain is the maximum
number of physical qubits to which a single logical qubit is mapped. The next two columns
minimum without postproc optimise and minimum postproc optimise show the minimal sum
of colouring from the 14K trials with and without post-processing and minimum D-Wave
takes the minimum of them. In these three columns, if a cell is filled by a dash, it means no
feasible colouring is ever found out of the 14K trials. The cells highlighted with red colour
are the minimum sums of colours D-Wave found which provided non-optimal answers.

In order to verify the results obtained by D-Wave computer, we generated solutions for
the chromatic sum problem in a conventional setting as well. Accordingly, we solved the
BIP formulation in Section 3.1 using the CPLEX BIP solver [17]. Further, we generated
solutions to our QUBOs using CPLEX. The column optimal answer in Table 2 corresponds
to these computational results in a conventional setting. Our CPLEX QUBO solver takes
QUBO instances generated in Appendix A and computes the results. The programs used to
submit, solve and verify on the D-Wave machine are given in Appendices B and C. The solver
programs written in C++ using CPLEX concert technology are available in Appendices D
and E.

For example, consider the tree T in Figure 2.1, with the selection k = 4. This graph with
8 vertices and 7 edges is listed as the last item in Table 2. From Figure 2.1 we see that the
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graph is colourable by 2 colours and its chromatic index χ(T ) = 2. Our selection for k is
χ(T ) + 2 = 4. According to the relevant QUBO formulation, the problem contains 32 binary
variables (Table 1 gives the QUBO matrix for k = 3). Accordingly, in order to form the
physical Hamiltonian for the adiabatic quantum computation in the D-Wave architecture,
we need 32 logical qubits. Due to embedding considerations, the D-Wave topology requires
79 physical qubits in its hardware. With and without post processing optimisation option,
the D-Wave gives the expected answer 11, which is given in respective columns. A classically
verified optimal answer is given in the last column.

5 Discussion

The NP–complete problem of the chromatic sums of graphs has been addressed previously in
several computational frameworks, in particular using different heuristics. Examples include
greedy algorithms [27], ant-colony optimisation [10], tabu search [4] and local search [16] for
the chromatic sum problem. Though the heuristic approach has been improved significantly
by recent authors, experimental results indicate that it could still be inefficient for several
problem instances. Motivated from the fact that the metaheuristic approach of D-Wave has
provided efficient and accurate solutions for many instances of graph theoretic problems,
we experimented with the chromatic sum problem in that architecture and derived efficient
results. Accordingly, we presented the chromatic sum of graphs, its QUBO formulation and
computational solutions for QUBO, computed by a D-Wave 2X computer.

Recall the BIP formulation can be directly converted into a QUBO problem by a generic
quadratic transformation. A QUBO formulation for the chromatic sum problem derived from
the relevant BIP formulations were previously experimented in [10]. The authors have used
genetic algorithms in their approach and reported that the CPU time to reach the smallest
sum coloring is less than one minute for several instances. A similar quadratic formulation
has been solved using a path relinking algorithm in [36]. However, in our setting, a quadratic
transformation of the BIP formulation does not seem to be very useful, as the number of
variables or the required logical qubits grows rapidly. A similar behaviour was noted also for
the BIP formulation of the broadcast time problem [6]. The computational results indicate
that although path relinking methods produce efficient answers for several instances, in
general, it could take a significant time. The D-Wave solutions produced through our QUBO
formulations were all efficient using only O(nk) qubits, and with significant accuracy.

There are several graphs for which non-optimal solutions were generated. All these
graphs require a higher number of physical qubits, though the number of required logical
qubits was optimised by our QUBO formulation. More precisely, embedding max chain which
corresponds to the maximum number of physical qubits to which a single logical qubit is
mapped were above 10 for all these instances. This non-optimality could be considered
a consequence of a non-optimal embedding. Previous works have reported a performance
improvement due to reduced embedding max chain for other graph problems over D-Wave
architecture such as graph covering [9] and graph isomorphism [7]. Our results too indicate
a similar behaviour. It would be an interesting topic for further study to find an optimal
embedding for the chromatic sum problem instances.
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Table 2: Results for some graphs families for the chromatic sum problem.

