
CDMTCS
Research
Report
Series

On the Interaction of
Functional and Inclusion
Dependencies with
Independence Atoms

Miika Hannula

Sebastian Link
The University of Auckland,
Auckland, New Zealand

CDMTCS-518
February 2018

Centre for Discrete Mathematics and
Theoretical Computer Science

On the Interaction of Functional and
Inclusion Dependencies with Independence

Atoms

Miika Hannula
The University of Auckland, New Zealand

m.hannula@auckland.ac.nz

Sebastian Link
The University of Auckland, New Zealand

s.link@auckland.ac.nz

February 19, 2018

Abstract

Infamously, the finite and unrestricted implication problems for the classes of
i) functional and inclusion dependencies together, and ii) embedded multivalued
dependencies alone are each undecidable. Famously, the restriction of i) to func-
tional and unary inclusion dependencies in combination with the restriction of ii)
to multivalued dependencies yield implication problems that are still different in
the finite and unrestricted case, but each are finitely axiomatizable and decidable
in low-degree polynomial time. An important embedded tractable fragment of
embedded multivalued dependencies are independence atoms. These stipulate in-
dependence between two attribute sets in the sense that for every two tuples there
is a third tuple that agrees with the first tuple on the first attribute set and with
the second tuple on the second attribute set. Our main results show that finite and
unrestricted implication deviate for the combined class of independence atoms,
unary functional and unary inclusion dependencies, but both are axiomatizable
and decidable in low-degree polynomial time. This combined class adds arbitrary
independence atoms to unary keys and unary foreign keys, which frequently occur
in practice as surrogate keys and references to them.

Keywords: Functional dependency; Inclusion dependency; Independence atom;
Implication problem

1 Introduction

Databases represent information about some domain of the real world. For this purpose,
data dependencies provide the main mechanism for enforcing the semantics of the given

1

application domain within a database system. As such, data dependencies are essential
for most data management tasks, including database design, query and update process-
ing, as well as data cleaning, exchange, and integration. The usability of a class C of
data dependencies for these tasks depends critically on the computational properties of
its associated implication problem. The implication problem for C is to decide whether
for a given finite set Σ∪{ϕ} of data dependencies from C, Σ implies ϕ, i.e. whether every
database that satisfies all the elements of Σ also satisfies ϕ. If we require databases to be
finite, then we speak of the finite implication problem, and otherwise of the unrestricted
implication problem. While the importance of data dependencies continues to hold for
new data models, the focus of this article is on the implication problems for important
classes of data dependencies in the relational model of data. In this context, data depen-
dency theory is deep and rich [36]. Our submission is from the area of database theory,
on which DASFAA’s call for paper has solicited original contributions.

Functional and inclusion dependencies constitute the most commonly used classes
of data dependencies in practice. In particular, functional dependencies (FDs) are more
expressive than keys, and inclusion dependencies (INDs) are more expressive than foreign
keys, thereby capturing Codd’s principles of entity and referential integrity, respectively,
on the logical level. An FD R : X → Y with attribute subsets X, Y on relation schema
R expresses that the values on attributes in Y are uniquely determined by the values on
attributes in X. In particular, R : X → R expresses that X is a key for R. An inclusion
dependency (IND) R[A1, . . . , An] ⊆ R′[B1, . . . , Bn], with attribute sequences A1, . . . , An
on R and B1, . . . , Bn on R′, expresses that for each tuple t over R there is some tuple
t′ over R′ such that for all i = 1, . . . , n, t(Ai) = t′(Bi) holds. If n = 1 we call the IND
unary (UIND).

A fundamental result in dependency theory is that the unrestricted and finite impli-
cation problems for the combined class of FDs and INDs differ and each is undecidable
[10, 31, 32]. Interestingly, for the expressive sub-class of FDs and UINDs, the unrestricted
and finite implication problems still differ but each are axiomatizable and decidable in
low-degree polynomial time [12].

Another important expressive class of data dependencies are embedded multivalued
dependencies (EMVDs). An EMVD R : X → Y ⊥Z with attribute subsets X, Y, Z of
R expresses that the projection r[XY Z] of a relation r over R on the set union XY Z
is the join r[XY] ./ r[XZ] of its projections on XY and XZ. Another fundamental
result in dependency theory is that the unrestricted and finite implication problems for
EMVDs differ, each is not finitely axiomatizable [35] and each is undecidable [22, 23].
An important fragment of EMVDs are multivalued dependencies (MVDs), which are a
class of full dependencies in which XY Z covers the full underlying set R of attributes.
In fact, MVDs are the basis for Fagin’s fourth normal form [13]. For the combined class
of FDs, MVDs, and UINDs, finite implication is axiomatizable and decidable in cubic
time, while unrestricted implication is axiomatizable and decidable in almost linear time
[12, 25].

Independence atoms (IAs) constitute an expressive subclass of EMVDs and FDs. An
IA X⊥Y with attribute subsets X, Y of R expresses that X ∩Y is constant (i.e., the FD
∅ → X ∩ Y holds) and that the EMVD ∅ → X \ Y ⊥Y \X holds. The latter expresses
that the projection of a relation r on XY equals the cartesian product of its projections

2

on X and Y , i.e., r[XY] = r[X]× r[Y]. For disjoint X and Y , the independence atoms
X⊥Y thus form a subclass of EMVDs. For the class of IAs, the finite and unrestricted
implication problems coincide, they are finitely axiomatizable and decidable in low-degree
polynomial time [26].

Given the usefulness of EMVDs, FDs, and INDs for data management, given their
computational barriers, and given the attractiveness of IAs as a tractable fragment of
EMVDs, it is a natural question to ask how IAs, FDs, and INDs interact. Our article
helps address the current gap in the existing rich theory of relational data dependencies.
Adding further to the challenge it is important to note that IAs still form an embed-
ded fragment of EMVDs, in contrast to MVDs which are a class of full dependencies.
Somewhat surprisingly, already the interaction of IAs with just keys is intricate [19, 20].
For example, unrestricted implication is finitely axiomatizable but finite implication is
not for keys and unary IAs (those with singleton attribute sets), while the finite and
unrestricted implication problems coincide and enjoy a finite axiomatization for IAs and
unary keys (those with a singleton attribute set). In contrast, the extension of INDs with
IAs, although being more expressive than the class of INDs alone, does not add further
complexity to the latter. For INDs and IAs taken together both implication problems still
coincide and are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable
in their arity [9, 21].

Examples. We few examples will illustrate how knowledge about IAs advances data
management. FDs and INDs do not require further motivation but the more we know
about the interaction of IAs with FDs and INDs, the more we can advance data man-
agement.

Our first example is query processing. In particular, we show how the validity of
independence atoms is intrinsically linked to the optimization of the famous division
operator. The operator πXY (R)÷πY (R) returns all those X-values x such that for every
Y -value y there is some tuple t with t(X) = x and t(Y) = y [11]. The ability of the
division operator to express universal quantification makes it very powerful for expressing
natural queries. The following result establishes the intrinsic link.

Theorem 1 For all relations r over R, πXY (R)(r) ÷ πY (R)(r) = πX(R)(r) if and only
if r satisfies X⊥Y .

Proof The division operator is defined as follows:

πXY (R)(r)÷ πY (R)(r) = πX(R)(r)− πX((πX(R)(r)× πY (R)(r))− πXY (R)(r)),

and r satisfies X⊥Y if and only if πX(R)(r)×πY (R)(r) = πXY (R)(r). The result follows
directly.

In particular, the validity of an IA reduces the quadratic complexity of the division
operator to a linear complexity of a simple projection [27]. The reduction in complexity
also applies to the expression complexity of a query. Suppose we would like to return
those entities x that occur together with all entities y (for example, suppliers that supply
all products), then we need to express the division operator πX,Y (R)÷ πY (R) in SQL by
double-negation as in:

3

SELECT R0.X FROM R AS R0
WHERE NOT EXISTS

SELECT ∗ FROM R AS R1
WHERE NOT EXISTS

SELECT ∗ FROM R AS R2
WHERE R2.X = R1.X AND

R2.Y = R0.Y ;

where R.X is short for
∧
A∈X R.A, and R2.X = R1.X (R2.Y = R0.Y) for

∧
A∈X R2.A =

R1.A (
∧
B∈Y R2.B = R1.B). However, if a query optimizer can notice that the IA X⊥Y

is implied by the enforced set Σ of constraints, then the query can be rewritten into

SELECT X
FROM R ;

Our second example is database security. More specifically, the aim of inference con-
trol is to protect private data under inferences that clever attacks may use to circumvent
access limitations [7]. For example, the combination of a particular patient name (say
Jack) together with a particular medical examination (say angiogram) may be consid-
ered a secret, while access to the patient name and access to the medical examination
in isolation may not be a secret. However, in some given context such as a procedure to
diagnose some condition, all patients may need to undergo all examinations. That is, the
information about the patient is independent of the information about the examination.
Now, if the secret (Jack, angiogram) must not be revealed to an unauthorized user that
can query the data source, then this user must not learn both: that Jack is a patient
undergoing the diagnosis of the condition, and that angiogram is a medical examination
that is part of the process for diagnosing the condition. Being able to understand the
interaction of independence atoms with other database constraints can therefore help us
to protect secrets under clever inference attacks.