Graph Order Size
Chromatic
Number

Selection
of k

Logical
Qubits

Physical
Qubits

Embedding
Max Chain

Minimum Without
PostProc Optimise

Minimum
PostProc Optimise

Minimum
D-Wave

Optimal
Answer

BidiakisCube 12 18 3 5 60 392 11 28 23 23 21
Bull 5 5 3 5 25 85 4 8 8 8 8

Butterfly 5 6 3 5 25 91 5 9 9 9 9
C4 4 4 2 4 16 40 3 6 6 6 6
C5 5 5 3 5 25 81 5 9 9 9 9
C6 6 6 2 4 24 76 4 9 9 9 9
C7 7 7 3 5 35 168 6 12 12 12 12
C8 8 8 2 4 32 94 4 12 12 12 12
C9 9 9 3 5 45 164 5 15 15 15 15
C10 10 10 2 4 40 117 4 15 15 15 15
C11 11 11 3 5 55 209 7 20 18 18 18
C12 12 12 2 4 48 142 4 18 18 18 18

Diamond 4 5 3 5 20 90 6 7 7 7 7
Dinneen 9 21 3 5 45 378 14 21 19 19 18

Dodecahedral 20 30 3 5 100 660 11 49 42 42 38
Durer 12 18 3 5 60 342 9 27 24 24 24
Frucht 12 18 3 5 60 302 7 25 24 24 22

GoldnerHarary 11 27 4 6 66 660 21 - 30 30 22
Grid2x3 6 7 2 4 24 76 4 9 9 9 9
Grid3x3 9 12 2 4 36 97 4 13 13 13 13
Grid3x4 12 17 2 4 48 199 6 20 18 18 18
Grid4x4 16 24 2 4 64 333 11 31 24 24 24
Grid4x5 20 31 2 4 80 430 17 38 32 32 30
Grotzsch 11 20 4 6 66 729 19 27 28 27 21
Heawood 14 21 2 4 56 388 12 25 23 23 21
Herschel 11 18 2 4 44 216 7 16 16 16 16

Hexahedral 8 12 2 4 32 129 8 12 12 12 12
Hoffman 16 32 2 4 64 609 13 - 29 29 24
House 5 6 3 5 25 88 5 9 9 9 9

K2 2 1 2 4 8 14 2 3 3 3 3
K3 3 3 3 5 15 49 4 6 6 6 6
K4 4 6 4 6 24 134 8 10 10 10 10
K5 5 10 5 7 35 354 14 15 15 15 15
K6 6 15 6 8 48 592 17 - 21 21 21

K2,3 5 6 2 4 20 73 5 7 7 7 7
K3,3 6 9 2 4 24 107 7 9 9 9 9
K3,4 7 12 2 4 28 135 6 11 10 10 10
K4,4 8 16 2 4 32 173 8 12 12 12 12
K4,5 9 20 2 4 36 247 9 15 13 13 13
K2x1 3 2 2 4 12 21 2 4 4 4 4
K5x5 10 25 2 4 40 353 11 - 16 16 15
K5x6 11 30 2 4 44 418 14 - 19 19 16
K6x6 12 36 2 4 48 437 12 - 24 24 18

Krackhardt 10 18 4 6 60 416 12 29 23 23 20
Octahedral 6 12 3 5 30 195 8 12 12 12 12

Pappus 18 27 2 4 72 472 11 39 29 29 27
Petersen 10 15 3 5 50 303 10 20 19 19 19

Q3 8 12 2 4 32 138 6 12 12 12 12
Q4 16 32 2 4 64 601 13 - 30 30 24
S2 3 2 2 4 12 22 2 4 4 4 4
S3 4 3 2 4 16 34 3 5 5 5 5
S4 5 4 2 4 20 48 4 6 6 6 6
S5 6 5 2 4 24 66 5 7 7 7 7
S6 7 6 2 4 28 99 9 8 8 8 8
S7 8 7 2 4 32 84 6 11 9 9 9
S8 9 8 2 4 36 115 8 15 10 10 10
S9 10 9 2 4 40 122 9 18 11 11 11
S10 11 10 2 4 44 130 9 23 12 12 12

Sousselier 16 27 3 5 80 680 16 - 36 36 30
Tietze 12 18 3 5 60 427 12 28 22 22 22

Wagner 8 12 3 5 40 232 8 15 15 15 15
Tree T 8 7 2 4 32 79 4 11 11 11 11
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Tamir. On chromatic sums and distributed resource allocation. Information and Com-
putation, 140(2):183–202, 1998.
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A C++ program to generate QUBO