Our final example is data profiling. Here we would like to demonstrate that indepen-
dence atoms do occur in real-world data sets. For that purpose, we have mined some
well-known publicly available data sets that have been used for the mining of other classes
of data dependencies before [33]. We report the basic characteristics of these data sets
in the form of their numbers of rows and columns, and list the number of maximal IAs
and the maximum arity of those found. Here, an IA X⊥Y is maximal in a given set of
IAs if there is no other IA V ⊥W in the set such that V ⊆ X and W ⊆ Y holds. The
arity of an IA is defined as the total number of attribute occurrences.

Data set Number of columns Number of rows Number of IAs Maximum arity
bridges 13 108 4 3

echocardiogram 13 132 5 4
adult 14 48,842 9 3

hepatitis 20 155 855 6
horse 27 368 112 3

It should be stressed that the usefulness of these IAs is not restricted to those that
are semantically meaningful. For example, the optimizations for the division operator
also apply to IAs that “accidentally” hold on a given data set.

4

class ui = fi complexity: ui / fi finite axiomatization: ui / fi

FD yes [4] linear time [5] yes (2-ary) [4]
IND yes [9] PSPACE-complete [9] yes (2-ary) [9]
IA yes [15, 26, 34] cubic time [15, 26] yes (2-ary) [15, 26, 34]
IND+IA yes PSPACE-complete [21] yes (3-ary) [21]
FD+IA, FD+UIA no [20] ? / ? ? / no
FD+IND no [10, 31] undecidable / undecidable [10, 31] no / no [10, 31]
FD+UIND no [12] cubic time / cubic time [12] yes / no (infinite) [12]
UFD+UIND no [12] linear time / linear time [12] yes / no (infinite) [12]
UFD+UIND+IA no cubic time / cubic time yes / no (infinite)

Table 1: Subclasses of FD+IND+IA. We write “ui” and “fi” for unrestrited and finite
implication, respectively.

1.1 Contributions

In this article we make the following contributions.
1) We illustrate the relevance of independence atoms for data management, such as
their intrinsic link to the optimization of the division operator, more precise cardinality
estimations for choosing better query plans, and database security. Moreover, we show
that they occur in real-world data sets.
2) For the combined class of FDs and IAs, finite and unrestricted implication differ
[19, 20]. We show that finite implication is not finitely axiomatizable, already for binary
FDs (those with a two-element attribute set on the left-hand side) and unary IAs. For the
combined class of IAs and unary FDs, we show that finite and unrestricted implication
coincide and establish a finite axiomatization. Hence, the situation for the combined class
of FDs and IAs is more intricate than for the combined class of FDs and MVDs, where
finite and unrestricted implication coincide, which enjoy an elegant finite axiomatization
[6], and for which implication can be decided in almost linear time [14].
3) For the combined class of IAs, unary FDs, and UINDs, we establish axiomatizations
for their finite and unrestricted implication problems, and show that both are decidable
in low-degree polynomial time. This is analogous to the results for the combined class of
FDs, MVDs, and UINDs. To the best of our knowledge, the class of IAs, unary FDs, and
UINDs is only the second known class for which the finite and unrestricted implication
differ but both are decidable in low-degree polynomial time. The class is practically
relevant as it covers arbitrary IAs on top of unary keys and unary foreign keys, and
already unary keys and unary foreign keys occur readily in practice [12]. The significant
difference to FDs, MVDs, and UINDs is the more intricate interaction between FDs and
IAs in comparison to FDs and MVDs. Note that unary FDs and INDs frequently occur
in practice as surrogate keys and foreign keys that reference them. For example, 6 out of
8 keys are unary and 8 out of 9 foreign keys are unary in the TPC-H benchmark, while
20 out of 32 keys are unary and 44 and out 46 foreign keys are unary in the TPC-E
benchmark1. The ability to reason efficiently about IAs, UFDs, and UINDs is good news

1http://www.tpc.org

5

http://www.tpc.org

for data management. Finally, trading in restrictions of the arity on INDs and FDs for
restrictions on the arity of IAs cannot be successful: Finite implication for unary IAs
and binary FDs is not finitely axiomatizable, see 2).
4) For the combined class of IAs and FDs we establish tractable conditions sufficient
for non-interaction in both the finite and unrestricted cases. Instances of the finite or
unrestricted implication problems that meet the non-interaction conditions can therefore
be decided efficiently by using already known algorithms for the sole class of IAs and the
sole class of FDs. The decidability of the finite and unrestricted implication problems
for IAs and FDs are both still open.

Organization. In Section 2 we present all the necessary definitions for the article.
Section 3 addresses the combined class of FDs and IAs. In Section 4 we focus on the
combination of UFDs, UINDs, and IAs, and establish axiomatizations for their finite
and unrestricted implication problems. Section 5 identifies polynomial-time criteria for
the non-interaction between INDs and IAs, and also between FDs and IAs. Finally, in
Section 6 we discuss the computational complexity of the implication problems. Some of
the more technical proofs are located in Appendix.

2 Preliminaries

We denote by A,B,C, ... attributes and by X, Y, Z, ... either sets or sequences of at-
tributes. For two sets (sequences) X and Y , we write XY for their union (concatenation).
Similarly, we may write A instead of the single element set or sequence that consists of
A. The size of a set (or length of a sequence) X is written as |X|.

A relation schema consists of attributes A, each equipped with a set of domain values
denoted by Dom(A). By database schema we denote a pairwise disjoint sequence of
relations schemata. Given a relation schema R, a tuple over R is a function that maps
each attribute A from R to Dom(A). A relation r over R is then a non-empty set of
tuples over R, and a database d over R = (R1, . . . , Rn) is a sequence (r1, . . . , rn) where
each ri is a relation over Ri

2. We sometimes write r[R] to denote that r is a relation over
R, and similarly we may write d[R]. A relation is called finite if the underlying set of
tuples is finite, and a database is finite if it is a sequence of finite relations. For a tuple
t and a relation r over R and a subset (or subsequence) X of R, t(X) is the restriction
of t to X, and r(X) is the set of all restrictions t(X) where t ∈ r.

Next we define the syntax and semantics of functional and inclusion dependencies
and independence atoms.
Functional dependency. Let X and Y be two sets of attributes from a relation schema
R. Then R : X → Y is a functional dependency satisfied by a database d = (r[R]) iff for
all t, t′ ∈ r, t(X) = t′(X) implies t(Y) = t′(Y).
Inclusion dependency. Let A1, . . . , An and B1, . . . , Bn be two sequences of distinct at-
tributes from relation schemata R and R′, respectively. Then R[A1 . . . An] ⊆ R′[B1 . . . Bn]
is an inclusion dependency satisfied by a database d = (r[R], r′[R′]) iff for all t ∈ ri there

2We exclude empty relations from our definition. This is a practical assumption with no effect when
single relation schemata are considered only. However, on multiple relations it has an effect, e.g., the
rule UI3 in Table 2 becomes unsound.

6

is some t′ ∈ rj such that t(A1) = t′(B1), . . . , t(An) = t′(Bn).
Independence atom. Let X and Y be two (not necessarily disjoint) attribute sets
from a shared relation schema R. Then R : X⊥Y is an independence atom satisfied by a
database d = (r[R]) iff for all tuples t, t ∈ r there is a tuple t′′ ∈ r such that t′′(X) = t(X)
and t′′(Y) = t′(Y). A disjoint independence atom (DIA) is an IA X⊥Y where X ∩ Y is
empty.

Regarding all the aforementioned dependencies, if the relation schema R is not needed
in the context, we will drop it from the syntax. E.g., we will write X⊥Y instead of
R : X⊥Y .

We say that an IND is k-ary if it is of the form A1 . . . Ak ⊆ B1 . . . Bk. An IA X⊥Y
and an FD X → Y are called k-ary if max{|X|, |Y |} = k. A class of dependencies is
called k-ary if it contains at most k-ary dependencies. Most of the subclasses that we
consider are only unary, so we add “U” to a class name to denote its unary subclass. For
instance, UIND denotes the class of all unary INDs. In general, for k ≥ 2, we add “k” to
a class name to denote its k-ary subclass. We use “+” to denote unions of classes, e.g.,
IND+IA denotes the class of all inclusion dependencies and independence atoms.

Notice that the semantic condition for IAs X⊥Y holds only if the values of the
common attributes of X and Y are constant. In other words, the following holds:

* d |= R : X⊥X, if for all s, s′ ∈ r it holds that s(X) = s′(X).

Hence, we also call unary FDs of the form ∅ → A and unary IAs of the form A⊥A
constancy atoms (CAs).

The restriction of a dependency σ to a set of attributes R, written σ � R, is X ∩
R → Y ∩ R for an FD σ of the form X → Y , and X ∩ R⊥Y ∩ R for an IA σ of
the form X⊥Y . If σ is an IND of the form A1 . . . An ⊆ B1 . . . Bn and i1, . . . , ik lists
{i = 1, . . . , n : Ai ∈ R and Bi ∈ R}, then σ � R = Ai1 . . . Aik ⊆ Bi1 . . . Bik . For a set of
dependencies Σ, the restriction of Σ to R, written Σ � R, is the set of all σ � R for σ ∈ Σ.
For attributes A and B from R, we denote by σ(R : A 7→ B) the dependencies obtained
from σ by replacing any number of occurrences of A with B.

A set of axioms σ and rules of the form σ1, . . . , σn ⇒ σ is called an axiomatization. A
rule is called n-ary if its antecedent part has n conjuncts. An axiomatization consisting
of at most n-ary rules is called n-ary. A deduction from a set of dependencies Σ by an
axiomatization R is a sequence of dependencies (σ1, . . . , σn) where each σi is either an
element of Σ, an axiom, or follows from σ1, . . . , σi−1 by an application of a rule in R. In
such an occasion we write Σ `R σ, or simply Σ ` σ if R is known.