1 // QUBO formulat ion f o r chromatic sum problem
// usage : $ . / chromatic sum qubo k < graph . a l i s t < graph . d . out

3 // k i s s e t to be same as graph s i z e n i f not g iven by argument
#inc lude <iostream>

5 #inc lude <fstream>
#inc lude <u t i l i t y >

7 #inc lude < l i s t >
#inc lude <sstream>

9 #inc lude <s t r i ng>
#inc lude <s t d l i b . h>

11

us ing namespace std ;
13 void read graph ( const i n t n , l i s t <pair<int , int> > &ad j a c e n t l i s t ) ;

void makeQuboMatrix ( double ∗∗Q, i n t n , i n t k , l i s t <pair<int , int> >
a d j a c e n t l i s t ) ;

15 void pr intMatr ix ( double ∗∗Q, const i n t n) ;

17 i n t main ( i n t argc , char ∗argv [ ] )
{

19 i n t n=0,k=0;
double ∗∗Q;

21 l i s t <pair<int , int> > a d j a c e n t l i s t ;
c in>>n ;

23 i f ( argc < 2) cout << ”Correct usage : ” << argv [ 0 ] <<” <f i l ename>” << endl
;
e l s e i f ( argc == 2) k = ( i n t ) s t r t o l ( argv [ 1 ] ,NULL, 1 0 ) ;

25 e l s e k = n ;
read graph (n , a d j a c e n t l i s t ) ;

27 const i n t N = n∗k ;
Q = new double ∗ [N ] ;

29 f o r ( i n t i =0; i<N; i++)
{

31 Q[ i ] = new double [N ] ;
f o r ( i n t j =0; j<N; j++) Q[ i ] [ j ] = 0 ;

33 }

35 makeQuboMatrix (Q, n , k , a d j a c e n t l i s t ) ;
cout<< n∗k<<” ”<<k<<endl ;

37 pr intMatr ix (Q,N) ;
f o r ( i n t i =0; i<N; i++)

39 de l e t e [ ] Q[ i ] ;
d e l e t e [ ] Q;

41 re turn 0 ;
}

43

void read graph ( const i n t n , l i s t <pair<int , int> > &ad j a c e n t l i s t )
45 {

s t r i n g l i n e ;
47 i n t l ineCnt=−1;

f o r ( i n t i =0; i<n+1; i++)
49 {
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std : : g e t l i n e ( cin , l i n e ) ;
51 i s t r i n g s t r e am i s s ( l i n e ) ;

i n t a ;
53 whi le ( i s s >> a ) a d j a c e n t l i s t . push back ( make pair ( l ineCnt , a ) ) ;

l ineCnt++;
55 }
}

57

void makeQuboMatrix ( double ∗∗Q, i n t n , i n t k , l i s t <pair<int , int> >
a d j a c e n t l i s t )

59 {
const i n t pena l ty = n ;

61

// f ( x ) = sum j ∗x [ i , j ]
63 f o r ( i n t i =0; i<n ; i++)

{
65 f o r ( i n t j =0; j<k ; j++)

{
67 i n t idx = i ∗k+j ;

Q[ idx ] [ idx ] = Q[ idx ] [ idx ] + ( j +1) ;
69 }

}
71 //p1 (x ) = sum( i ) (1− sum( j ) x [ i , j ] ) ˆ2

f o r ( i n t i =0; i<n ; i++){
73 f o r ( i n t j =0; j<k ; j++){

f o r ( i n t l =0; l<k ; l++){
75 i f ( j != l ) {

i n t idx1 = i ∗k+j ;
77 i n t idx2 = i ∗k+l ;

Q[ idx1 ] [ idx2 ] += penal ty ;
79 }

e l s e {
81 i n t idx = i ∗k+j ;

Q[ idx ] [ idx ] = Q[ idx ] [ idx ] − pena l ty ;
83 }

}
85 }

}
87

//p2 (x ) = sum(E(G) )sum( j ) x [ u , j ]∗ x [ v , j ]
89 l i s t <pair<int , int> > : : c o n s t i t e r a t o r i t e r a t o r ;