Given a finite set of database dependencies Σ ∪ {σ}, the (finite) unrestricted impli-
cation problem is to decide whether all (finite) databases that satisfy Σ also satisfy σ,
written Σ |= σ (Σ |=fin σ). An axiomatization R is sound for the unrestricted implication
problem of a class of dependencies C if for all finite sets Σ∪ {σ} of dependencies from C,
Σ `R σ ⇒ Σ |= σ; it is complete if Σ |= σ ⇒ Σ `R σ. Soundness and completeness for
finite implication are defined analogously.

Some of our proofs use the chase algorithm that was invented in the late 70s [3, 30].
For a detailed exposition of this technique we refer the reader to [2].

Axiomatizations. Tables 2 and 3 present the axiomatizations considered in this
article. In Table 2, the axiomatization I := {I1, . . . , I5} is sound and complete for inde-

7

∅⊥X
X⊥Y
Y ⊥X

(trivial independence, I1) (symmetry, I2)

X⊥Y Z
X⊥Y

X⊥Y XY ⊥Z
X⊥Y Z

(decomposition, I3) (exchange, I4)

X⊥Y Z⊥Z
X⊥Y Z XY → Y

(weak composition, I5) (reflexivity, F1)

X → Y Y → Z

X → Z

X → Y

XZ → Y Z
(transitivity, F2) (augmentation, F3)

X⊥Y X → Y

∅ → Y

X⊥Y Z Z → V

X⊥Y ZV
(constancy, FI1) (composition, FI2)

Axiomatization A

R[X] ⊆ R′[Z] R[Y] ⊆ R′[W] R′[Z⊥W]

R[XY] ⊆ R′[ZW]
(concatenation, UI1)

R[XY] ⊆ R′[ZW] R′[ZW] ⊆ R[XY] R′[Z⊥W]

R[X⊥Y]
(transfer, UI2)

R[X] ⊆ R′[Y] R′ : Y ⊥Y
R′[Y] ⊆ R[X]

(symmetry, UI3)

R[X] ⊆ R′[Y] R′ : Y ⊥Y
R : X⊥X

(constancy, UI4)

R[A] ⊆ R′[C] R[B] ⊆ R′[C] R′ : C⊥C σ

σ(R : A 7→ B)
(equality, UI5)

Axiomatization C

Table 2: Axiomatizations A for FDs and IAs and C for IAs and INDs. We define I :=
{I1, . . . , I5} and A∗ := A \ {I5,F3}.

pendence atoms alone [20, 26]. The rules F1,F2,F3 form the Armstrong axiomatization
for functional dependencies [4], and the rules FI1 and FI2 describe simple interaction
between independence atoms and functional dependencies. Table 3 depicts the sound and
complete axiomatization of inclusion dependencies introduced in [8, 9]. Table 2 presents
rules describing interaction between inclusion dependencies and independence atoms [21].

We leave it to the reader to check the soundness of the axiom systems in Tables 2
and 3. The proof does not include anything unexpected; we only note that soundness of
UI3 follows only if databases are not allowed to contain empty relations.

Theorem 2 The axiomatization A ∪B ∪ C is sound for the unrestricted and finite im-
plication problems of FD+IND+IA.

Lastly, we note that, for notational clarity only, we will restrict attention to the
uni-relational case in all our proofs. That is, we will consider only those cases where
databases consist of a single relation.

R[X] ⊆ R[X]

R[X] ⊆ R′[Y] R′[Y] ⊆ R′′[Z]

R[X] ⊆ R′′[Z]

R[A1 . . . An] ⊆ R′[B1 . . . Bn]

R[Ai1 . . . Aim] ⊆ R′[Bi1 . . . Bim]
(∗)

(reflexivity, U1) (transitivity, U2) (projection and permutation, U3)
(∗) ij are pairwise distinct and from {1, . . . , n}

Table 3: Axiomatization B for INDs

8

3 IAs+FDs

First we consider the interaction between FDs and IAs. Already keys and IAs combined
form a somewhat intricate class: Their finite and unrestricted implication problems differ
and the former lacks a finite axiomatization [20]. In Section 3.1 we extend these results
to the classes FD+IA and 2FD+UIA. However, the interaction between unary FDs and
IAs is less involved. In Section 3.2 we show that for UFD+IA unrestricted and finite
implication coincide and the axiomatization A∗ given in Table 2 forms a sound and
complete axiomatization.

3.1 Implication problem for FDs and IAs

The following theorem enables us to separate the finite and unrestricted implication
problems for FD+IA as well as for FD+UIA.

Theorem 3 ([19]) The unrestricted and finite implication problems for keys and UIAs
differ.

This theorem was proved by showing that Σ |=fin σ and Σ 6|= σ, for Σ := {A⊥B,C⊥D,
BC → AD,AD → BC} and σ := AB → CD. In [19] it was shown that this counterex-
ample can be extended to a non-axiomatizability results for finite implication of keys and
IAs. By an analogous line of reasoning this results carries over to the class of FDs and
IAs, as well (see Appendix).

Theorem 4 The finite implication problem for FD+IA (2FD+UIA) is not finitely ax-
iomatizable.

The implicit assumption in the above theorem is that an axiomatization must be
attribute-bounded, meaning that it may not introduce new attributes [10]. It is easy to
see that with this prerequisite finite axiomatization entails decidability. Contrarily, there
are finite axiomatizations for undecidable implication problems that do not adhere to
this assumption [16, 17, 18, 32].

To the best of our knowledge, decidability is open for both FD+IA and FD+UIA with
respect to their finite and unrestricted implication problems. It is worth noting here that
the unrestricted (finite) implication problem for FD+UIA is as hard as that for FD+IA.
For this, we demonstrate a simple reduction from the latter to the former. Let Σ∪{σ} be
a set of FDs and IAs, and let Σ′ denote the set of FDs and IAs where each IA of the form
X⊥Y is replaced with dependencies from {A⊥B,X → A,A → X, Y → B,B → Y }
where A and B are fresh attributes. If σ is an FD, then Σ (finitely) implies σ iff Σ′

(finitely) implies σ. Also, if σ is of the form X⊥Y , then we have Σ |= σ iff Σ′′ |= σ′,
where

Σ′′ := Σ′ ∪ {X → A,A→ X, Y → B,B → Y },

σ′ := A⊥B, and A and B are fresh attributes.

9

3.2 Implication for UFDs and IAs

Next we turn to the class UFD+IA. Extending the scope and methods from [20], which
presented a finite axiomatization for unary keys and IAs, we show that the axiomatization
A∗ (see Table 2) is sound and complete for UFD+IA in both with respect to finite and
unrestricted implication. Hence, compared to UIAs and FDs, the interaction between IAs
and UFDs is relatively tame. Combined, however, these two may entail new restrictions
to column sizes. For instance, in the finite A → B1, A → B2, and B1⊥B2 imply
|r(B1)| · |r(B2)| ≤ |r(A)|. The proof of the following completeness theorem is obtained
by a chase-based model construction (see Appendix).

Theorem 5 The axiomatization A∗ is sound and complete for the unrestricted and finite
implication problems of UFD+IA.

As the same axiomatization characterizes both finite and unrestricted implication, we
obtain the following corollary.

Corollary 1 The finite and unrestricted implication problems coincide for UFD+IA.

4 IAs+UFDs+UINDs

Next we turn attention to the combined class of FDs, INDs, and IAs. In the previous sec-
tion we noticed that the finite implication problem for binary FDs and unary IAs is not
finitely axiomatizable. On the other hand, both the finite and unrestricted implication
problems for unary FDs and binary INDs are undecidable [31]. Hence, in this section we
restrict to unary FDs and unary INDs, a class for which the two implication problems
already deviate [12]. It turns out that the combination UFD+UIND+IA can be axiom-
atized with respect to both problems. However, in the finite case the axiomatization is
infinite as one needs to add so-called cycle rules for UFDs and UINDs.

An axiomatization for unrestricted implication follows from results in Section 3.2 and
[12]. For the proof, see Appendix.

Theorem 6 The axiomatization A∗∪{U1,U2,UI3,UI4} is sound and complete for the
unrestricted implication problem of UFD+UIND+IA.

For finite implication a complete axiomatization of UFD+UIND+IA is found by ex-
tending A∗ ∪ {U1,U2,UI3,UI4} with the so-called cycle rules [12] (see Table 2) and by
removing UI3,UI4 which become redundant. However, the completeness proof is now
more involved and proved in two steps. We will combine the chase-based approach of the
proof of Theorem 5 with the graph-theoretic approach from [12]. The latter method was
used to prove a complete axiomatization for the finite implication problem of UIND+FD.
For the graph-theoretic approach, we commence by introducing multigraphs with two
sorts of edges: red ones which encode UFDs and black ones which encode UINDs.

Definition 1 ([12]) For each set Σ of UINDs and UFDs over R, let G(Σ) be the multi-
graph that consists of nodes R, red directed edges (A,B), for A → B ∈ Σ, and black

10

A1 → A2 A2 ⊇ A3 . . . A2n−1 → A2n A2n ⊇ A1

A1 ← A2 A2 ⊆ A3 . . . A2n−1 ← A2n A2n ⊆ A1

(cycle rule for n, Cn)

Table 4: Cycle rules for finite implication

directed edges (A,B), for B ⊆ A ∈ Σ. If G(Σ) has red (black) directed edges from A to
B and vice versa, then these edges are replaced with an undirected edge between A and
B.

Given a multigraph G(Σ), we first topologically sort its strongly connected components
which form a directed acyclic graph [24]. That is, each component is assigned a unique
scc-number, greater than the scc-numbers of all its descendants. For an attribute A,
denote by scc(A) the scc-number of the component node A belongs to. Note that scc(A) ≥
scc(B) if (A,B) is an edge in G(Σ). Denote also by scci the set of attributes A with
scc(A) = i, and let scc≤i :=

⋃
j≤i sccj and define scc≥i, scc<i, and scc>i analogously. The

following lemma is a simple consequence of the definition.3

Lemma 1 ([12]) Let Σ be a set of UFDs and UINDs, closed under {F1,F2,U1,
U2} ∪ {Ck : k ∈ N}. Then every node in G(Σ) has a red and a black self-loop. The
red (black) subgraph of G(Σ) is transitively closed. The subgraphs induced by the strongly
connected components of G(Σ) are undirected. In each strongly connected component, the
red (black) subset of undirected edges forms a collection of node-disjoint cliques. Note
that the red and black partitions of nodes could be different.

We now apply this graphical approach to earlier techniques presented in this paper.
Theorem 7 shows completeness of the axiomatization A∗ ∪ {U1,U2} ∪ {Cn : n ∈ N}
for the finite implication problem of UFD+UIND+IA by using the relation generated
in Lemma 2. The proof of this lemma describes an incremental modification of the
base relation, taken from the proof of Theorem 5, that is shown to reflect a growing
number of inclusion dependencies in its composition. This is achieved by an inductive
re-organization of the column values according to the underlying scc-numbering while at
the same time maintaining the integrity of the UFD and IA dependencies in the base
relation. The proof of the theorem and the lemma can be found in Appendix.

Lemma 2 Let Σ be a set of UFDs, UINDs, and IAs over R, partitioned respectively
to ΣUFD, ΣUIND, and ΣIA. Assume that ΣUFD ∪ ΣUIND contains all UFDs and UINDs
derivable from Σ by A∗ ∪ {U1,U2} ∪ {Ck : k ∈ N}, and assume that we have assigned an
scc-numbering to G(ΣUFD ∪ ΣUIND). Let E be either the empty set or a single attribute,
and let R′ := {B ∈ R : E → B 6∈ Σ}. Then there exists a finite relation r and tuples
t0, t1 ∈ r such that:

3Lemma 1 is a reformulation of Lemma 4.2. in [12] where the same claim is proved for a set of FDs
and UINDs that is closed under {F1,F2,F3,U1,U2}∪{Ck : k ∈ N}. We may omit F3 here since, when
restricting attention to UFDs, F3 is not needed in the proof.

11

(i) Σ ` X⊥Y if X, Y ⊆ R′ and for some t ∈ r, t(X) = t0(X) and t(Y) = t1(Y);

(ii) r |= ΣUFD ∪ ΣIA;

(iii) r(A) is (strictly) included in r(B) if scc(A) is (strictly) less than scc(B).

Theorem 7 The axiomatization A∗ ∪ {U1,U2} ∪ {Cn : n ∈ N} is sound and complete
for the finite implication problem of UFD+UIND+IA.

5 Polynomial-Time Conditions for Non-Interaction

The interaction-freeness between the class FD+IND has been well-studied in the liter-
ature [28, 29]. Here, we examine the frontiers for tractable reasoning about the class
FD+IA in both the finite and unrestricted cases. For IND+IA these questions have been
studied in [21]. The idea is to establish sufficient criteria for the non-interaction between
IAs and FDs. There is a trade-off between the simplicity and generality of such criteria.
While simple criteria may be easier to apply, more general criteria allow us to establish
non-interaction in more cases. Our focus here is on generality, and the criteria are driven
by the corresponding inference rules. We define non-interaction between two classes as
follows.

Definition 2 Let Σ0 and Σ1 be two sets of dependencies from classes C0 and C1, re-
spectively. We say that Σ0,Σ1 have no interaction with respect to unrestricted (finite)
implication if

• for σ from C0, σ is (finitely) implied by Σ0 iff σ is (finitely) implied by Σ0 ∪ Σ1.

• for σ from C1, σ is (finitely) implied by Σ1 iff σ is (finitely) implied by Σ0 ∪ Σ1.

Let us now define two syntactic criteria for describing non-interaction. We say that an
IA X⊥Y splits an FD U → V if both (X \ Y) ∩ U and (Y \X) ∩ U are non-empty. An
IA X⊥Y splits an IND Z ⊆ W if both X ∩W and Y ∩W are non-empty. Furthermore,
X⊥Y intersects U → V if XY ∩ U is non-empty. Notice that both these concepts
give rise to possible interaction between two different classes. We show that lacking
splits implies non-interaction for FD+IA in the unrestricted case. Non-interaction for
FD+IA in the finite is guaranteed by the stronger condition defined in terms of lacking
intersections.

For IND+IA lack of splits entail non-interaction [21].

Theorem 8 ([21]) Let ΣIND and ΣIA be respectively sets of INDs and IAs. If no IA
in ΣIA splits any IND in ΣIND, then ΣIND and ΣIA have no interaction with respect to
unrestricted (finite) implication.

We proceed with the non-interaction results for FD+IA. The proofs are located in Ap-
pendix. For unrestricted implication the idea is to first apply the below polynomial-time
algorithm which transforms an assumption set Σ to an equivalent set Σ∗. The set Σ∗ is
such that it has no interaction between FDs and IAs provided that none of its FDs split
any IAs.

12

For a set of FDs Σ, let us denote by Cl(Σ, X) the closure set of all attributes A for
which Σ |= X → A. This set can be computed in linear time by the Beeri-Bernstein
algorithm [5]. The non-interaction condition for unrestricted implication is now formu-
lated using Σ∗IA = {X1⊥Y1, . . . , Xn⊥Yn} and Σ∗FD = ΣFD ∪ {∅ → Z} where Z,XiYi
are computed using the following algorithm that takes an FD set ΣFD and an IA set
ΣIA = {U1⊥V1, . . . , Un⊥Vn} as an input.

Algorithm 1 Algorithm for computing Z,Xi, Yi

Require: ΣFD and ΣIA = {Ui⊥Vi | i = 1, . . . , n}
Ensure: Z and Σ∗IA = {Xi⊥Yi | i = 1, . . . , n}

1: Initialize: V ← ∅, Xi ← Ui, Yi ← Vi
2: repeat
3: Z ← V
4: for i = 1, . . . , n do
5: Xi ← Cl(ΣFD, XiV)
6: Yi ← Cl(ΣFD, YiV)
7: V ← V ∪ (Xi ∩ Yi)
8: until Z=V

From the construction we obtain that Σ∗FD ∪Σ∗IA is equivalent to ΣFD ∪ΣIA and that

(1) for Z1⊥Z2 ∈ Σ∗IA and i = 1, 2, Σ∗FD |= Zi → X implies X ⊆ Zi;

(2) Σ∗FD ∪ Σ∗IA |= ∅ → A iff A ∈ Z.

Recall that the closure set C(ΣFD, X) can be computed in linear time by the Beeri-
Bernstein algorithm. Now, at stage 5 (or stage 6) the computation of the closure set is
resumed whenever V introduces attributes that are new to Xi (Yi). Since the number of
the closures considered is 2|ΣIA|, we obtain a quadratic time bound for the computation
of Z,Xi, Yi.

Theorem 9 Let ΣFD and ΣIA be respectively sets of FDs and IAs, and let Σ∗FD and Σ∗IA
be obtained from ΣFD and ΣIA by Algorithm 1. Then the following holds:

• if no IA in Σ∗IA splits any FD in Σ∗FD, then Σ∗FD and Σ∗IA have no interaction with
respect to unrestricted implication;

• if no IA in ΣIA intersects any FD in ΣFD, then ΣFD and ΣIA have no interaction
with respect to finite implication.

To illustrate the necessity for a stronger condition in the finite case, recall from Section
3.1 that AB → CD is finitely implied by {A⊥B,C⊥D,BC → AD,AD → BC}, and
notice that AB → CD is not finitely implied by {BC → AD,AD → BC}. However,
Algorithm 1 does not produce any fresh assumptions, and neither A⊥B nor C⊥D splits
any FD assumption. Therefore, lack of splits is not sufficient for non-interaction in the
finite case.

13

6 Complexity Results

Next we examine the computational complexity of the discussed implication problems.
We show that both implication problems for UFD+UIND+IA can be solved in low-degree
polynomial time, even though the problems differ from one another. The associated
decision procedures, found in Appendix, transform the implication problems first to
graphs, as earlier in this paper, and subsequently modify them according to appropriate
inference rules. The only difference with finite implication is that an application of the
cycle rules is included in the process. The implication problem then reduces, for UFDs
and UINDs, to reachability in the graph, and for IAs, to an IA-implication instance which
reflects the topology of the graph. Consequently, the stated time bounds follow.

Theorem 10 Let ΣUFD,ΣUIND,ΣIA be respectively sets of UFDs, UINDs, and IAs over
a relation schema R. The unrestricted and finite implication problems for σ by ΣUFD ∪
ΣUIND ∪ ΣIA can be decided in time:

• O(|ΣIA| · |ΣUFD|+ |ΣUIND|) if σ is an UFD or UIND;

• O(|ΣIA| · (|ΣUFD|+ |R|2) + |ΣUIND|) if σ is a IA.