91 f o r ( i t e r a t o r = a d j a c e n t l i s t . begin ( ) ; i t e r a t o r != a d j a c e n t l i s t . end ( ) ; ++
i t e r a t o r ) {

i n t u = (∗ i t e r a t o r ) . f i r s t ;
93 i n t v = (∗ i t e r a t o r ) . second ;

f o r ( i n t j =0; j<k ; j++) {
95 Q[ u∗k+j ] [ v∗k+j ] += penal ty ;

}
97 }
}

99

void pr intMatr ix ( double ∗∗Q, const i n t n)
101 {
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f o r ( i n t i =0; i<n ; i++){
103 f o r ( i n t j =0; j<n ; j++) cout<< Q[ i ] [ j ]<<” ” ;

cout <<endl ;
105 }
}

Listing 1: chromaticsum qubo.cpp

B Python program to solve QUBO on D-Wave

#!/ usr /bin /env python
2 # Chromatic Sum QUBO ( with embedding ) −> I s i n g −> DWave

4 import sys , time , math , t raceback

6 from dwave sapi2 . remote import RemoteConnection
from dwave sapi2 . u t i l import get hardware adjacency

8 from dwave sapi2 . embedding import embed problem , unembed answer
from dwave sapi2 . u t i l import qubo to i s i ng , i s i n g t o qubo

10 from dwave sapi2 . core import s o l v e i s i n g

12 from sys import e x c i n f o

14 # coup le r s t r e i n g t h f o r embedded qub i t s o f same va r i ab l e

16 s , s2 =1.0 ,1 .0
p r i n t ’Embed s c a l e=’ , s , s2

18 a s s e r t 0 <= s <= 1

20 # read input

22 l i n e=sys . s td in . r e ad l i n e ( ) . s t r i p ( ) . s p l i t ( )
n=in t ( l i n e [ 0 ] )

24

Q = {}
26 f o r i in range (n) :

l i n e=sys . s td in . r e ad l i n e ( ) . s t r i p ( ) . s p l i t ( )
28 f o r j in range (n) :

t = f l o a t ( l i n e [ j ] )
30 i f j>=i and t !=0: Q[ ( i , j ) ]= t

32 (H, J , i s i n g o f f s e t ) = qubo t o i s i n g (Q)

34 # sc a l e by maxV

36 maxH=0.0
i f l en (H) : maxH=max( abs (min (H) ) , abs (max(H) ) )

38 maxJ=max( abs (min ( J . va lue s ( ) ) ) , abs (max( J . va lue s ( ) ) ) )
maxV=max(maxH,maxJ)

40 f o r i in range (n) :
i f l en (H)> i :
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42 H[ i ]= s2 ∗H[ i ] /maxV
f o r j in range (n) :

44 i f j>=i and ( i , j ) in J :
J [ ( i , j ) ]= s2 ∗J [ ( i , j ) ] /maxV

46

embedding=eva l ( sys . s td in . r e ad l i n e ( ) )
48 pr in t ’ embedding=’ , embedding

qub i t s = sum( l en ( embed) f o r embed in embedding )
50 pr in t ’ Phys i ca l qub i t s used= %s ’ % qub i t s

52 # crea t e a remote connect ion us ing u r l and token and connect to s o l v e r

54 u r l = ”dwave s i t e ”
token = ” s e c r e t ”

56 so lver name = ”DW2X”

58 pr in t ( ’ Attempting to connect to network . . . ’ )
t ry :

60 remote connect ion = RemoteConnection ( ur l , token )
s o l v e r = remote connect ion . g e t s o l v e r ( so lver name )

62 except :
p r i n t ( ’ Error : %s %s %s ’ % sys . e x c i n f o ( ) [ 0 : 3 ] )

64 t raceback . p r i n t e x c ( )

66 A = get hardware adjacency ( s o l v e r )

68 # Embed problem in to hardware

70 ( h0 , j0 , jc , new emb) = embed problem (H, J , embedding , A)
h1= [ va l ∗ s f o r va l in h0 ]

72 j 1 = {}
f o r ( key , va l ) in j0 . i t e r i t em s ( ) :

74 j 1 [ key ]= va l ∗ s
j 1 . update ( j c )

76 a s s e r t new emb==embedding
(Q, o f f s e t ) = i s i n g t o qubo (h1 , j 1 )