7 Conclusion and Outlook

In view of the infeasibility of EMVDs and of FDs and INDs combined, the class of FDs,
MVDs and unary INDs is important as it is low-degree PTIME decidable in the finite
and unrestricted cases. As independence atoms form an important tractable embedded
sub-class of EMVDs, we have delineated axiomatizability and tractability frontiers for
sub-classes of FDs, INDs, and IAs. The most interesting class is that of IAs, unary
FDs and unary INDs, for which finite and unrestricted implication differ but each is
axiomatisable and decidable in low-degree polynomial time. The results form a basis
for the advancement of several data processing tasks, including cardinality estimation,
database security, and query optimization.

Even though research on dependency theory has been rich and deep, there are many
problems that warrant future research. Theoretically, the decidability remains open for
both independence atoms and functional dependencies as well as unary independence
atoms and functional dependencies, both in the finite and unrestricted case. This line
of research should also be investigated in the probabilistic setting of conditional inde-
pendencies, fundamental to multivariate statistics and machine learning. Practically,
implementations and experimental evaluations of the algorithms can complement the
findings in the research. Of direct practical use for data profiling would be algorithms
that compute the set of IAs that hold on a given relation, as would algorithms to mine
notions of approximate IAs [1].

References

[1] Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

14

[2] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

[3] Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Trans. Database Syst. 4(3), 297–314 (1979), http://dblp.uni-trier.de/

db/journals/tods/tods4.html#AhoBU79

[4] Armstrong, W.W.: Dependency Structures of Data Base Relationships. In: Proc. of
IFIP World Computer Congress. pp. 580–583 (1974)

[5] Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

[6] Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD. pp. 47–61 (1977)

[7] Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)

[8] Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. In: PODS. pp. 171–176 (1982)

[9] Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

[10] Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion
dependencies is undecidable. SIAM Journal on Computing 14(3), 671–677 (1985)

[11] Codd, E.F.: Relational completeness of data base sublanguages. In: R. Rustin (ed.):
Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987, San Jose,
California (1972)

[12] Cosmadakis, S.S., Kanellakis, P.C., Vardi, M.Y.: Polynomial-time implication prob-
lems for unary inclusion dependencies. J. ACM 37(1), 15–46 (1990)

[13] Fagin, R.: Multivalued dependencies and a new normal form for relational databases.
ACM Transactions on Database Systems 2, 262–278 (September 1977)

[14] Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a
relational database. J. ACM 29(1), 96–102 (1982)

[15] Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving prob-
abilistic independence. Information and Computation 91(1), 128–141 (1991)

[16] Hannula, M.: Reasoning about embedded dependencies using inclusion dependen-
cies. In: LPAR-20. pp. 16–30 (2015)

[17] Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and
inclusion dependencies. In: FoIKS. pp. 211–229 (2014)

15

http://dblp.uni-trier.de/db/journals/tods/tods4.html#AhoBU79
http://dblp.uni-trier.de/db/journals/tods/tods4.html#AhoBU79

[18] Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and
inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

[19] Hannula, M., Kontinen, J., Link, S.: On independence atoms and keys. In: CIKM.
pp. 1229–1238 (2014)

[20] Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

[21] Hannula, M., Kontinen, J., Link, S.: On the interaction of inclusion dependencies
with independence atoms. In: LPAR-21. pp. 212–226 (2017)

[22] Herrmann, C.: On the undecidability of implications between embedded multivalued
database dependencies. Information and Computation 122(2), 221 – 235 (1995)

[23] Herrmann, C.: Corrigendum to ”On the undecidability of implications between
embedded multivalued database dependencies”. Inf. Comput. 204(12), 1847–1851
(2006)

[24] Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(Nov 1962)

[25] Kanellakis, P.C.: Elements of relational database theory. In: Handbook of Theoret-
ical Computer Science, pp. 1073–1156 (1990)

[26] Kontinen, J., Link, S., Väänänen, J.A.: Independence in database relations. In:
WoLLIC. pp. 179–193 (2013)

[27] Leinders, D., den Bussche, J.V.: On the complexity of division and set joins in the
relational algebra. In: PODS. pp. 76–83 (2005)

[28] Levene, M., Loizou, G.: How to prevent interaction of functional and inclusion
dependencies. Inf. Process. Lett. 71(3-4), 115–125 (1999)

[29] Levene, M., Loizou, G.: Guaranteeing no interaction between functional dependen-
cies and tree-like inclusion dependencies. Theor. Comput. Sci. 254(1-2), 683–690
(2001)

[30] Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

[31] Mitchell, J.C.: The implication problem for functional and inclusion dependencies.
Information and Control 56(3), 154–173 (1983)

[32] Mitchell, J.C.: Inference rules for functional and inclusion dependencies. In: PODS.
pp. 58–69 (1983)

[33] Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schönberg, M.,
Zwiener, J., Naumann, F.: Functional dependency discovery: An experimental eval-
uation of seven algorithms. PVLDB 8(10), 1082–1093 (2015)

16

[34] Paredaens, J.: The interaction of integrity constraints in an information system. J.
Comput. Syst. Sci. 20(3), 310–329 (1980)

[35] Stott Parker Jr., D., Parsaye-Ghomi, K.: Inferences involving embedded multivalued
dependencies and transitive dependencies. In: SIGMOD. pp. 52–57 (1980)

[36] Thalheim, B.: Dependencies in relational databases. Teubner (1991)

17

A Proofs

Appendix consists of proofs of Lemma 2 and Theorems 4-7, 9, and 10.

A.1 Theorem 4

Following [19], which focused on the combined class of keys and IAs, we first show how
the example implication problem in Sect. 3.1 can be extended to a non-axiomatizability
result for the finite implication problem of FD+IA. For n ≥ 2, define Rn := {Ai, Bi :
i = 1, . . . , n} and Σn := {Ai⊥Bi : i = 1, . . . , n} ∪ {Asuc(i)Bi → Rn : i = 1, . . . , n} where
suc(n) = 1 and suc(i) = i+ 1, for i < n. We say that σ follows from Σ by k-ary (finite)
implication, written Σ |=k σ (Σ |=k

fin σ), if Σ′ |= σ for some Σ′ ⊆ Σ of size at most k.
We say that an inference rule of the form σ1, . . . , σk ⇒ σ is k-ary. An axiomatization is
called k-ary if it consists of at most k-ary rules. In [19] it was shown that, for n ≥ 2,

(1) Σn |=fin A1B1 → Rn;

(2) Σn |=2n−1
fin X⊥Y iff X, Y are disjoint and such that XY = AiBi, X = ∅, or Y = ∅;

(3) given Σ′ ⊆ Σn of size 2n−1 and X ⊆ R such that Asuc(i)Bi 6⊆ X for all i = 1, . . . , n,
one finds a relation r satisfying Σ′ and tuples t, t′ ∈ r such that t(A) = t′(A) iff
A ∈ X.

It follows from (3) that

(4) Σn |=2n−1
fin X → Y iff Y ⊆ X or Asuc(i)Bi ⊆ X for some i = 1, . . . , n.

Note that all FDs and IAs described in (2) and (4) follow from Σn by unary finite
implication. Consequently, the set of FDs and IAs described in (2) and (4) is closed
under (2n− 1)-ary finite implication. Hence, the finite implication problem for FDs and
IAs cannot have any (2n − 1)-ary sound and complete axiomatization. Since this holds
for arbitrary n ≥ 2, and since all IAs in Σn are unary, we obtain the following theorem.

Theorem 4 The finite implication problem for FD+IA (2FD+UIA) is not finitely ax-
iomatizable.

A.2 Theorem 5

Theorem 5 The axiomatization A∗ is sound and complete for the unrestricted and finite
implication problems of UFD+IA.

Proof By Theorem 2 the axiomatization is sound. Since unrestricted implication implies
finite implication, it remains to show that Σ |=fin σ ⇒ Σ ` σ, for a finite set Σ ∪ {σ}
of UFDs and IAs over R. By I2,F1,FI2 we may assume that for all X⊥Y ∈ Σ, if
Σ ` A→ B and A ∈ X (A ∈ Y), then B ∈ X (B ∈ Y).
Assuming no constants. Let Σ′ be the subset of all IAs in Σ. Let us first prove that
Σ |=fin U⊥V ⇒ Σ′ ` U⊥V , given the assumption that for all A ∈ R, Σ 6` ∅ → A.
Note that Σ ` ∅ → A iff Σ ` A⊥A, for all Σ. Let t0 and t1 be constant tuples mapping
attributes to 0 and 1, respectively. We chase {t0, t1} by all IAs in Σ with the following
rule where b is a new symbol.

18

• Assume that X⊥Y ∈ Σ and t, t′ ∈ r are such that for no t′′ ∈ r, t′′(X) = t(X) and
t′′(Y) = t′(Y). Then extend r with tnew such that tnew(X) = t(X), tnew(Y) = t′(Y),
and tnew(R \XY) = b.

Since each tnew assigns attributes only to three different values, the chase procedure
terminates and generates a unique r satisfying all IAs in Σ. We construct from r a finite
relation r′ such that r′ satisfies all UFDs and IAs in Σ. Denote by A+ the set of attributes
B such that Σ ` A→ B. Let then r′ be obtained from r by replacing each t ∈ r with a
tuple s(t) that agrees with t on attributes A such that t(A) ∈ {0, 1}, and otherwise maps
A to the tuple t(A+). Now r′ is of the size of r and hence finite. Let us show first that
r′ satisfies all X⊥Y ∈ Σ. Let s(t), s(t′) ∈ r′, and let t′′ ∈ r be such that it agrees with
t on X and with t′ on Y . We claim that s(t′′) agrees with s(t) on X and with s(t′) on
Y . Let A ∈ X; we show that s(t)(A) = s(t′′)(A). The case where t(A) = t′′(A) ∈ {0, 1}
is trivial by the definition. Otherwise, first note that A+ ⊆ X by the assumption in the
beginning. Hence, t agrees with t′′ on A+, and therefore s(t) agrees with s(t′′) on A.
Consequently, s(t)(X) = s(t′′)(X), and analogously we obtain that s(t′)(Y) = s(t′′)(Y).
This shows that r′ satisfies X⊥Y .

Let us then show that r′ satisfies all UFDs A→ B in Σ. Let s(t), s(t′) be tuples in r′

that agree on A. Recall that by the assumption for each IA Z0⊥Z1 ∈ Σ, A ∈ Zi implies
B ∈ Zi. Therefore, it is easy to see by the chase construction that for all t ∈ r, t(A) = 0
implies t(B) = 0 and t(A) = 1 implies t(B) = 1. Hence, if s(t)(A) = s(t′)(A) ∈ {0, 1}, we
obtain that s(t)(B) = s(t′)(B). Otherwise, s(t)(B) = t(B+) = t′(B+) = s(t′)(B) by the
assumption that s(t)(A+) = s(t′)(A+) and since B+ ⊆ A+. This shows that r′ satisfies
all UFDs in Σ.

Now, Σ′ ` X⊥Y if for some t ∈ r we have t(X) = 0 and t(Y) = 1. Proving this is a
straightforward induction and left to the reader. For the induction step it suffices to use
rules I2 and I3 since no new tuple tnew, obtained by an application of the chase rule to
X⊥Y , maps attributes in R \XY to 0 or 1. By the assumption that Σ |=fin U⊥V , we
obtain that r′ |= U⊥V . Hence and by the construction of r′ from r, for some t ∈ r we
have that t(U) = 0 and t(V) = 1 which implies Σ′ ` U⊥V .
Proving the general case. Assume now that Σ∪{σ} is any set of UFDs and IAs. Let
E be either the empty set or a single attribute, and let R′ be the set of attributes C ∈ R
for which Σ 6` E → C.

Assume first that Σ |=fin σ where σ is an IA of the form X⊥Y . Choosing E := ∅
we obtain that Σ � R′ |=fin X ∩ R′⊥Y ∩ R′, and hence Σ � R′ ` X ∩ R′⊥Y ∩ R′ by the
previous section. Therefore by I2,FI2, Σ ` X⊥Y .

Assume then that σ is an UFD of the form E → B, and assume that Σ 6` σ. Let
t0 and t1 be constant functions over R′ mapping attributes to 0 and 1, and let r′[R′]
be a finite relation satisfying Σ � R′, obtained by extending {t0, t1} as shown above.
Define then r0 := R\R′{0} × r′. It is easy to see that r0 satisfies all IAs in Σ. Also, each
UFD B → C ∈ Σ is satisfied since it cannot be the case that B ∈ R \ R′ and C ∈ R′.
Consequently, r |= Σ ∪ {¬σ} which concludes the proof.

19

A.3 Theorem 6

First we investigate unrestricted implication for UFD+UIND+IA. Using Section 3.2 and
[12] we show that A∗ ∪ {U1,U2,UI3,UI4} forms a sound and complete axiomatization.
[12] provides an axiomatization for the unrestricted implication problem of UINDs and
embedded implicational dependencies. In the uni-relational case, an embedded implica-
tional dependency (EID) is a first-order sentence ∀~x∃~y(φ(~x)→ ψ(~x, ~y)) over a relational
vocabulary {R} where

• φ(~x) is a non-empty finite conjunction of relational atoms and the variables occur-
ring in this conjunction are exactly all the variables listed in ~x;

• ψ(~x, ~y) is a non-empty finite conjunction of relational atoms and equality atoms
and the variables occurring in this conjunction are exactly all the variables listed
in ~y and some of the variables listed in ~x;

• each variable in ~x~y associates with a single relation position, and for each occurrence
of an equality atom x = y, x and y associate with the same relation position.

Note that EIDs include all FDs and IAs but exclude all non-trivial INDs. The following
presentation of Theorem 12 is a reformulation from [12].

Definition 3 ([12]) For any set ∆ of EIDs and set Σ of UINDs, we define the set Y
called the singlevalued span of ∆ and Σ to be the minimum set of attributes Y that satisfies
the two conditions:

(1) if ∆ ∪ {Y ⊥Y } |= A⊥A, then add A to Y ,

(2) if attribute B is in Y and A ⊆ B is in Σ, then add A to Y .

Definition 4 ([12]) For any set A of EIDs, any set Z of UINDs, and Y the singlevalued
span of ∆ and Σ, we define the sets ∆′′ and Σ′′, called the unrestricted extensions of ∆
and Σ, by ∆′′ = ∆ ∪ {Y ⊥Y } and Σ′′ = Σ ∪ {A ⊆ B : B ⊆ A in Σ, B in Y }.

Theorem 12 ([12]) Let ∆ be a set of EIDs, Σ set of UINDs, Y the singlevalued span,
and ∆′′,Σ′′ the unrestricted extensions of ∆,Σ. For any ED δ and any UIND σ, we have

• ∆ ∪ Σ |= σ ⇔ Σ′′ |= σ,

• ∆ ∪ Σ |= δ ⇔ ∆′′ |= δ.

By Theorems 2, 5, 12, and since U1,U2 form a complete axiomatization for UINDs, we
obtain the following theorem.

Theorem 6 The axiomatization A∗∪{U1,U2,UI3,UI4} is sound and complete for the
unrestricted implication problem of UFD+UIND+IA.

A.4 Lemma 2 and Theorem 7

Lemma 2 Let Σ be a set of UFDs, UINDs, and IAs over R, partitioned respectively
to ΣUFD, ΣUIND, and ΣIA. Assume that ΣUFD ∪ ΣUIND contains all UFDs and UINDs
derivable from Σ by A∗ ∪ {U1,U2} ∪ {Ck : k ∈ N}, and assume that we have assigned an

20

scc-numbering to G(ΣUFD ∪ ΣUIND). Let E be either the empty set or a single attribute,
and let R′ := {B ∈ R : E → B 6∈ Σ}. Then there exists a finite relation r and tuples
t0, t1 ∈ r such that:

(i) Σ ` X⊥Y if X, Y ⊆ R′ and for some t ∈ r, t(X) = t0(X) and t(Y) = t1(Y);

(ii) r |= ΣUFD ∪ ΣIA;

(iii) r(A) is (strictly) included in r(B) if scc(A) is (strictly) less than scc(B).

Proof By rule F2 we may assume that if A→ B,X⊥Y ∈ Σ and A ∈ X (A ∈ Y), then
B ∈ X (B ∈ Y). Let t0 and t1 be constant tuples that map R′ to 0 and 1, respectively.
As in the proof of Theorem 5, we can extend {t0, t1} to a finite relation r′[R′] that satisfies
(ΣUFD∪ΣIA) � R′ and is such that ΣIA ` X⊥Y if for any t ∈ r′ and X, Y ⊆ R′, t(X) = 0
and t(Y) = 1. It is easy to see that r′′ := R\R′{0} × r′ satisfies ΣUFD ∪ ΣIA. We show
how to extend r′′ to a finite relation satisfying (i-iii). Assume that the scc-numbering on
G(ΣUFD ∪ ΣUIND) is 0, . . . , n. We construct inductively, for each i = 0, . . . , n, a relation
ri that includes r′′ and satisfies (ii), and (iii) over A,B ∈ scc≤i.

For this, assume that i = 0, . . . , n and that there exists a relation r that satisfies
(ii), and (iii) over A,B ∈ scc<i (in case i = 0 r is r′′, and otherwise r is ri−1 by the
induction assumption). We show how to extend r to a relation ri satisfying the induction
claim. If i = 0 and R \ R′ 6= ∅, then scc0 = R \ R′ and choosing r0 as r′′ suffices
since r′′(A) = {0} for all A ∈ R \ R′. Otherwise, we construct ri as follows. First let
m := max{|r(A)| : scc(A) ≤ i}. Since satisfaction of typed dependencies is invariant
under renaming of column values, we may rename the values of r (fixing only 0 and 1)
so that for all attributes A, the set r(A) is an initial segment of N, that is here, the set
{0, . . . , |r(A)| − 1}.

Let r′ be the relation over scci that consist of all possible tuples t′ : A 7→ {|r(A)| −
1, . . . ,m} where t′ assignes all attributes in the same red clique to the same value. Let
ri := {s(t, t′) : t ∈ r, t′ ∈ r′} where s(t, t′) is a tuple such that its values over scc≤i are
defined as follows:

(1) for A ∈ scc<i, s(t, t
′) : A 7→ t(A);

(2) for A ∈ scci, s(t, t
′) : A 7→ t′(A) if t(A) = |r(A)| − 1, and otherwise s(t, t′) : A 7→

t(A).