78

# c a l l the s o l v e r
80

annealT , progT , readT=20 ,100 ,100
82 pr in t ’ annealT=’ , annealT , ’ progT=’ , progT , ’ readT=’ , readT

r e s u l t = s o l v e i s i n g ( so lve r , h1 , j1 , num reads=10000 , annea l ing t ime=annealT ,
84 programming thermal izat ion=progT , r eadout the rma l i z a t i on=readT ,

po s tp roc e s s=’ opt imiza t i on ’ , num sp in r eve r sa l t r an s f o rms=20)
86 pr in t ’ r e s u l t : ’ , r e s u l t

88 newresu l t = unembed answer ( r e s u l t [ ’ s o l u t i o n s ’ ] , new emb , broken cha ins=’ vote ’ ,
h=H, j=J )

p r in t ’ newresu l t : ’ , newresu l t

Listing 2: dwave preembed.py
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C C++ program to verify solutions from D-Wave

// C++ program f o r check ing dwave answers
2 // usage : $ . / checkCSP graph . a l i s t < graph . d . out
#inc lude <iostream>

4 #inc lude <fstream>
#inc lude < l i s t >

6 #inc lude <sstream>
#inc lude <s t r i ng>

8 #inc lude <vector>
us ing namespace std ;

10 void read graph ( s t r i n g f i l ename , i n t &n , l i s t <pair<int , int> > &ad j a c e n t l i s t )
;

vector<i n t∗> ProcDwaveOutput ( const i n t n , i n t &k) ;
12 void Ve r i f y s o l u t i o n ( vector<i n t∗> s o l u t i on s , i n t n , i n t k , l i s t <pair<int , int>

> a d j a c e n t l i s t ) ;
void f i nd and r ep l a c e ( s t r i n g& source , s t r i n g const& f ind , s t r i n g const&

r ep l a c e ) ;
14

i n t main ( i n t argc , char ∗argv [ ] )
16 {

i n t n=0,k=0;
18 l i s t <pair<int , int> > a d j a c e n t l i s t ;

i f ( argc < 2) re turn 0 ;
20 e l s e i f ( argc==2)

read graph ( argv [ 1 ] , n , a d j a c e n t l i s t ) ;
22

vector<i n t∗> s o l u t i o n s = ProcDwaveOutput (n , k ) ;
24 Ve r i f y s o l u t i o n ( s o l u t i on s , n , k , a d j a c e n t l i s t ) ;

r e turn 0 ;
26 }

28 void read graph ( s t r i n g f i l ename , i n t &n , l i s t <pair<int , int> > &ad j a c e n t l i s t )
{

30 i f s t r e am i n f i l e ( f i l ename ) ;
i f ( i n f i l e . i s open ( )==0) e x i t (0 ) ;

32 i n f i l e >> n ;
s t r i n g l i n e ;

34 i n t l ineCnt=−1;
f o r ( i n t i =0; i<n+1; i++)

36 {
std : : g e t l i n e ( i n f i l e , l i n e ) ;

38 i s t r i n g s t r e am i s s ( l i n e ) ;
i n t a ;

40 whi le ( i s s >> a ) a d j a c e n t l i s t . push back ( make pair ( l ineCnt , a ) ) ;
l ineCnt++;

42 }
}

44

vector<i n t∗> ProcDwaveOutput ( const i n t n , i n t &k) {
46 s t r i n g l i n e ;

vector<i n t∗> s o l u t i o n s ;
48 whi le ( std : : g e t l i n e ( cin , l i n e ) )
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{
50 s i z e t kpos = l i n e . f i nd ( ”k=” ) ;

i f ( kpos != s t r i n g : : npos && l i n e . l ength ( )>=kpos+5)
52 {

s t r i n g ks = l i n e . subs t r ( kpos , l i n e . l ength ( )−kpos ) ;
54 ks = ks . subs t r ( ks . f i nd ( ” , ” )+1, ks . f i nd ( ” ) ” )−ks . f i nd ( ” , ” )−1) ;

k = a t o i ( ks . c s t r ( ) ) ;
56 }

s i z e t rpos = l i n e . f i nd ( ” newresu l t : ” ) ;
58 i f ( rpos != s t r i n g : : npos ) {

l i n e = l i n e . subs t r ( l i n e . f i nd ( ” [ ” )+1) ;
60 f i n d and r ep l a c e ( l i n e , ”−1” , ”0” ) ;

whi l e (1 ) {
62 s i z e t pf = l i n e . f i nd ( ” [ ” ) , pe = l i n e . f i nd ( ” ] ” ) ;

i f ( pf != s t r i n g : : npos && pe!= s t r i n g : : npos )
64 {

s t r i n g s = l i n e . subs t r ( pf+1,pe−pf−1) ;
66 l i n e = l i n e . subs t r ( pe+1) ;

s o l u t i o n s . push back ( new in t [ n∗k ] ) ;
68 f o r ( i n t i =0; i<n∗k ; i++)s o l u t i o n s . back ( ) [ i ] = s [ i ∗3]− ’ 0 ’ ;

}
70 e l s e i f ( pf==s t r i n g : : npos ) break ;

}
72 }

}
74 re turn s o l u t i o n s ;
}

76

void Ve r i f y s o l u t i o n ( vector<i n t∗> s o l u t i on s , i n t n , i n t k , l i s t <pair<int , int>
> a d j a c e n t l i s t ) {

78 const i n t N =n ;
i n t min=−1, gColoringNumber=0;

80 f o r ( i n t cnt=0; cnt<s o l u t i o n s . s i z e ( ) ; cnt++)
{

82 bool l e g a l=true ;
i n t ∗x= s o l u t i o n s [ cnt ] ;

84 i n t c [N] , lColoringNumber=0;

86 // check i f every ver tex i s co l o r ed by exact one c o l o r i n g number
f o r ( i n t i =0; i<n ; i++)

88 {
i n t sumj=0;

90 f o r ( i n t j =0; j<k ; j++)
{

92 sumj+=x [ i ∗k+j ] ;
i f ( x [ i ∗k+j ] == 1)

94 {
c [ i ] = j +1;

96 i f ( lColoringNumber < c [ i ] ) lColoringNumber=c [ i ] ;
}

98 }
i f ( sumj !=1 ) { l e g a l = f a l s e ; break ;}

100 }
i f ( l e g a l==f a l s e ) cont inue ;
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102

// check i f each pa i r o f a j a c ent v e r t i c e s are co l o r ed by d i f f e r e n t number
104 l i s t <pair<int , int> > : : c o n s t i t e r a t o r i t e r a t o r ;

f o r ( i t e r a t o r = a d j a c e n t l i s t . begin ( ) ; i t e r a t o r != a d j a c e n t l i s t . end ( ) ; ++
i t e r a t o r ) {

106 i n t u = (∗ i t e r a t o r ) . f i r s t , v = (∗ i t e r a t o r ) . second ; ;
i f ( c [ u ] == c [ v ] ) { l e g a l = f a l s e ; break ;}

108 }

110 i f ( l e g a l==f a l s e ) cont inue ;
i n t opt imal=0;

112 f o r ( i n t i = 0 ; i < n ; i++)
f o r ( i n t j = 0 ; j < k ; j++) optimal = optimal + x [ i ∗k+j ] ∗ ( j +1) ;

114 i f (min==−1) {min = optimal ; gColoringNumber = lColoringNumber ;}
e l s e i f (min>optimal ) {min = optimal ; i f ( gColoringNumber > lColoringNumber )
gColoringNumber = lColoringNumber ;}

116 }

118 i f ( min!=−1) cout<<”Minimal sum of c o l o r i n g found : ”<<min<<endl<<”Number o f
c o l o r userd : ”<<gColoringNumber<<endl ;

e l s e cout<<”Optimize f a i l e d . ”<<endl ;
120 }

122 void f i nd and r ep l a c e ( s t r i n g& source , s t r i n g const& f ind , s t r i n g const&
r ep l a c e )

{
124 f o r ( s t r i n g : : s i z e t y p e i = 0 ; ( i = source . f i nd ( f ind , i ) ) != s t r i n g : : npos ; )

{
126 source . r ep l a c e ( i , f i nd . l ength ( ) , r ep l a c e ) ;

i += rep l a c e . l ength ( ) ;
128 }
}

Listing 3: checkCSP.cpp

D CPLEX BIP Solver for Chromatic Sum Problem

1 // BIP s o l v e r f o r Chromatic Sum problem
// Usage : $ . / CSP BIP Solver k < graph . a l i s t