The remaining values are defined inductively as follows:

(3) for A ∈ scc>i, s(t, t
′) : A 7→ t(A) if s(t, t′)(A+

r) = t(A+
r), and otherwise s(t, t′) :

A 7→ s(t, t′)(A+
r).

We show that ri satisfies the induction claim. It follows immediately by the induction
assumption and the construction that ri extends r and satisfies (iii) over A,B ∈ scc≤i.
Hence, it suffices to show that condition (ii) is preserved. Consider first A → B ∈
ΣUFD. By the induction assumption it suffices to consider the cases where A ∈ scc≤i.
If A ∈ scci and B ∈ scc<i, then ri satisfies A → B because s(t0, t1)(A) = s(t′0, t

′
1)(A)

entails t0(A) = t′0(A) which implies t0(B) = t′0(B) by the induction assumption and
hence s(t0, t1)(B) = s(t′0, t

′
1)(B). If A,B ∈ scci, then ri satisfies A → B since each

tuple t′ in s(t, t′) maps attributes in the same red clique to the same value. If A ∈ scc>i
and A ∈ scc≤i, then A → B remains true in ri by the inductive definition in (3). If

21

A,B ∈ scc>i, then A and B belong to the same red clique by Lemma 1, and hence
A+
r = B+

r and the claim follows by (3). This completes the case of A→ B ∈ ΣUFD.
Assume then that X⊥Y ∈ ΣIA; we show that ri satisifies X⊥Y . Consider tuples

s(t0, t
′
0), s(t1, t

′
1) in ri. By the induction assumption we find t2 ∈ r which agrees with t0 on

X and with t1 on Y . Let t′2 be any extension of the mapping that agrees with t′0 on X∩scci
and with t′1 on Y ∩scci (since X and Y are closed under F2, t′2 assignes all attributes in the
same red clique to the same value). We claim that s(t2, t

′
2)(A) = s(t0, t

′
0)(A) for all A ∈ X.

If A ∈ scc≤i, then the claim follows immediately by the construction. If A ∈ scc>i, then
the claim follows by an easy induction on i since A+

r ⊆ X by the assumption made in
the beginning. For A ∈ Y , we obtain analogously that s(t2, t

′
2)(A) = s(t1, t

′
1)(A). This

completes the case of X⊥Y ∈ ΣIA.
We have now showed the induction claim for ri. Hence, rn extends r′′ and satisfies

(ii,iii). Moreover, assume that X, Y ⊆ R′ and t ∈ r0 are such that t(X) = t0(X) and
t(Y) = t1(Y). By the construction it easy to see that there exists t′ ∈ r′′ which agrees
with t on XY , and hence Σ′ ` X⊥Y . This concludes the proof.

Theorem 7 The axiomatization A∗ ∪ {U1,U2} ∪ {Cn : n ∈ N} is sound and complete
for the finite implication problem of UFD+UIND+IA.

Proof The axiomatization is sound by Theorem 2. It remains to prove the completeness.
Let Σ ∪ {σ} be a set of UFDs, UINDs, and IAs, and assume that Σ′ ⊆ Σ contains all
UFDs and UINDs derivable from Σ by the above axiomatization. Assume first that σ is
an UFD of the form E → B where E is either the empty set or a single attribute. Then
r obtained by the previous lemma gives a counterexample of Σ |=fin σ. Assume then that
σ is an IA of the form X⊥Y . We let r, t0, t1 be obtained from the previous lemma, for
R′ := {B ∈ R : Σ 6` ∅ → B}. Since r |= Σ, we have that r � R′ |= X ∩ R′⊥Y ∩ R′,
and therefore we find t ∈ r that agrees with t0 on X and with t1 on Y . Hence, by the
lemma Σ ` X ∩R′⊥Y ∩R′, and therefore Σ ` X⊥Y by U2 and FI2. Assume then that
Σ 6` A ⊆ B; we construct a finite relation r satisfying Σ and violating A ⊆ B. Assume
first that we have a scc-numbering for G(Σ) such that scc(A) > scc(B). Then r obtained
from the previous lemma is a counterexample for Σ |=fin σ. Otherwise, we may assume
without losing generality that for each A ∈ R, r(A) = {0, . . . , |r(A)| − 1}. Let m be
some value that does not appear in r. Then let r′ be the relation obtained from r by
replacing in each column B with A ⊆ B ∈ Σ′ occurrences of |r(B)− 1| with m. Then r′

still satisfies all UINDs in Σ but violates A ⊆ B. Hence, and since satisfaction of IAs and
UFDs is preserved under renaming of column values, r′ is a counterexample of Σ |=fin σ.

A.5 Theorem 9

In this section we show how splits and intersections give rise to non-trivial interaction
between FDs and IAs. We use the following graph construction to characterize the
implication problems for FD+IA (see also [17, 18]). The idea is to chase via graphs
constructed from vertices and undirected edges, labeled by sets of attributes. Compared
to the traditional tableau chase, vertices now represent tuples and labeled edges represent
equalities between tuple values. For unrestricted implication, the obtained graphical
chase procedure is sound and complete; for finite implication it is sound but incomplete.

22

v2

v0 v1

v3

v4

A

C
DB A

E

D

B
C

A
D
E

Figure 1: Start for GΣ,σ-construction

Definition 5 Let ΣFD∪ΣIA∪{σ} be a set of FDs and IAs over a relation schema R, and
let Σ = ΣFD ∪ΣIA. Let G be a graph that consists of two vertices v0, v1 and a single edge
(v0, v1) that is labeled by {A ∈ R : ΣFD∪{X⊥X : XY ⊥XZ ∈ ΣIA} |= Y → A} where Y
is U if σ is U → V and otherwise Y is ∅. For an attribute set X, vertices v and v′ are X-
connected if v = v′ or for all A ∈ X there is a sequence of edges (v, v0), . . . , (vn, v

′), each
labeled by a set including A. We then denote by GΣ,σ any (possibly infinite) undirected
edge-labeled graph that is obtained by chasing G with the following rule as long as possible.

• Assume that X⊥Y ∈ Σ and v, v′ are two vertices such that no vertex v′′ is X-
connected to v and Y -connected to v′. Then apply (1) once, and thereafter apply
(2) as long as possible.

(1) Add fresh vertex vnew and fresh edges (v, vnew) and (v′, vnew) labeled respectively
by X and Y .

(2) For all X ′ → Y ′ ∈ Σ and v, v′ ∈ G that are X ′-connected but not Y ′-connected,
add a fresh edge (v, v′) labeled by Y ′.

It is easy to describe non-trivial interaction between FDs and IAs using the above
graph construction. Let us illustrate this with an example. Note that in the following
example both FDs split IAs from the same assumption set. As a result of this, the
interaction between FDs and IAs is already so intricate that all consequences are not
derivable using the rules in Table 2.

Example 1 Let Σ be the set

{B⊥CD,D⊥AE,BC⊥ADE,AB → X,CDE → X}

and define σ as A → X. Then the basis for GΣ,σ consists of two vertices v0, v1 that are
connected by an A-labeled edge. The graph depicted in Fig. 1 is obtained by applying
once each IA in Σ. Notice that v4 is AB-connected to v0 and CDE-connected to v1. By
the FDs in Σ, the next step would be to add X-labeled edges (v0, v4) and (v1, v4).

Since v0 and v1 are X-connected in our example GΣ,σ, by the following lemma we obtain
that Σ |= A→ X. Interestingly, A→ X is not derivable from Σ by the rules depicted in
Table 2.

23

Lemma 3 Let Σ ∪ {σ} be a set of FDs and IAs. Then the following holds:

(1) if σ is U → V , then Σ |= σ iff v0 is V -connected to v1 in GΣ,σ;

(2) if σ is U⊥V , then Σ |= σ iff there exists v2 that is U-connected to v0 and V -
connected to v1 in GΣ,σ.

Proof Assume first that the right-hand side condition holds; we show how to prove
Σ |= σ. Let r be a relation satisfying Σ, and t, t′ ∈ r be two tuples that agree on U
in case (1) and are arbitrary in case (2). It is then an easy induction to show that
{(v0, t), (v1, t

′)} can be extended to a mapping f from vertices to attributes such that
f(v)(X) = f(v′)(X) whenever v and v′ are X-connected in GΣ,σ. It follows that r |= σ
which shows that Σ |= σ.

Assume then that the righ-hand side condition fails. Then for each vertex v in GΣ,σ,
construct a tuple t that maps each attribute A to the set that consists of all vertices v′

in GΣ,σ that are A-connected to v. It is straightforward to show how this construction
gives rise to a (possibly infinite) counter-example for Σ |= σ. This completes the proof
of the lemma.

We are now ready to state the non-interaction theorem for FD+IA. Recall that the
definition of Σ∗ is given in the main text using Algorithm 1.

Theorem 9 Let ΣFD and ΣIA be respectively sets of FDs and IAs, and let Σ∗FD and Σ∗IA
be obtained from ΣFD and ΣIA by Algorithm 1. Then the following holds:

• if no IA in Σ∗IA splits any FD in Σ∗FD, then Σ∗FD and Σ∗IA have no interaction with
respect to unrestricted implication;

• if no IA in ΣIA intersects any FD in ΣFD, then ΣFD and ΣIA have no interaction
with respect to finite implication.