3 // k i s a s s i gned to n i f not g iven by argument
#inc lude < i l c p l e x / i l o c p l e x . h>

5 #inc lude <iostream>
#inc lude <fstream>

7 #inc lude < l i s t >
#inc lude <sstream>

9 ILOSTLBEGIN
void read graph ( const i n t n , l i s t <pair<int , int> > &ad j a c e n t l i s t ) ;

11 i n t main ( i n t argc , char ∗∗ argv )
{

13 i n t n=0,k=0;
l i s t <pair<int , int> > a d j a c e n t l i s t ;
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15 cin>>n ;
i f ( argc == 2) k = ( i n t ) s t r t o l ( argv [ 1 ] ,NULL, 1 0 ) ;

17 e l s e k=n ;
read graph (n , a d j a c e n t l i s t ) ;

19 const i n t N = n∗k ;
I loEnv env ;

21 t ry {
I loModel model ( env ) ;

23 IloNumVarArray var ( env ) ;
I loRangeArray con ( env ) ;

25

f o r ( i n t i = 0 ; i < N; ++i )
27 {

char bu f f e r [ 1 0 ] ;
29 s p r i n t f ( bu f f e r , ”x%d” , i +1) ;

var . add ( IloNumVar ( env , 0 , 1 ,ILOBOOL, bu f f e r ) ) ;
31 }

33 I loExpr expr ( env ) ;
// f ( x ) = sum j ∗x [ i , j ]

35 f o r ( i n t i =0; i<n ; i++)
f o r ( i n t j =0; j<k ; j++)

37 {
i n t idx = i ∗k+j ;

39 expr += var [ idx ] ∗ ( j +1) ;
}

41 I l oOb j e c t i v e obj = I loMin imize ( env , expr ) ;

43 I loExprArray exp r con s t r s = IloExprArray ( env , n) ;
f o r ( i n t i =0; i<n ; i++){

45 exp r con s t r s [ i ] = I loExpr ( env ) ;
f o r ( i n t j =0; j<k ; j++){

47 i n t idx = i ∗k+j ;
e xp r con s t r s [ i ] += var [ idx ] ;

49 }
char bu f f e r [ 1 0 ] ;

51 s p r i n t f ( bu f f e r , ”c%d” , i +1) ;
con . add ( IloRange ( env , 1 , e xp r con s t r s [ i ] , 1 , bu f f e r ) ) ;

53 }

55 //p2 (x ) = sum(E(G) )sum( j ) x [ u , j ]+x [ v , j ]<=1
l i s t <pair<int , int> > : : c o n s t i t e r a t o r i t e r a t o r ;

57

f o r ( i t e r a t o r = a d j a c e n t l i s t . begin ( ) ; i t e r a t o r != a d j a c e n t l i s t . end ( )
; ++i t e r a t o r ) {

59 i n t u = (∗ i t e r a t o r ) . f i r s t ;
i n t v = (∗ i t e r a t o r ) . second ;

61 f o r ( i n t j =0; j<k ; j++) con . add ( var [ u∗k+j ]+var [ v∗k+j ]<=1) ;

63 }

65 model . add ( obj ) ;
model . add ( con ) ;

67 I l oCp lex cp lex (model ) ;
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cp l ex . exportModel ( ”CSP BIP Solver . lp ” ) ;
69 cp l ex . setOut ( env . getNul lStream ( ) ) ;

// Optimize the problem and obta in s o l u t i o n .
71 i f ( ! cp l ex . s o l v e ( ) ) {

env . e r r o r ( ) << ” Fa i l ed to opt imize LP” << endl ;
73 throw(−1) ;

}
75

IloNumArray va l s ( env ) ;
77 env . out ( ) << ” So lu t i on s t a tu s = ” << cp l ex . ge tSta tus ( ) << endl ;

env . out ( ) << ” So lu t i on value = ” << cp l ex . getObjValue ( ) << endl ;
79 cp l ex . getValues ( va l s , var ) ;

env . out ( ) << ”Values = ” << va l s << endl ;
81 }

catch ( I l oExcept ion& e ) {
83 c e r r << ”Concert except ion caught : ” << e << endl ;