Proof We consider first unrestricted implication and then finite implication.
Unrestricted case. Assume that Σ |= σ where Σ = Σ∗FD ∪Σ∗IA, and assume that no IA
in Σ∗IA splits any FD in Σ∗FD; we show that Σ∗IA |= σ or Σ∗FD |= σ holds. Let GΣ,σ be as
in Definition 5; we show that the construction of GΣ,σ does not use any application of
(2). Assume to the contrary that some introduction of a new vertex vnew and new edges
(v, vnew), (v′, vnew) by (1) renders for the first time some vertices w and w′ X ′-connected
but not Y ′-connected, for some X ′ → Y ′ ∈ Σ. Assume that the new edges (v, vnew)
and (v′, vnew) are respectively labeled by X and Y in which case we have X⊥Y ∈ Σ,
and assume first that w′ is vnew. Since X⊥Y does not split X ′ → Y ′, it must be the
case that X ′ is included in either X or Y . We may assume by symmetry that this holds
for X in which case X ′Y ′ ⊆ X by (i). Then it follows that w and v are X ′-connected
but not Y ′-connected since the same holds for w and vnew by the assumptions. Now
w 6= vnew, and hence this contradicts Definition 5 if vnew is the first added vertex, and
otherwise the assumption that (2) has not been applied previously. Hence, w′ and vnew

are different vertices, and so by symmetry are w and vnew. However, since X and Y
share only constant attributes, w and w′ must have been X ′-connected already before
the introduction of vnew. Hence by Definition 5 they have also been Y ′-connected which

24

contradicts the assumption. This completes the proof that no application of (2) occurs
in the construction of GΣ,σ.

Assume that σ is an IA. By the construction of Σ∗IA, (v0, v1) has the same label in the
initial graph G of GΣ,σ and GΣ∗IA,σ

. Since the construction of GΣ,σ contains no application
of (2), GΣ,σ equals GΣ∗IA,σ

. Hence by Lemma 3, Σ∗IA |= σ. Assume then that σ is an FD.
Since the graph construction of GΣ,σ does not introduce any new labels for (v0, v1), we
obtain that Σ∗FD ∪ {X⊥X : XY ⊥XZ ∈ Σ∗IA} |= σ by Definition 5 and Lemma 3.
Therefore, and since Z satisfies (ii) and ∅ → Z ∈ Σ∗FD, it follows that Σ∗FD |= σ.
Finite case. Assume that no IA in ΣIA intersects any FD in ΣFD, and assume first that
ΣFD 6|=fin U → V ; we show that ΣFD ∪ ΣIA 6|=fin U → V . Let U+ be the set of attributes
A such that ΣFD |=fin U → A, and let I be the set of attributes that appear in ΣIA. Then
we let r be a relation where r(U+) is U+{0}, r(I \U+) is I\U+{0, 1}, and r(A) takes values
1, . . . , 2|U

+\I| for A ∈ R \ (U+ ∪ I), where R is the underlying relation schema. Clearly r
satisfies ΣIA and violates U → V . If X → Y ∈ ΣFD, then by the assumption X ∩ I = ∅,
and hence it follows by the construction that r satisfies X → Y .

Assume then that ΣIA 6|=fin U⊥V ; we show that ΣFD ∪ ΣIA 6|=fin U⊥V . Let I be as
in the previous paragraph. If UV ⊆ I, let r be a finite relation over I satisfying ΣIA and
violating U⊥V ; otherwise define r as I{0, 1}. Then let r′ be the extension of r where,
for each A ∈ R, r′(A) takes values 1, . . . , 2|r|. Given the non-interaction assumption, we
notice that r′ is a witness of ΣFD ∪ ΣIA 6|=fin U⊥V . This completes the proof.

Note that the finite relation constructions in the proof are possible already from the
assumptions that ΣFD 6|= U → V or ΣIA 6|= U⊥V ; for the latter recall that finite
and unrestricted implication coincide for IAs. Hence, the proof entails that the finite and
unrestricted implication problems coincide for FD+IA provided that the non-intersection
assumption holds.

A.6 Theorem 10

Theorem 10 Let ΣUFD,ΣUIND,ΣIA be respectively sets of UFDs, UINDs, and IAs over
a relation schema R. The unrestricted and finite implication problems for σ by ΣUFD ∪
ΣUIND ∪ ΣIA can be decided in time:

• O(|ΣIA| · |ΣUFD|+ |ΣUIND|) if σ is an UFD or UIND;

• O(|ΣIA| · (|ΣUFD|+ |R|2) + |ΣUIND|) if σ is a IA.

Proof The following algorithm extends an algorithm for UFD+UIND-implication in [9].
It generates a graph G and sets Z,Xi, Yi, for i = 1, . . . , |ΣIA|, and takes ΣUFD,ΣUIND and
ΣIA = {U1⊥V1, . . . , Un⊥Vn} as an input. Note that steps 2-4 are to be omitted in the
unrestricted case.

Let Σ := ΣUFD ∪ ΣUIND ∪ ΣIA. Let Σ∗ be the set of dependencies that consists of all
trivial UFDs, UINDs, and IAs over R, and:

(i) A→ B iff B ∈ Z or A is connected to B by a red path;

(ii) A ⊆ B iff there is a black path from B to A;

(iii) X⊥Y iff Σ∗IA `I X⊥Y ;

25

Algorithm 2 Algorithm for computing Z,Xi, Yi

Require: ΣUFD, ΣUIND, and ΣIA = {Ui⊥Vi | i = 1, . . . , n}
Ensure: A digraph G and sets Z and Xi, Yi for i = 1, . . . , n

1: Initialize: Xi = Ui, Yi = Vi, Z is empty, and G is a digraph that consists of vertices
R, red edges (A,B) for A→ B ∈ ΣUFD, and black edges (A,B) for B ⊆ A ∈ ΣUIND

2: compute all strongly connected components of G (only in the finite case)
3: for each red (black) edge (A,B) with A,B in the same component (only in the finite

case) do
4: add red (black) edge (B,A) to G

5: for ∅ → A ∈ ΣFD do
6: add A to Z
7: for n = 1, . . . , n do
8: add A to Xi (Yi) if there is a red path from Xi (Yi) to A
9: add each attribute in Xi ∩ Yi to Z

10: add to Z all attributes that are reachable from Z in G, ignoring edge colors
11: for each red (black) edge (A,B) with A,B in Z do
12: add red (black) edge (B,A) to G

where Σ∗IA := {Xi⊥Yi | i = 1, . . . , n} ∪ {Z⊥Z}.
Let us first consider the case for finite implication. In what follows, we show that

Σ |=fin σ iff σ ∈ Σ∗. By Theorem 7, Σ |=fin σ iff σ can be deduced from Σ by rules
A∗ ∪ {U1,U2} ∪ {Ck : k ∈ N}. Therefore, the claim follows if Σ∗ is the deductive closure
of Σ under these rules. It is straightforward to check that each dependency in Σ∗ can be
deduced by the rules. Note that item 3 of the graph construction can be simulated with
the cycle rules and transitivity rules for FDs and INDs. Next we show that Σ∗ contains
all dependencies derivable from Σ. The only non-trivial cases are the cycle rules and
FI1,FI2. For FI2, assume that X⊥Y A,A→ B ∈ Σ∗; we show that X⊥Y AB ∈ Σ∗.
The cases where A or B is empty are trivial. Assume that both are single attributes.
If B ∈ Z, then the claim follows by the definition of Σ∗IA. Otherwise, B 6∈ Z and there
exists a red path from A to B. Since Z is closed under red arrows, this path stays outside
Z and has hence existed already at step 7. Therefore by the construction B is in Xi (Yi)
whenever A is. It is now an easy induction on the length of a deduction to show that
whenever Σ∗IA `I V1⊥V2, then Σ∗IA `I V ′1⊥V ′2 where V ′i = ViB if A ∈ Vi, and otherwise
V ′i = Vi. From this it follows that ΣIA `I X⊥Y AB, and therefore X⊥Y AB ∈ Σ∗. For
FI1 and the cycle rules, the reasoning is analogous. This concludes the proof of the
claim for finite implication.

Let us then turn to unrestricted implication. It suffices to show that Σ |= σ iff σ ∈ Σ∗,
where Σ∗ is now defined over graph G obtained from steps 1,5-12 of the algorithm.
Proving this is analogous to the finite case (with the exception that rules UI3,UI4 are
to be considered instead of the cycle rules) and hence omitted here.

Let us now analyze the time complexity of the algorithm. Steps 1, 2, 3, 10, 11 each
take time O(|ΣUFD|+ |ΣUIND|), step 5 takes O(|ΣUFD|), and step 7 takes O(|ΣIA| · |ΣUFD|).
Since, reachibility can be tested in linear time, we obtain the time bound for a UFD or

26

a UIND σ. Assume that σ is an IA. It easy to see that σ is (finitely) implied by Σ∗IA
iff σ � R′ is (finitely) implied by Σ∗IA � R′, where R′ := R \ Z. On the other hand,
by Theorem 2 in [26] the right-hand side implication problem for disjoint independence
atoms can be decided in time O(|Σ∗IA � R′| · |R′|2). Since, Σ∗IA � R′ is of the size of ΣIA,
the time bound for an IA σ follows.

27

	Introduction
	Contributions

	Preliminaries
	IAs+FDs
	Implication problem for FDs and IAs
	Implication for UFDs and IAs

	IAs+UFDs+UINDs
	Polynomial-Time Conditions for Non-Interaction
	Complexity Results
	Conclusion and Outlook
	Proofs
	Theorem 4
	Theorem 5
	Theorem 6
	Lemma 2 and Theorem 7
	Theorem 9
	Theorem 10