}
85 catch ( . . . ) {

c e r r << ”Unknown except ion caught” << endl ;
87 }

env . end ( ) ;
89 re turn 0 ;
} // END main

91

void read graph ( const i n t n , l i s t <pair<int , int> > &ad j a c e n t l i s t )
93 {

s t r i n g l i n e ;
95 i n t l ineCnt=−1;

f o r ( i n t i =0; i<n+1; i++)
97 {

std : : g e t l i n e ( cin , l i n e ) ;
99 i s t r i n g s t r e am i s s ( l i n e ) ;

i n t a ;
101 whi le ( i s s >> a ) a d j a c e n t l i s t . push back ( make pair ( l ineCnt , a ) ) ;

l ineCnt++;
103 }
}

Listing 4: csp bipsolver cplex.cpp

E CPLEX QUBO Solver for Chromatic Sum Problem

// qubo s o l v e r takes a matrix with s i z e n and k as input and gene ra t e s a
optimal s o l u t i o n

2 // Usage : $ . / qubo < matrix . txt
#inc lude < i l c p l e x / i l o c p l e x . h>

4 ILOSTLBEGIN
void read qubo ( i n t &n , double ∗∗&Q) ;

6 i n t main ( i n t argc , char ∗∗ argv )
{

8 i n t n=0, k=0;
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double ∗∗Q;
10 c in >> n >>k ;

read qubo (n ,Q) ;
12

I loEnv env ;
14 t ry {

I loModel model ( env ) ;
16 IloNumVarArray var ( env ) ;

f o r ( i n t i = 0 ; i < n ; ++i ) var . add ( IloNumVar ( env , 0 , 1 ,ILOBOOL) ) ;
18 I loExpr expr ( env ) ;

f o r ( i n t i =0; i<n ; i++)
20 f o r ( i n t j =0; j< n ; j++)

expr += var [ i ]∗ var [ j ]∗Q[ i ] [ j ] ;
22 I l oOb j e c t i v e obj = I loMin imize ( env , expr ) ;

model . add ( obj ) ;
24 I l oCp lex cp lex (model ) ;

cp l ex . setOut ( env . getNul lStream ( ) ) ;
26

// Optimize the problem and obta in s o l u t i o n .
28 i f ( ! cp l ex . s o l v e ( ) ) {

env . e r r o r ( ) << ” Fa i l ed to opt imize LP” << endl ;
30 throw(−1) ;

}
32

IloNumArray va l s ( env ) ;
34 cp l ex . getValues ( va l s , var ) ;

// obta in sum of c o l o r i n g s
36 i n t s l = 0 ;

f o r ( i n t i = 0 ; i < n/k ; i++)
38 f o r ( i n t j = 0 ; j < k ; j++) s l = s l + ( i n t ) va l s [ i ∗k+j ] ∗ ( j +1) ;

cout <<” ( ’ n= ’ , ”<<n <<” , ’ k= ’ , ”<<k<<” ) ”<< endl ;
40 cout<<” newresu l t : [ [ ” ;

f o r ( i n t i = 0 ; i < n ; i++)
42 {

i f ( i +1!=n) cout <<( i n t ) va l s [ i ] <<” , ” ;
44 e l s e cout <<( i n t ) va l s [ i ] <<” ] ] ”<<endl ; ;

}
46 }

catch ( I l oExcept ion& e ) {
48 c e r r << ”Concert except ion caught : ” << e << endl ;

}
50 catch ( . . . ) {

c e r r << ”Unknown except ion caught” << endl ;
52 }

54 env . end ( ) ;
f o r ( i n t i =0; i<n ; i++)

56 de l e t e [ ] Q[ i ] ;
d e l e t e [ ] Q;

58 re turn 0 ;
} // END main

60

void read qubo ( i n t &n , double ∗∗&Q) {
62 // Star t o f : i n i t i a l i z i n g Q
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Q = new double ∗ [ n ] ;
64 f o r ( i n t i =0; i<n ; i++)

{
66 Q[ i ] = new double [ n ] ;

f o r ( i n t j =0; j<n ; j++)
68 Q[ i ] [ j ] = 0 ;

}
70 f o r ( i n t i =0; i<n ; i++)

{
72 f o r ( i n t j =0; j<n ; j++)

c in >> Q[ i ] [ j ] ;
74 }
}

Listing 5: csp qubosolver cplex.cpp
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